JPH02275470A - Colored fine particle and toner for developing electrostatic charge image using this particle - Google Patents

Colored fine particle and toner for developing electrostatic charge image using this particle

Info

Publication number
JPH02275470A
JPH02275470A JP2008124A JP812490A JPH02275470A JP H02275470 A JPH02275470 A JP H02275470A JP 2008124 A JP2008124 A JP 2008124A JP 812490 A JP812490 A JP 812490A JP H02275470 A JPH02275470 A JP H02275470A
Authority
JP
Japan
Prior art keywords
fine particles
colored
toner
parts
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008124A
Other languages
Japanese (ja)
Other versions
JP2766540B2 (en
Inventor
Mitsuo Kushino
光雄 串野
Yoshikuni Mori
森 悦邦
Isato Ikeda
勇人 池田
Nobuaki Urashima
浦島 伸晃
Keiichi Uehara
上原 啓一
Masuji Izumibayashi
益次 泉林
Sadanori Sano
佐野 禎則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1095419A external-priority patent/JP2765937B2/en
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008124A priority Critical patent/JP2766540B2/en
Publication of JPH02275470A publication Critical patent/JPH02275470A/en
Application granted granted Critical
Publication of JP2766540B2 publication Critical patent/JP2766540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To obtain sharp images by mixing colored spheroidal fine particles which are obtd. by a suspension polymn. and inorg. fine particles, then subjecting the mixture to a heating treatment under specific conditions, and then disintegrating the mixture to obtain the toner. CONSTITUTION:The colored spheroidal fine particles are obtd. by the suspension polymn. of polymerizable monomers compounded with coloring agents and the average particle size thereof is 1 to 100mum. After the colored spheroidal fine particle and the inorg. fine particles smaller in grain size than these particles are mixed, the mixture is subjected to the heating treatment under 30 to 200 deg.C conditions to fuse the colored spheroidal fine particle to each other to form blocked particles; thereafter, the blocked particles are disintegrated to obtain the toner. The particle size of the inorg. fine particle is in a 0.001 to 10mum range and the amt. of the inorg. fine particle to be added is in a 0.01 to 100pts.wt. range per 100pts.wt. colored spheroidal fine particles. The extremely sharp images are formed in this way.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は着色微粒子およびそれを用いてなる静電荷像現
像用トナーに関する。より詳しくは、粒子内での着色剤
が均一に分散されてなると共に粒子表面が改質されてな
り、よってトナー、塗料、インク、樹脂成形物等の着色
剤等に利用できる着色微粒子および該着色微粒子を用い
てなり、レーザ・プリンタ、液晶・プリンタ等のプリン
タ装置のトナーに用いることにより、鮮明な画像を形成
し得る静電荷像現像用トナーに関する。 〔従来の技術〕 電子写真法はセレン、酸化亜鉛、硫化カドミウム等の光
導電体材料によって構成された感光体上に電気的潜像を
形成せしめ、これを粉体現像剤で現像化し、紙などに転
写し定着するものである。 従来、静電荷像の現像に用いられるトナーは、一般に熱
可塑性樹脂中に着色剤及びその他添加剤(電荷制御剤、
オフセット防止剤、潤滑剤等)を溶融混合して分散した
後、固化物を微粉砕、分級して所望の粒径の着色微粒子
として製造してきた。 しかしながら、上記の粉砕によりトナーを製造する方法
には種々の欠点が存在する。第一には、樹脂を製造する
工程、樹脂と着色剤やその他の添加剤とを混練する工程
、固形物を粉砕する工程、粉砕物を分級して所望の粒径
の着色微粒子を得る工程等、多くの工程とそれに伴う多
種の装置が必要であり、この方法により製造されるトナ
ーは必然的に高価格である。特に、鮮明でかぶりの少な
い画像を形成する為の最適な粒子径範囲のトナーを得る
為に分級する工程は必須の要件であるが、生産性かつ収
率の上において問題がある。第二に、混練する工程にお
いて着色剤やその他の添加剤が樹脂に均一に分散するの
は極めて困難であり、故にこの方法で製造されたトナー
は、着色剤、電荷制御剤等が分散不良のために各粒子の
摩擦帯電特性が異なり、これが解像度の低下につながる
。この様な問題は今後、画像の高画質化の為の必須条件
となるトナーの小粒子径化に伴なって更に顕著なものと
なる。即ち、現状の粉砕機では小粒子径トナーを得るに
は限界があり、よしんば小粒子径トナーが得られたとし
ても着色剤・電荷制御剤の分散不良の為、より帯電量の
バラツキが発生する。 これらの粉砕法によるトナーにみられるさまざまの欠点
を改良する為に、乳化重合法又は懸濁重合法によるトナ
ーの製造方法が種々提案されている。(特公昭36−1
0231号、特公昭43−10799号、特公昭47−
518305号、特公昭51−14895号等)これら
の方法は、重合性単量体にカーボンブラック等の着色剤
物質、その他添加剤を加え、乳化又は懸濁重合せしめて
、着色剤物質を含有するトナーを一気に合成する方法で
ある。この方法により、従来の粉砕法の欠点をかなり改
善することが可能である。即ち、粉砕工程を全く含まな
い為脆性の改良は必要ではなく、形状が球形で流動性に
優れる為摩擦帯電性が均一である。しかし、重合法によ
るトナー製造方法にも問題はある。第1には、重合時に
用いた分散剤・界面活性剤等の親水性物質が洗浄工程に
よっても完全には除去できずトナー表面に残存する為に
、帯電性が環境に影響され易くなる。第2には、重合法
により得られるトナーは形状が球で、表面が非常になめ
らかである為に、感光体に付着したトナーが除去され難
くなり、クリーニング不良を生じる。 これらの問題を解決するために種々の方法が特開昭61
−255354号、特開昭53−17736号、特開昭
63−17460号、特開昭61−167956号等に
より提案されているが、その効果が不完全であったり、
或いはコストアップにつながり実用的でない。 〔発明が解決しようとする問題点3 本発明者らは上記現状に鑑み鋭意研究を重ねた結果、懸
濁重合により得られた着色球状微粒子を特定の手順によ
り処理して得られる着色微粒子が前記問題点が悉く改善
されたものであり、静電荷像現像用トナーを始め、塗料
、インク、樹脂成形物等の着色剤等に好適に用いられる
と共に、該着色微粒子を用いてなる静電荷像現像用トナ
ーがレーザ・プリンタ、液晶・プリンタ等のプリンタ装
置に用いることにより、前記従来技術の有する問題点が
全く見られず、極めて鮮明な画像を形成し得ることを見
い出し、本発明を完成するに至った。 〔問題点を解決するための手段〕 本発明は懸濁重合により得られた平均粒子径が1〜11
00ILの着色球状微粒子と該着色球状微粒子より小粒
径の無機微粒子とを混合した後、30〜200℃の条件
下に加熱処理して該着色球状微粒子同士を融着させてブ
ロック状物とした後、解砕して得られることを特徴とす
る着色微粒子およびこれを用いてなる静電荷像現像用ト
ナーに係わるものである。 本発明における着色球状微粒子は、着色剤を配合してな
る重合性単量体を周知の手順で懸濁重合して得られるも
のである。懸濁重合により得られる着色球状微粒子は1
〜100μm、好ましくは3〜50μm、より好ましく
は3.5〜20μmの粒子径であるが、この粒子径の大
きさは加熱処理および解砕の工程を経て本発明の着色微
粒子を得る上で極めて重要な意義を有している。懸濁重
合以外の重合法、例えば乳化重合法による球状重合体の
平均粒子径は通常0.1μm前後であり、これを加熱処
理、解砕して得られる微粒子は、本発明の製造方法によ
り得られる着色微粒子に比べて粒子の形状や粒子径分布
が著しく異なったものとなり、これをトナーとして用い
ても充分満足しつる画質の画像を得ることができない。 懸濁重合の重合性単量体成分に用いる重合性単量体の例
としては次のものが挙げられ、これらを単独で、あるい
は2種以上を組み合わせて用いることができる。 スチレン、0−メチルスチレン、m−メチルスチレン、
p−メチルスチレン、α−メチルスチレン、p−メトキ
シスチレン、p −tert−ブチルスチレン、p−フ
ェニルスチレン、0−クロルスチレン、m−クロルスチ
レン、p−クロルスチレン等のスチレン系モノマー;ア
クリル酸メチル、アクリル酸エチル、アクリル酸n−ブ
チル、アクリル酸イソブチル、アクリル酸ドデシル、ア
クリル酸ステアリル、アクリル酸2−エチルヘキシル、
メタクリル酸メチル、メタクリル酸エチル、メタクリル
酸プロピル、メタクリル酸n−ブチル、メタクリル酸イ
ソブチル、メタクリル酸n−オクチル、メタクリル酸ド
デシル、メタクリル酸2−エチルヘキシル、メタクリル
酸ステアリル等のアクリル酸あるいはメタクリル酸系モ
ノマー;エチレン、プロピレン、ブチレン、塩化ビニル
、酢酸ビニル、アクリロニトリル。 上記重合性単量体を懸濁重合して、得られた着色球状微
粒子を適度な条件下において、加熱処理する事により解
砕時の作業性が良好となる。加熱処理時の粒子同士の融
着が進行し過ぎると後の解砕時の効率が低下し、融着が
不充分な場合は粒子表面の充分な処理効果が得られない
。過麿の融着をさけるためには懸濁重合時に架橋剤を使
用してもよい。この際、架橋剤の使用量は重合性単量体
に対し0.0001〜5重量%の範囲とするのが好まし
い。 この様な架橋剤としては、例えば、ジビニルベンゼン、
ジビニルナフタリン、これらの誘導体等の芳香族ジビニ
ル化合物、エチレングリコールジメタクリレート、ジエ
チレングリコールジメタクリレート、トリエチレングリ
コールジメタクリレ−ト、トリメチロールプロパントリ
アクリレート、アリルメタクリレート、t−ブチルアミ
ノエチルメタクリレート、テトラエチレングリコールジ
メタクリレート、、3−ブタンジオールジメタクリレー
ト等のどときジエチレン性不飽和カルボン酸エステル、
N、N−ジビニルアニリン、ジビニルエーテル、ジビニ
ルサルファイド、ジビニルスルホン酸の全てのジビニル
化合物および3個以上のビニル基を有する化合物が挙げ
られる。 更に、ポリブタジェン、ポリイソプレン、不飽和ポリエ
ステル、クロロスルホン化ポリオレフィン等も有効であ
る。 着色球状微粒子を得るために用いる着色剤は、当業者に
周知の染料および顔料等であり、有機および無機の如何
を問わない、その具体例としては、例えばカーボンブラ
ック、ニグロシン染料、アニリンブルー、カルコオイル
ブルー、クロムイエロー ウルトラマリンブルー、デュ
ポンオイルレッド、キノリンイエロー、メチレンブルー
クロリド、フタロシアニンブルー、マラカイトグリーン
オキザレート、ランプブラック、オイルブラック、アゾ
オイルブラック、ローズベンガル等が挙げられて、必要
であればこれらの2種以上を併用して用いてもよい。 また、磁性を有する物質、該る磁性体も着色剤として使
用できる。磁性体としては、例えば鉄、コバルト、ニッ
ケル等の強磁性金属の粉体、マグネタイト、ヘマタイト
、フェライト等の金属化合物の粉体等が挙げられる。こ
れら磁性体は単独でまたは前記染料や顔料等と併用して
着色剤として使用することができる。 これら着色剤はそのまま用いても良いが、適当な方法で
表面を処理した着色剤を用いると該着色剤が均一に分散
した着色微粒子が得られ、例えばトナーに用いた場合に
高画質の画像が形成されるので好ましい0例えば、着色
剤としてカーボンブラックを用いた場合は、特開昭63
−270767号、特開昭63−265913号に記載
のカーボンブラックグラフトポリマーが好適である。ま
た、カーボンブラック以外の着色剤を用いる場合も、特
開平1−118573号に記載の方法により得られる表
面処理された着色剤が好適である。 該着色剤の添加量は使用する着色剤の種類や得られる着
色微粒子の使用目的に応じて広い範囲とすることができ
るが、好ましくは重合性単量体100重量部に対して1
〜200重量部、より好ましくは1〜100重量部であ
る。 着色剤を用いて着色球状微粒子を得るには、通常該着色
剤を溶解もしくは分散させた重合性単量体を懸濁重合す
る方法によるのが簡便であるが、場合によっては重合し
た後の球状重合体粒子に着色剤を適当な溶剤を用いて吸
収せしめる方法によってもよい。 懸濁重合に用いる安定剤としては、ボラノビニルアルコ
ール、デンプン、メチルセルロース、カルボキシメチル
セルロース、ヒドロキシエチルセルロース、ポリアクリ
ル酸ナトリウム、ポリメタクリル酸ナトリウム等の水溶
性高分子;アニオン性界面活性剤、カチオン性界面活性
剤、両性イオン界面活性剤、ノニオン性界面活性剤等の
界面活性剤等があり、その他硫酸バリウム、硫酸カルシ
ウム、炭酸バリウム、炭酸マグネシウム、リン酸カルシ
ウム、タルク、粘土、ケイソウ土、金属酸化物粉末等が
用いられる。 アニオン性界面活性剤としては、オレイン酸ナトリウム
、ヒマシ油カリ等の脂肪酸塩、ラウリル硫酸ナトリウム
、ラウリル硫酸アンモニウム等のアルキル硫酸エステル
塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキ
ルベンゼンスルホン酸塩、アルキルナフタレンスルホン
酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク
酸塩、アルキルリン酸エステル塩、ナフタレンスルホン
酸ホルマリン縮合物、ポリオキシエチレンアルキルフェ
ニルエーテル硫酸エステル塩、ポリオキシエチレンアル
キル硫酸エステル塩等がある。 ノニオン性界面活性剤としては、ポリオキシエチレンア
ルキルエーテル、ポリオキシエチレンアルキルフェノー
ルエーテル、ポリオキシエチレン脂肪酸エステル、ソル
ビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エ
ステル、ポリオキシエチレンアルキルアミン;グリセリ
ン脂肪酸エステル、オキシエチレンーオキシブロビレン
ブロツクボリマー等がある。 カチオン性界面活性剤としては、ラウリルアミンアセテ
ート、ステアリルアミンアセテート等のアルキルアミン
塩、ラウリルトリメチルアンモニウムクロライド等の第
四級アンモニウム塩等がある。 両性イオン界面活性剤としては、ラウリルジメチルアミ
ンオキサイド等がある。 これら安定剤は、得られる着色球状微粒子の粒子径が1
〜100μm、好ましくは3〜50μm、最も好ましく
は3.5〜20μmとなる様、その組成や使用量を適宜
調節して使用すべきものである。例えば、安定剤として
水溶性高分子を用いる場合は、重合性単量体成分に対し
て0.01〜20重量%、より好ましくは0.1〜10
重量%とするのが好適である。界面活性剤の場合は、重
合性単量体成分に対して0.01〜10重量%、より好
ましくは、0.1〜5重量%とするのが好適である。 重合に用いる重合開始剤としては、通常懸濁重合に用い
られる油溶性の過酸化物系あるいはアゾ系開始剤が利用
できる。−例を挙げると、例えば、過酸化ベンゾイル、
過酸化ラウロイル、過酸化オクタノイル、オルソクロロ
過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、
メチルエチルケトンパーオキサイド、ジイソプロピルパ
ーオキシジカーボネート、キュメンハイドロパーオキサ
イド、シクロヘキサノンパーオキサイド、t−ブチルハ
イドロパーオキサイド、ジイソプロピルベンゼンハイド
ロパーオキサイド等の過酸化物系開始剤、2.2°−ア
ゾビスイソブチロニトリル、2.2°−アゾビス−(2
,4−ジメチルバレロニトリル) 、2,2°−アゾビ
ス−2,3−ジメチルブチロニトリル、2,2°−アゾ
ビス−(2−メチルブチロニトリル) 、2,2°−ア
ゾビス−2,3,3−トリメチルブチロニトリル、2,
2゛−アゾビス−2−イソプロピルブチロニトリル、、
1°−アゾビス−(シクロヘキサン−1−カルボニトリ
ル) 、 2.2’−アゾビス−(4−メトキシ−2,
4−ジメチルバレロニトリル)2−(カルバモイルアゾ
)イソブチロニトリル、4.4−アゾビス−4−シアノ
バレリン酸、ジメチル−2,2−アゾビスイソブチレー
ト等がある。 該重合開始剤は、重合性単量体に対して、0.01〜2
0重量%、特に、0.1〜10重量%使用されるのが好
ましい。 こうして重合性単量体成分を懸濁重合させて着色球状微
粒子を得る際に、該単量体成分中に他の重合体、例えば
ポリエステル等を存在させてもよく、更に、重合度を調
整するための連鎖拶動剤等公知の添加剤を適宜配合して
もよい、また、本発明の着色微粒子を静電荷像現像用ト
ナーに用いる場合は、磁性体や電荷制御剤を重合性単量
体に配合しておき、該磁性体や電荷制御剤が内添された
着色微粒子を得ることもできる。こうして得られる着色
球状微粒子は平均粒子径が1〜100μm、好ましくは
3〜50μm、最も好ましくは3゜5〜20μmで粒子
径分布が粒子径の変動係数で0〜80%、好ましくは1
〜50%にコントロールできた球状を呈している。 本発明の着色微粒子は、上記手順で得られた着色球状微
粒子と該着色球状微粒子より小粒径の無機微粒子とを混
合した後、30〜200℃の条件下に加熱処理して該着
色球状微粒子同士を融着状態とした後、実質融着前の着
色球状微粒子の平均粒子径に解砕して得られるものであ
る。 ここで言う実質融着前の着色球状微粒子の平均粒径への
解砕の最も理想的な形態は、該着色球状微粒子同志の界
面を完全に消失しない範囲で該粒子同士を融着させてな
るブロック状物を融着させて個々の粒子を融着前の着色
球状微粒子の単位まで解砕して融着解砕前の着色球状微
粒子が変形しただけの状態にもどすことである。但し、
融着界面の融着状態を均一にコントロールすることは実
際には困難で通常得られる着色微粒子は融着解砕前の着
色球状微粒子が変形すると共に一部欠損したものと、こ
の欠損した部分が付着した微粒子の混合物として得られ
る。こうした混合物であっても得られる着色球状微粒子
の平均粒径が融看解砕前の着色球状微粒子の平均粒径と
実質同一であれば、該着色微粒子の性状は最も理想的な
形態の場合に比べてほとんど遜色がない。この際、着色
微粒子の平均粒径が着色球状微粒子の平均粒子径に対し
て通常20%以内、好ましくは10%以内、より好まし
くは5%以内の変化率であれば、該着色微粒子と該着色
球状微粒子の平均粒子径は実質同一であると見なすこと
ができる。 無機微粒子は、着色球状微粒子同士の融着を最適状態に
保ち、その後の解砕性を著しく向上させると共に解砕し
て得られる着色微粒子により高い物性を発現させるため
のものである。 従って、無機微粒子の粒子径は着色球状微粒子より小さ
くなければならず、着色球状微粒子の粒子径の172以
下となる様選択して用いるのが好ましい。 無機微粒子の例としては、例えば、アルミナ、二酸化チ
タン、チタン酸バリウム、チタン酸マグネシウム、チタ
ン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、
ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、各種無
機酸化物顔料、酸化クロム、酸化セリウム、ベンガラ、
二酸化アンチモン、酸化マグネシウム、酸化ジルコニウ
ム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、シ
リカ微粉体、炭化ケイ素、窒化ケイ素、炭化ホウ素、炭
化タングステン、炭化チタン、酸化セリウム、カーボン
ブラックなどの粉末乃至粒子が挙げられ、これらを単独
で、もしくは2種以上を組み合わせて用いることができ
る。 この様な無機微粒子はチタンカップリング剤、シランカ
ップリング剤もしくは高級脂肪酸金属塩等の公知の疎水
化処理法により処理して用いてもよい。 無機微粒子の添加方法は特に制限されるものではなく、
種々の方法によることができる。例えば、重合性単量体
成分を重合する際、水媒体に添加してお(方法、重合後
に得られる着色球状微粒子の懸濁液に添加する方法、重
合後ろ過、洗浄した直後の湿潤状態の着色球状微粒子に
添加する方法、乾燥した後の粉体状着色球状微粒子に添
加してトライブレンドから適宜選択して採用することが
でき、場合によっては複数の方法を併用することもでき
る。 この様な目的に使用する為に、無機微粒子の粒子径は0
.001〜10μmとするのが好ましく、より好ましく
は0.005〜5μmである。 無機微粒子の粒子径が0.001μmより小さいと、無
機微粒子の添加による効果、例えば解砕性や静電荷像現
像用ト・ナーとして用いる際の流動性、クリーニング性
等の顕著な向上が認められな(なる場合がある。 無機微粒子の粒子径が10umを超えると、無機微粒子
の添加による効果が小さ(なり、静電荷像現像用トナー
として用いる際の画像の解像度向上が認められなくなる
場合がある。 該無機微粒子の添加量は、使用する無機微粒子の種類や
粒子径に応じて広い範囲とすることができるが、あまり
に少量では無機微粒子の添加による効果が発現し難(、
過度に多量用いると静電荷像現像用トナーとして用いる
際に帯電性、環境安定性への悪影響が誘発される場合が
あるので、重合性単量体成分100重量部に対して、0
.01〜100重量部とするのが好ましく、より好まし
くは0.1〜50重量部である。 本発明を実施するに当っては、公知の有機微粒子を無機
微粒子に併用して用いてもよい。使用できる有機微粒子
としては、架橋、非架橋のポリマー微粒子または、有機
顔料及び電荷制御剤等を挙げることができる。 上記加熱処理は、着色球状微粒子の表面を改質する為に
極めて重要かつ必須の工程である。その際の温度が30
℃未満では、着色球状微粒子同士の融着が全く起こらな
いか若しくは融着したとしても不充分であり、顕著な表
面の改質効果が発現しない。逆に200℃を超える場合
は、過度の融着状態となり、後の解砕工程が困難である
ばかりでな(、得られる着色微粒子は粒子径分布が非常
に大きなものになってしまう。好ましくは50〜150
℃の範囲である。こうした加熱処理によって着色球状微
粒子同士は融着するが、その融着状態は所望の処理効果
に応じて任意にコントロールすれば良い、但し、後の解
砕工程で均一な粒子径分布となり、従って静電荷像現像
用トナーとして優れた物性の着色微粒子を得るには、粒
子同士の界面が完全に消失しない範囲、提言すれば粒界
を残した融着状態とするのが好適であるが、無機微粒子
の添加はこの様な融着状態とする上で著しい効果を発現
する。即ち、無機微粒子を添加しておくと、加熱処理の
際の温度や時間は幾分過度になった場合でも、粒界が消
失し難くなる。更に、融着して得られる該ブロック状物
の嵩密度が0. 1〜0 、 9 kg/cm”、特に
0. 2〜0.7kg/cm”の範囲の融着状態とする
のがより好ましい。この様な加熱処理は、乾燥した後の
着色球状微粒子に対して行なってもよく、場合によって
は乾燥工程と同時に行ってもよい、またこの加熱処理は
常圧下、減圧下もしくは加圧下とすることができる。更
に、加熱処理時に融着をより促進させる目的で適当な有
機溶剤を用いる事は自由である。 解砕け、従来から工業的に粉体、粒子等を生産する為に
用いられている粉砕機を制限なく使用することができる
。 こうして得られる着色微粒子は粒子径および粒子径分布
が任意にコントロールできたものであるが、粒子径は3
〜100μm、より好ましくは3〜50μm、最も好ま
しくは3.5〜20μmとするのが、また粒子径分布は
粒子径の変動係数が0〜80%、より好ましくは0〜5
0%とするのが好適である。但し、ここで言う粒子径の
変動係数とは、標準偏差を平均粒子径で割った値の百分
率である。該着色微粒子の形状は特に制限されるもので
はないが、例えば、巨視的には球状でありながらその表
面が微細な凹凸を有する粒子や非球状の粒子等が挙げら
れる。 本発明による静電荷像現像用トナーは、前記着色微粒子
を用いてなるものであるが、該トナーの帯電性を適正な
状態とする為には、その平均粒子径を3〜50μm、よ
り好ましくは3.5〜20μmとするのが好適である。 該着色微粒子はそのまま静電荷像現像用トナーとするこ
ともできる。 また、電荷調整のための電荷制御剤や流動化剤等の通常
のトナーに常用される添加剤が適宜配合されていてもよ
い。 電荷制御剤を配合せしめる方法は特に制限されるもので
はなく、従来公知のいかなる方法も採用できる。例えば
、着色剤を分散せしめた重合性単量体を重合する際に電
荷制御剤を予め該単量体内に含ませてお(方法や、本発
明の着色微粒子を電荷制御剤で後処理して着色微粒子表
面に電荷制御剤を付着せしめる方法等を適宜採用できる
。 形成しつると共に流動性、クリーニング性にも優れた静
電荷像現像用トナーとして好適に使用できるのを始め、
その他塗料、インク、樹脂組成物の着色剤あるいは改質
剤としても使用することができる。 本発明の静電荷像現像用トナーは上記着色微粒子を用い
てなり、湿度の影響を受けることなくあらゆる環境下で
常に高画質でかぶりのない画像を形成できるために、広
範な電子写真現像装置に使用できる。 [発明の効果] 本発明の着色微粒子は、懸濁重合して得られた着色球状
微粒子と無機微粒子とを混合した後、特定条件下に加熱
処理した後、解砕して得られたものである為に、粒度が
均一でしかも粒子表面が凹凸状となっており、且つ懸濁
重合に用いた界面活性剤及び分散剤が著しく低減されて
なり、温度の変化に伴う物性の変動がほとんど解消され
ている。従って6本発明の着色微粒子は、鮮明な画像な
〔実施例〕 以下、実施例により本発明の詳細な説明するが本発明は
以下の実施例によって限定されるものではない。尚、例
中の部はすべて重量による。 合成例1 撹拌機、不活性ガス導入管、還流冷却管及び温度計を備
えた反応釜にポリビニルアルコール1部を溶解した脱イ
オン水2000部を仕込んだ。そこへ予め調整しておい
たスチレン975部およびグリシジルメタクリレート2
5部からなる重合性単量体にベンゾイルパーオキサイド
80部を溶解した混合物を仕込み、高速で撹拌して均一
な懸濁液とした。次いで窒素ガスを吹き込みながら80
℃に加熱し、この温度で5時間撹拌を続けて重合反応を
行った復水を除去して反応性基としてエポキシ基を有す
る重合体を得た。 反応性基としてエポキシ基を有する重合体4゜0部とカ
ーボンブラックMA−10OR(三菱化成工業■製)1
50部と電荷制御剤(Aizen 5piIon Bl
ack TRH保土ケ谷化学工業■製)50部とを加圧
ニーダ−を用いて160℃、100100rp条件下に
混練して反応した後冷却、粉砕して着色剤としてのカー
ボンブラックグラフトポリマーを得た。 上記と同様の反応釜にポリビニルアルコール(PVA2
05クラレ@製)30部を溶解した脱イオン水8970
部を仕込んだ。そこへ予め調整しておいたスチレン80
0部、アクリル酸n−ブチル200部およびジビニルベ
ンゼン0.03部からなる重合性単量体成分に上記の着
色剤としてのカーボンブラックグラフトポリマー500
部、アゾビスイソブチロニトリル30部及び2,2°−
アゾビス(2,4−ジメチルバレロニトリル)30部を
配合した混合物を仕込み、T、に、ホモミキサー(特殊
機化工業■製)により8000 rpmで5分間撹拌し
て均一な懸濁液とした。次いで窒素ガスを吹き込みなが
ら60℃に加熱し、この温度でS時間撹拌を続けて懸濁
重合反応を行った後冷却し着色球状微粒子の懸濁液(1
)を得た。得られた着色球状微粒子の懸濁液(1)をコ
ールタ−カウンター(アパーチャ100μm)で測定し
た結果、平均粒子径が7.25μm1粒子径の変動係数
が18.2%であった。 合成例2 合成例1で用いたのと同様の反応釜にノニオン性界面活
性剤ノニボール200(三洋化成■製)10部を溶解し
た脱イオン水8970部を仕込んだ、そこへ予め調整し
ておいたスチレン800部、アクリル酸n−ブチル20
0部およびジビニルベンゼン1部からなる重合性単量体
成分に着色剤としてのブリリアントカーミン6B(野間
化学■製)50部、アゾビスイソブチロニトリル30部
及び2,2°−アゾビス(2,4−ジメチルバレロニト
リル)30部を配合した混合物を仕込み、T、 K、ホ
モミキサー(特殊機化工業■製)により6000rpm
で5分間撹拌して均一な懸濁液とした0次いで窒素ガス
を吹き込みながら60℃に加熱し、この温度で5時間撹
拌を続けて懸濁重合反応を行った後室温まで冷却し着色
球状微粒子の懸濁液(2)を得た。得られた着色球状微
粒子の懸濁液(2)をコールタ−カウンター(アパーチ
ャ10100uで測定した結果、平均粒子径が5.82
μm、粒子径の変動係数が19.3%であった。 合成例3 合成例1で用いたカーボンブラックグラフトポリマー5
00部のかわりに粉体状の磁性体であるマビコBL−2
00(チタン工業■製)450部を用いる以外は合成例
1と同じ方法で着色球状微粒子の懸濁液(3)を得た。 得られた着色球状微粒子の懸濁液(3)は平均粒子径が
平均9.30ILm、粒子径の変動係数が19.0%で
あった。 合成例4 合成例1で用いたのと同様のフラスコにアニオン性界面
活性剤ドデシルベンゼンスルホン酸ナトリウム5部を溶
解した脱イオン水8970部を仕込んだ。そこへ予め調
整しておいたスチレン800部、アクリル酸n−ブチル
200部からなる重合性単量体成分に着色剤として合成
例1のカーボンブラックグラフトポリマー500部、ア
ゾビスイソブチロニトリル30部及び2.2°−アゾビ
ス(2,4−ジメチルバレロニトリル)30部を配合し
た混合物を仕込み、T、に、ホモミキサー(特殊機化工
業■製)により8000 rpmでS分間撹拌して均一
な懸濁液とした0次いで窒素ガスを吹き込みながら60
℃に加熱し、この温度で5時間撹拌を続けて懸濁重合反
応を行った後室温まで冷却し着色球状微粒子の懸濁液(
4)を得た。得られた着色球状微粒子の懸濁液(4)を
コールターカウンター(アパーチャ100′μm)で測
定した結果、平均粒子径が5.85μm、粒子径の変動
係数が221%であった。 合成例5 合成例1と同様の方法においてカーボンブラックグラフ
トポリマーを得、上記と同様のフラスコにアニオン性界
面活性剤ハイテノールN−08(第−工業製薬株式会社
製)10部を溶解した脱イオン水8970部を仕込んだ
。そこへ予め調整しておいたスチレン800部、アクリ
ル酸n−ブチル150部、ポリブタジェンN I 5S
O−PB−B−3000(日本曹達株式会社製)50部
からなる成分にカーボンブラックグラフトポリマー50
0部、アゾビスイソブチロニトリル20部及び2,2°
−アゾビス(2,4−ジメチルバレロニトリル)10部
を配合した混合物を仕込み、以下合成例1と同じ操作を
行って着色球状微粒子の懸濁液(5)を得た。得られた
着色球状微粒子の懸濁液(5)をコールタ−カウンター
(アパーチャー100 am)で測定した結果、平均粒
子径が平均6゜30μm、粒子径の変動係数が19,3
%であつた。 合成例6 合成例5においてポリブタジェン50部の代わりに、H
YPALON20 (E、、duontde  Nom
ors&Co、製)50部を、アゾビスイソブチロニト
リル20部及び2.2°アゾビス(2,4−ジメチルバ
レロニトリル)10部の代わりにベンゾイルパーオキサ
イド30部を用いる以外は合成例5と同じ操作を行って
着色球状微粒子の懸濁a(6)を得た。得られた着色球
状微粒子の懸濁液(6)をコールタ−カウンター(アパ
ーチャー100μm)で測定した結果、平均粒子径が平
均5.91μm、粒子径の変動係数が2、5%であった
。 実施例1 合成例1で得た着色球状微粒子の懸濁液(1)1050
0部に平均粒子径0.2μmの沈降性硫酸バリウム(無
機顔料C,l77120)30部を添加し、充分分数さ
せた後口過、洗浄し、これを熱風乾燥機を用い90℃で
2時間乾燥、加熱処理を行ない、粒界を残した融着状態
で嵩密度が0゜45 g/cm”の粟おこしの形状を呈
したブロック状物1530部を得た。このブロック状物
を粗砕した後超音速ジェット粉砕機ID52型(日本二
エーマチック工業■製)を用い13 kg/Hrのフィ
ード量で解砕し、着色微粒子(1)を得た。 得られた着色微粒子(1)をコールタ−カウンター(ア
パーチャ100μm)で測定した結果、平均粒子径が6
.95μmで粒子径の変動係数が17.2%であった。 この着色微粒子(1)をそのまま静電荷像現像用トナー
(1)として用いて静電複写機(タイプ4060 (m
リコー製)により画像出しを行なった結果は第1表に示
した通りであった。 実施例2 合成例2で得た着色球状微粒子の懸濁液(2)1003
1部を口過、洗浄を行ない着色球状微粒子ペーストを得
た。この着色球状微粒子ペーストに無色の電荷制御剤(
Bontron E −84オリエント化学工業■製)
13部及び平均粒子径0.1μmの超微細型炭酸カルシ
ウム(無機顔料C,l77220)20部を均一に混合
した。得られた混合物を熱風乾燥機を用い120℃で1
時間乾燥すると共に加熱処理を行ない、粒界を残した融
着状態で嵩密度が0 、35 g/cm”の粟おこしの
形状を呈したブロック状物1093部を得た。このブロ
ック状物を実施例1と同機種で8 kg/Hrのフィー
ド量で解砕し、赤色の着色微粒子(2)を得た。この着
色微粒子(2)の粒子の性状および該着色微粒子(2)
をそのまま静電荷像現像用トナー(2)として用いて静
電複写機(タイプ4060■リコー製)による画像出し
を行なった結果は第1表に示した通りであった。 実施例3 合成例4で得た着色球状微粒子の懸濁液(1)1047
5部を口過、洗浄した後、50℃で5時間減圧乾燥を行
ない着色球状微粒子1500部を得た。この着色球状微
粒子にアエロジルR−972(疎水性ンリカ、日本アエ
ロジル社製)30部を添加し均一混合した後熱風乾燥機
を用い85℃で1時間加熱処理を行ない、粒界を残した
融着状態で嵩密度が0 、38 g/am”の粟おこし
の形状を呈したブロック状物を得た。このブロック状物
を実施例1と同機種で15 kglorのフィード量で
解砕し着色微粒子(3)を得た。 この着色微粒子(3)の粒子の性状および該着色微粒子
(3)をそのまま静電荷像現像用トナー(3)として用
いて静電複写機(タイプ4060■リコー製)による画
像出しを行なった結果はlt表に示した通りであった。 実施例4 合成例3で得た磁性体含有着色球状微粒子の懸濁液(3
)10450部を口過、洗浄を行ない磁性体含有着色球
状微粒子ペーストを得た。この磁性体含有着色球状微粒
子ペーストに有効成分35%の水性ペースト電荷制御剤
(Bontron  S −34オリエント化学工業■
製)41部及びシーホスターKE−P30 (平均粒子
径0.3μmの球状シリカ微粒子、日本触媒化学工業(
巾製)29部を均一混合した後、80℃で3時間40 
n+m)Igで減圧乾燥すると共に加熱処理を行ない、
粒界を残した融着状態で嵩密度が0 、52 g/am
”の粟おこしの形状を呈したブロック状物1493部を
得た。このブロック状物を実施例1と同機種で35 k
glorのフィード量で解砕し着色微粒子(4)を得た
。 この着色微粒子(4)の粒子の性状および該着色微粒子
(4)をそのまま静電荷像現像用トナー(4)として用
いて静電複写機(NP−5000キヤノン■製)による
画像出しを行なった結果(ま第1表に示した通りであっ
た。 実施例5 合成例5で得た着色球状微粒子の懸濁液(5)1048
0部を口過、洗浄した後、50℃で5時間減圧乾燥を行
ない着色球状微粒子1500部を得た。 この着色球状微粒子にアエロジルR805(疎水性チタ
ニア、日本アエロジル社g)30部を添加し均一混合し
た後、90℃で1時間加熱処理を行ない、粒界を残した
融着状態で嵩密度が0.20 g/crn”の粟おこし
の形状を呈したブロック状物を得た。このブロック状物
を実施例1と同機種で28 、0 kglorのフィー
ド量で解砕し着色微粒子(5)を得た。 この着色微粒子(5)の粒子の性状および該着色微粒子
(5)をそのまま静電荷像現像用トナー(5)として用
いて静電複写機(タイプ4060■リコー製)による画
像出しを行なった結果は第1表に示した通りであった。 実施例6 合成例6で得た着色球状微粒子の懸濁液(6)1048
0部を口過、洗浄した後、50℃で5時間減圧乾燥を行
ない着色球状微粒子1500部を得た。 この着色球状微粒子に平均粒子径0.4μmの酸化セリ
ウム(光学レンズ研磨削)15部及び0.3μmのスチ
レン−アクリル微粒子(ガラス転移温度60℃)10部
を均一に混合した後、80℃で1時間加熱処王1を行な
い、粒界を残した融着状態で嵩密度か(J 、 35 
g/cm”の粟おこしの形状を呈したブロック状物を得
た。このブロック状物を実施例1と同機種で21 、0
 kglorのフィード量で解砕し着色微粒子(6)を
得た。 この着色微粒子(6)の粒子の性状および該着色微粒子
(6)をそのまま静電荷像現像用トナー(6)として用
いて静電複写機(タイプ406o■リコー製)による画
像出しを行なった結果は第1表に示した通りであった。 比較例1 合成例1で得た着色球状微粒子の懸濁液(1)1050
0部を口過、洗浄した後、50℃で24時間40 mm
)Igで減圧乾燥して比較用着色微粒子(1)1150
部を得た。 この比較用着色微粒子(1)の粒子の性状および該比較
用着色微粒子(1)をそのまま比較用静電荷像現像用ト
ナー(1)として用いて静電複写機(タイプ4060■
リコー製)による画像出しを行なった結果は第1表に示
した通りであった。 比較例2 スチレン−アクリル樹脂(TB−1000F三洋化成(
iり製)2228部、カーボンブラックMA−10OR
(三菱化成■製)187部及び電荷制御剤(Aizen
 5pilon Black TRH) 25部をヘン
シェルミキサーにて予備混合し、これを加圧ニーダによ
り150℃で30分間溶融混練した後、冷却し、トナー
塊を得た。このトナー塊を粗砕機で0.1mm〜2mm
に粗粉砕し、この粗トナーを実施例1と同機種を用いて
5 kg/Hrのフィード量で微粉砕を行ない粉砕物を
風力分級機(DS:2型日本ニューマチック工業■製)
により分級し、比較用着色微粒子(2)を1500部を
得た。 この比較用着色微粒子(2)の粒子の性状および該比較
用着色微粒子(2)をそのまま比較用静電荷像現像用ト
ナー(2)として用いて静電複写ff!(タイプ406
0■リコー製)による画像出しを行なった結果は第1表
に示した通りであった。 比較例3 合成例1で得た着色球状微粒子の懸濁液(1)1O50
0部を口過、洗浄した後、熱風乾燥機を用い90℃で3
時間乾燥、加熱処理を行ない、粒界を残した融着状態で
嵩密度が0 、30 g/cm’の粟おこしの形状を呈
したブロック状物1500部を得た。このブロック状物
を粗砕した後、実施例1と同機種を用い7kg/lar
のフィード量で解砕し、比較用着色微粒子(3)を得た
。 この比較用着色微粒子(3)の粒子の性状および該比較
用着色微粒子(3)をそのまま比較用静電荷像現像用ト
ナー(3)として用いて静電複写機(タイプ4060(
…リコー製)による画像出しを行なった結果は第1表に
示した通りであった。 (注1)解砕(粉砕)処理】 超音速ジェット粉砕機ID52型(日本ニューマチック
工業■!りを用いた時のフィード量をもって解砕く粉砕
)処理量とした。 (注2)粒子の性状 粒子径:コールタ−カウンター(コールタ−エレクトロ
ニクスINC製:TA−II型)により測定した。 変動係数:コールタ−カウンター(コールタ−エレクト
ロニクスINC製:TA−II型)により測定した。 摩擦帯電量:鉄キャリヤ(同和鉄粉■製: DSP−1
28)との混合物(トナー濃度5重量%)を用いブロー
オフ粉体帯電量測定装置(東芝ケミカル■製:モデルT
B−200)により測定した。 流動性:トナーの流動性は肉眼で評価した。 oトナー粒子が独立して存在しさらさらした流動を示す
。 ○トナー粒子は若干凝集しているが通常の流動を示す。 Δトナー粒子の凝集がかなり認められ流動性の低下が見
られる。 ×トナー粒子の凝集が著しく流動性の顕著な低下が見ら
れる。 (注3)画像出し評価 静電複写機画像出しくタイプ4060■リコー製または
NP−5000キヤノン■製)によりファクシミリテス
トチャートN(11を複写して得た画像で評価した。 カブリ:グランドがトナーによって斑点状に汚れる現象
の有無を調べた。 細線再現性:ファクシミリテストチャートklを複写し
て得た画像の読み取り具合により評価した。 クリーニング性:ファクシミリテストチャートに1を複
写して得た画像より評価した。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to colored fine particles and a toner for developing electrostatic images using the same. More specifically, the colored fine particles have a coloring agent uniformly dispersed within the particles and the particle surface is modified, and can therefore be used as a coloring agent for toners, paints, inks, resin molded products, etc., and the colored particles. The present invention relates to an electrostatic image developing toner that is made of fine particles and can form clear images when used as a toner for printer devices such as laser printers and liquid crystal printers. [Prior art] Electrophotography involves forming an electrical latent image on a photoreceptor made of a photoconductor material such as selenium, zinc oxide, or cadmium sulfide, and developing this with a powder developer to print on paper, etc. It is transferred to and fixed on. Conventionally, toners used for developing electrostatic images generally contain colorants and other additives (charge control agents,
After melt-mixing and dispersing ingredients (offset inhibitors, lubricants, etc.), the solidified product is finely pulverized and classified to produce colored fine particles of a desired particle size. However, the method of manufacturing toner by pulverization described above has various drawbacks. First, there is a process of manufacturing resin, a process of kneading resin with colorant and other additives, a process of pulverizing solid materials, a process of classifying the pulverized material to obtain colored fine particles of desired particle size, etc. , many steps and various types of equipment are required, and the toner produced by this method is necessarily expensive. In particular, the step of classification is essential in order to obtain toner in the optimum particle size range for forming clear images with less fog, but there are problems in terms of productivity and yield. Second, it is extremely difficult to uniformly disperse colorants and other additives in the resin during the kneading process, and therefore, toners manufactured using this method have problems with poor dispersion of colorants, charge control agents, etc. Therefore, each particle has different triboelectric properties, which leads to a decrease in resolution. Such problems will become more prominent in the future as toner particles become smaller in particle size, which is an essential condition for improving image quality. In other words, there is a limit to the ability to obtain toner with small particle size using current crushers, and even if toner with small particle size can be obtained, variations in the amount of charge will occur due to poor dispersion of the colorant and charge control agent. . In order to improve the various drawbacks of toner produced by these pulverization methods, various methods for producing toner using emulsion polymerization or suspension polymerization have been proposed. (Tokuko Show 36-1
No. 0231, Special Publication No. 10799, Special Publication No. 1979-
518305, Japanese Patent Publication No. 51-14895, etc.) These methods add a colorant substance such as carbon black and other additives to a polymerizable monomer, and emulsify or suspend polymerize the mixture to contain the colorant substance. This is a method of synthesizing toner all at once. With this method it is possible to considerably improve the drawbacks of conventional grinding methods. That is, since it does not involve any pulverization process, there is no need to improve brittleness, and since it is spherical in shape and has excellent fluidity, the triboelectrification property is uniform. However, there are also problems with toner manufacturing methods using polymerization methods. First, since hydrophilic substances such as dispersants and surfactants used during polymerization cannot be completely removed even in a washing process and remain on the surface of the toner, charging properties are easily influenced by the environment. Secondly, the toner obtained by the polymerization method has a spherical shape and a very smooth surface, making it difficult to remove the toner adhering to the photoreceptor, resulting in poor cleaning. To solve these problems, various methods have been proposed in JP-A-61
-255354, JP-A-53-17736, JP-A-63-17460, JP-A-61-167956, etc., but the effects are incomplete and
Alternatively, it may lead to increased costs and is not practical. [Problem to be Solved by the Invention 3 The present inventors have conducted intensive research in view of the above-mentioned current situation, and have found that colored fine particles obtained by processing colored spherical fine particles obtained by suspension polymerization according to a specific procedure are as described above. All problems have been improved, and it is suitable for use in toners for developing electrostatic images, as well as coloring agents for paints, inks, resin moldings, etc., and for developing electrostatic images using the colored fine particles. It has been discovered that by using the toner for printers in printer devices such as laser printers and liquid crystal printers, it is possible to form extremely clear images without any of the problems of the prior art described above, and in completing the present invention. It's arrived. [Means for Solving the Problems] The present invention provides particles whose average particle diameter obtained by suspension polymerization is 1 to 11
After mixing colored spherical fine particles of 00IL and inorganic fine particles having a smaller particle size than the colored spherical fine particles, heat treatment was performed under conditions of 30 to 200°C to fuse the colored spherical fine particles to each other to form a block-like product. The invention relates to colored fine particles which are obtained by crushing the colored fine particles, and toners for developing electrostatic images using the colored fine particles. The colored spherical fine particles in the present invention are obtained by suspension polymerization of a polymerizable monomer containing a colorant using a well-known procedure. Colored spherical fine particles obtained by suspension polymerization are 1
The particle size is ~100 μm, preferably 3-50 μm, more preferably 3.5-20 μm, but this particle size is extremely important in obtaining the colored fine particles of the present invention through the heat treatment and crushing steps. It has important significance. The average particle diameter of spherical polymers obtained by polymerization methods other than suspension polymerization, such as emulsion polymerization, is usually around 0.1 μm, and the fine particles obtained by heating and crushing the polymers are obtained by the production method of the present invention. The particle shape and particle size distribution are significantly different from those of colored fine particles, and even if these are used as a toner, it is not possible to obtain an image of sufficiently satisfactory image quality. Examples of polymerizable monomers used as the polymerizable monomer component in suspension polymerization include the following, and these can be used alone or in combination of two or more types. Styrene, 0-methylstyrene, m-methylstyrene,
Styrenic monomers such as p-methylstyrene, α-methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, 0-chlorostyrene, m-chlorostyrene, p-chlorostyrene; methyl acrylate , ethyl acrylate, n-butyl acrylate, isobutyl acrylate, dodecyl acrylate, stearyl acrylate, 2-ethylhexyl acrylate,
Acrylic acid or methacrylic acid monomers such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, etc. ; ethylene, propylene, butylene, vinyl chloride, vinyl acetate, acrylonitrile. Workability during crushing can be improved by subjecting the polymerizable monomers to suspension polymerization and heat-treating the resulting colored spherical fine particles under appropriate conditions. If the fusion of the particles during heat treatment progresses too much, the efficiency during subsequent crushing will decrease, and if the fusion is insufficient, a sufficient treatment effect on the particle surface will not be obtained. A crosslinking agent may be used during suspension polymerization in order to avoid fusion of excess polymers. At this time, the amount of crosslinking agent used is preferably in the range of 0.0001 to 5% by weight based on the polymerizable monomer. Examples of such crosslinking agents include divinylbenzene,
Divinylnaphthalene, aromatic divinyl compounds such as derivatives thereof, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, trimethylolpropane triacrylate, allyl methacrylate, t-butylaminoethyl methacrylate, tetraethylene glycol Diethylenically unsaturated carboxylic acid esters such as dimethacrylate, 3-butanediol dimethacrylate,
All divinyl compounds such as N,N-divinylaniline, divinyl ether, divinyl sulfide, divinyl sulfonic acid and compounds having three or more vinyl groups are mentioned. Furthermore, polybutadiene, polyisoprene, unsaturated polyester, chlorosulfonated polyolefin, etc. are also effective. Colorants used to obtain colored spherical fine particles are dyes and pigments well known to those skilled in the art, whether organic or inorganic, and specific examples include carbon black, nigrosine dye, aniline blue, calco Oil blue, chrome yellow, ultramarine blue, DuPont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, lamp black, oil black, azo oil black, rose bengal, etc. are listed, if necessary. Two or more of these may be used in combination. Moreover, a substance having magnetism and a corresponding magnetic substance can also be used as a coloring agent. Examples of the magnetic material include powders of ferromagnetic metals such as iron, cobalt, and nickel, and powders of metal compounds such as magnetite, hematite, and ferrite. These magnetic substances can be used alone or in combination with the dyes, pigments, etc. as colorants. These colorants may be used as they are, but if a colorant whose surface has been treated with an appropriate method is used, colored fine particles in which the colorant is uniformly dispersed can be obtained. For example, when used in toner, high-quality images can be obtained. For example, when carbon black is used as a coloring agent, it is preferable that
Carbon black graft polymers described in Japanese Patent Application Laid-Open No. 63-265913 are suitable. Also, when using a colorant other than carbon black, a surface-treated colorant obtained by the method described in JP-A-1-118573 is suitable. The amount of the colorant added can vary widely depending on the type of colorant used and the purpose of use of the resulting colored fine particles, but preferably 1 part by weight per 100 parts by weight of the polymerizable monomer.
~200 parts by weight, more preferably 1 to 100 parts by weight. In order to obtain colored spherical fine particles using a colorant, it is usually convenient to carry out suspension polymerization of polymerizable monomers in which the colorant is dissolved or dispersed, but in some cases, spherical particles may be obtained after polymerization. A method may also be used in which the colorant is absorbed into the polymer particles using a suitable solvent. Stabilizers used in suspension polymerization include water-soluble polymers such as boranovinyl alcohol, starch, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, sodium polyacrylate, and sodium polymethacrylate; anionic surfactants, and cationic interfaces. There are surfactants such as activators, zwitterionic surfactants, and nonionic surfactants, as well as barium sulfate, calcium sulfate, barium carbonate, magnesium carbonate, calcium phosphate, talc, clay, diatomaceous earth, metal oxide powder, etc. is used. Examples of anionic surfactants include fatty acid salts such as sodium oleate and potassium castor oil, alkyl sulfate ester salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfonates. , alkanesulfonic acid salts, dialkyl sulfosuccinates, alkyl phosphate ester salts, naphthalene sulfonic acid formalin condensates, polyoxyethylene alkylphenyl ether sulfate ester salts, polyoxyethylene alkyl sulfate ester salts, and the like. Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine; glycerin fatty acid ester, oxyethylene-oxy There are brobylene block polymers, etc. Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride. Examples of the zwitterionic surfactant include lauryl dimethylamine oxide. These stabilizers have a particle diameter of 1
The composition and amount used should be adjusted as appropriate so that the thickness is 100 μm, preferably 3 to 50 μm, and most preferably 3.5 to 20 μm. For example, when using a water-soluble polymer as a stabilizer, 0.01 to 20% by weight, more preferably 0.1 to 10% by weight based on the polymerizable monomer component.
Preferably, it is expressed as % by weight. In the case of the surfactant, it is suitably used in an amount of 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, based on the polymerizable monomer component. As the polymerization initiator used in the polymerization, oil-soluble peroxide-based or azo-based initiators that are normally used in suspension polymerization can be used. - For example, benzoyl peroxide,
lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide,
Peroxide initiators such as methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, 2.2°-azobisisobutyro Nitrile, 2.2°-azobis-(2
, 4-dimethylvaleronitrile), 2,2°-azobis-2,3-dimethylbutyronitrile, 2,2°-azobis-(2-methylbutyronitrile), 2,2°-azobis-2,3 ,3-trimethylbutyronitrile,2,
2'-Azobis-2-isopropylbutyronitrile,
1°-azobis-(cyclohexane-1-carbonitrile), 2.2'-azobis-(4-methoxy-2,
Examples include 4-dimethylvaleronitrile)2-(carbamoylazo)isobutyronitrile, 4,4-azobis-4-cyanovaleric acid, and dimethyl-2,2-azobisisobutyrate. The polymerization initiator has an amount of 0.01 to 2 with respect to the polymerizable monomer.
Preference is given to using 0% by weight, especially 0.1 to 10% by weight. When the polymerizable monomer components are suspension-polymerized in this way to obtain colored spherical fine particles, other polymers such as polyester may be present in the monomer components, and the degree of polymerization is further adjusted. In addition, when the colored fine particles of the present invention are used in a toner for developing an electrostatic image, a magnetic material or a charge control agent may be mixed with a polymerizable monomer. It is also possible to obtain colored fine particles to which the magnetic substance and charge control agent are internally added. The colored spherical fine particles thus obtained have an average particle diameter of 1 to 100 μm, preferably 3 to 50 μm, most preferably 3°5 to 20 μm, and a particle size distribution of 0 to 80%, preferably 1
It exhibits a spherical shape that can be controlled to ~50%. The colored fine particles of the present invention are produced by mixing the colored spherical fine particles obtained by the above procedure and inorganic fine particles having a smaller particle size than the colored spherical fine particles, and then heat-treating the mixture under conditions of 30 to 200°C to form the colored spherical fine particles. It is obtained by bringing them into a fused state and then crushing them to the average particle size of the colored spherical fine particles before being fused. The most ideal form of crushing the colored spherical fine particles to an average particle size before substantial fusion is to fuse the colored spherical fine particles to each other within a range that does not completely eliminate the interface between the colored spherical fine particles. The method is to fuse the block-like materials and crush the individual particles into units of colored spherical fine particles before fusion, thereby returning the colored spherical fine particles to a deformed state before fusion and disintegration. however,
In practice, it is difficult to uniformly control the fusion state at the fusion interface, and the colored fine particles that are usually obtained are colored spherical fine particles that have been deformed and partially missing before being fused and crushed. Obtained as a mixture of attached fine particles. Even with such a mixture, if the average particle size of the colored spherical fine particles obtained is substantially the same as the average particle size of the colored spherical fine particles before fusion and crushing, the properties of the colored fine particles will be the same as in the most ideal form. There is almost no difference in comparison. At this time, if the average particle diameter of the colored fine particles is normally within 20%, preferably within 10%, and more preferably within 5% of the average particle diameter of the colored spherical fine particles, then the colored fine particles and the colored fine particles It can be considered that the average particle diameters of the spherical fine particles are substantially the same. The inorganic fine particles are used to maintain the fusion between the colored spherical fine particles in an optimum state, to significantly improve the subsequent crushability, and to make the colored fine particles obtained by crushing exhibit higher physical properties. Therefore, the particle size of the inorganic fine particles must be smaller than the colored spherical fine particles, and it is preferable to select and use the inorganic fine particles so that the particle size is 172 mm or less of the particle size of the colored spherical fine particles. Examples of inorganic fine particles include alumina, titanium dioxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide,
Silica sand, clay, mica, wollastonite, diatomaceous earth, various inorganic oxide pigments, chromium oxide, cerium oxide, red iron oxide,
Examples include powders and particles such as antimony dioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silica fine powder, silicon carbide, silicon nitride, boron carbide, tungsten carbide, titanium carbide, cerium oxide, and carbon black. , these can be used alone or in combination of two or more. Such inorganic fine particles may be used after being treated with a known hydrophobic treatment method using a titanium coupling agent, a silane coupling agent, a higher fatty acid metal salt, or the like. The method of adding inorganic fine particles is not particularly limited;
This can be done in various ways. For example, when a polymerization monomal component is polymerized, it is added to a water media (method, a method of adding it to a suspension of a colored spherical fine particle obtained after polymerization, a polymerization backward, a moist state immediately after washing. It can be appropriately selected from triblend by adding it to colored spherical fine particles or adding it to powdered colored spherical fine particles after drying, and in some cases, multiple methods can be used in combination. In order to use it for various purposes, the particle size of inorganic fine particles is 0.
.. The thickness is preferably 0.001 to 10 μm, more preferably 0.005 to 5 μm. When the particle size of the inorganic fine particles is smaller than 0.001 μm, the effect of adding the inorganic fine particles, such as the remarkable improvement of the disintegration property, the fluidity when used as a toner for developing an electrostatic image, and the cleaning property, etc. is observed. If the particle size of the inorganic fine particles exceeds 10 um, the effect of adding the inorganic fine particles will be small (and the improvement in image resolution may not be observed when used as a toner for developing electrostatic images). The amount of the inorganic fine particles added can be set within a wide range depending on the type and particle size of the inorganic fine particles used, but if the amount is too small, the effect of adding the inorganic fine particles will be difficult to express (,
If used in an excessively large amount, it may have an adverse effect on chargeability and environmental stability when used as a toner for developing electrostatic images.
.. The amount is preferably from 0.1 to 100 parts by weight, more preferably from 0.1 to 50 parts by weight. In carrying out the present invention, known organic fine particles may be used in combination with inorganic fine particles. Examples of organic fine particles that can be used include crosslinked and non-crosslinked polymer fine particles, organic pigments, and charge control agents. The above heat treatment is an extremely important and essential step for modifying the surface of the colored spherical fine particles. The temperature at that time was 30
If the temperature is less than 0.degree. C., the colored spherical fine particles will not fuse together at all, or even if they do fuse, it will be insufficient, and no significant surface modification effect will be exhibited. On the other hand, if the temperature exceeds 200°C, it will result in an excessively fused state, which will not only make the subsequent crushing process difficult (but also result in the resulting colored fine particles having a very large particle size distribution. 50-150
℃ range. Colored spherical fine particles are fused to each other by such heat treatment, but the fused state can be controlled arbitrarily depending on the desired treatment effect. In order to obtain colored fine particles with excellent physical properties as a toner for charge image development, it is preferable to maintain a fused state in which the interfaces between the particles do not completely disappear, preferably leaving grain boundaries, but inorganic fine particles The addition of has a remarkable effect in achieving such a fused state. That is, when inorganic fine particles are added, grain boundaries are less likely to disappear even if the temperature and time during heat treatment become somewhat excessive. Furthermore, the bulk density of the block-like material obtained by fusion is 0. It is more preferable that the fused state is in the range of 1 to 0.9 kg/cm", particularly 0.2 to 0.7 kg/cm". Such heat treatment may be performed on the colored spherical fine particles after drying, or may be performed simultaneously with the drying process depending on the case, and this heat treatment may be performed under normal pressure, reduced pressure, or increased pressure. I can do it. Furthermore, an appropriate organic solvent may be freely used to further promote fusion during the heat treatment. For crushing, crushers conventionally used industrially to produce powder, particles, etc. can be used without restriction. The particle size and particle size distribution of the colored fine particles obtained in this way can be controlled arbitrarily, but the particle size is 3.
-100 μm, more preferably 3-50 μm, most preferably 3.5-20 μm, and the particle size distribution has a coefficient of variation of particle size of 0-80%, more preferably 0-5
It is preferable to set it to 0%. However, the coefficient of variation of particle diameter referred to here is the percentage of the standard deviation divided by the average particle diameter. The shape of the colored fine particles is not particularly limited, but examples thereof include particles that are macroscopically spherical but have minute irregularities on the surface, non-spherical particles, and the like. The toner for developing an electrostatic image according to the present invention uses the colored fine particles described above, but in order to maintain the appropriate chargeability of the toner, the average particle diameter should be 3 to 50 μm, more preferably The thickness is preferably 3.5 to 20 μm. The colored fine particles can also be used as they are as a toner for developing electrostatic images. Further, additives commonly used in ordinary toners, such as a charge control agent and a fluidizing agent for charge adjustment, may be appropriately blended. The method of incorporating the charge control agent is not particularly limited, and any conventionally known method can be employed. For example, when polymerizing a polymerizable monomer in which a colorant is dispersed, a charge control agent is pre-incorporated into the monomer (method, or the colored fine particles of the present invention are post-treated with a charge control agent). A method such as attaching a charge control agent to the surface of the colored fine particles can be adopted as appropriate.The toner can be suitably used as a toner for developing electrostatic images, as it has excellent flowability and cleaning properties as well as formation properties.
It can also be used as a coloring agent or modifier for paints, inks, and resin compositions. The toner for developing electrostatic images of the present invention uses the above-mentioned colored fine particles, and because it can always form high-quality, fog-free images in any environment without being affected by humidity, it can be used in a wide range of electrophotographic developing devices. Can be used. [Effect of the invention] The colored fine particles of the present invention are obtained by mixing colored spherical fine particles obtained by suspension polymerization and inorganic fine particles, heat-treating the mixture under specific conditions, and then crushing the mixture. As a result, the particle size is uniform and the particle surface is uneven, and the amount of surfactant and dispersant used in suspension polymerization is significantly reduced, and fluctuations in physical properties due to temperature changes are almost eliminated. has been done. Therefore, the colored fine particles of the present invention have a clear image [Example] The present invention will be explained in detail with reference to Examples below, but the present invention is not limited to the following Examples. All parts in the examples are by weight. Synthesis Example 1 2000 parts of deionized water in which 1 part of polyvinyl alcohol was dissolved was charged into a reaction vessel equipped with a stirrer, an inert gas introduction tube, a reflux condenser, and a thermometer. There, 975 parts of styrene and 2 parts of glycidyl methacrylate were prepared in advance.
A mixture of 80 parts of benzoyl peroxide dissolved in 5 parts of a polymerizable monomer was charged and stirred at high speed to form a uniform suspension. Then, while blowing nitrogen gas,
The mixture was heated to .degree. C. and stirred for 5 hours at this temperature to remove the condensate that had undergone the polymerization reaction to obtain a polymer having epoxy groups as reactive groups. 4.0 parts of a polymer having an epoxy group as a reactive group and 1 part of carbon black MA-10OR (manufactured by Mitsubishi Chemical Corporation)
50 parts and a charge control agent (Aizen 5piIon Bl
ack TRH (manufactured by Hodogaya Chemical Industry ■)) were kneaded and reacted using a pressure kneader at 160° C. and 100,100 rpm, and then cooled and pulverized to obtain a carbon black graft polymer as a colorant. Polyvinyl alcohol (PVA2) was added to the same reaction pot as above.
05 Kuraray @ deionized water 8970 dissolved in 30 parts
I prepared a section. Styrene 80 adjusted there in advance
0 parts, 200 parts of n-butyl acrylate, and 0.03 parts of divinylbenzene, and 500 parts of the above carbon black graft polymer as a coloring agent.
parts, 30 parts of azobisisobutyronitrile and 2,2°-
A mixture containing 30 parts of azobis(2,4-dimethylvaleronitrile) was added to T. and stirred at 8000 rpm for 5 minutes using a homomixer (manufactured by Tokushu Kika Kogyo ■) to form a uniform suspension. Next, it was heated to 60°C while blowing nitrogen gas, and stirred at this temperature for S hours to carry out a suspension polymerization reaction, and then cooled to form a suspension of colored spherical particles (1
) was obtained. The obtained suspension (1) of colored spherical fine particles was measured with a Coulter counter (aperture 100 μm), and the average particle diameter was 7.25 μm, and the coefficient of variation per particle diameter was 18.2%. Synthesis Example 2 In a reaction vessel similar to that used in Synthesis Example 1, 8970 parts of deionized water in which 10 parts of the nonionic surfactant Noniball 200 (manufactured by Sanyo Chemical Co., Ltd.) was dissolved was charged. 800 parts of styrene, 20 parts of n-butyl acrylate
0 parts and 1 part of divinylbenzene, 50 parts of Brilliant Carmine 6B (manufactured by Noma Kagaku) as a coloring agent, 30 parts of azobisisobutyronitrile, and 2,2°-azobis(2, A mixture containing 30 parts of 4-dimethylvaleronitrile) was added, and the mixture was heated at 6000 rpm using a T, K, and homomixer (manufactured by Tokushu Kika Kogyo ■).
The mixture was stirred for 5 minutes to form a homogeneous suspension.Next, it was heated to 60°C while blowing nitrogen gas, and stirred at this temperature for 5 hours to perform a suspension polymerization reaction, and then cooled to room temperature to form colored spherical fine particles. A suspension (2) was obtained. The obtained suspension (2) of colored spherical fine particles was measured with a Coulter counter (aperture 10100u), and the average particle diameter was 5.82.
The coefficient of variation in μm and particle diameter was 19.3%. Synthesis Example 3 Carbon black graft polymer 5 used in Synthesis Example 1
Mabico BL-2, which is a powder magnetic material instead of 00 parts
A suspension (3) of colored spherical fine particles was obtained in the same manner as in Synthesis Example 1 except that 450 parts of 00 (manufactured by Titan Kogyo ■) were used. The obtained colored spherical fine particle suspension (3) had an average particle diameter of 9.30 ILm and a particle diameter variation coefficient of 19.0%. Synthesis Example 4 A flask similar to that used in Synthesis Example 1 was charged with 8970 parts of deionized water in which 5 parts of the anionic surfactant sodium dodecylbenzenesulfonate was dissolved. To the pre-prepared polymerizable monomer component consisting of 800 parts of styrene and 200 parts of n-butyl acrylate, 500 parts of the carbon black graft polymer of Synthesis Example 1 and 30 parts of azobisisobutyronitrile were added as a coloring agent. A mixture of 30 parts of 2.2°-azobis(2,4-dimethylvaleronitrile) was added, and the mixture was stirred for S minutes at 8000 rpm using a homomixer (manufactured by Tokushu Kika Kogyo ■) to obtain a homogeneous mixture. 0 as a suspension, then 60 minutes while blowing nitrogen gas.
℃, continued stirring at this temperature for 5 hours to perform a suspension polymerization reaction, and then cooled to room temperature to form a suspension of colored spherical particles (
4) was obtained. The obtained suspension (4) of colored spherical fine particles was measured with a Coulter counter (aperture 100' μm), and the average particle diameter was 5.85 μm, and the coefficient of variation of the particle diameter was 221%. Synthesis Example 5 A carbon black graft polymer was obtained in the same manner as in Synthesis Example 1, and then deionized by dissolving 10 parts of the anionic surfactant Hytenol N-08 (manufactured by Dai-Kogyo Seiyaku Co., Ltd.) in the same flask as above. 8,970 parts of water was charged. 800 parts of styrene, 150 parts of n-butyl acrylate, and polybutadiene N I 5S, which had been prepared in advance, were added thereto.
50 parts of carbon black graft polymer to 50 parts of O-PB-B-3000 (manufactured by Nippon Soda Co., Ltd.)
0 parts, 20 parts of azobisisobutyronitrile and 2.2°
A mixture containing 10 parts of -azobis(2,4-dimethylvaleronitrile) was charged, and the same operations as in Synthesis Example 1 were carried out to obtain a suspension (5) of colored spherical fine particles. As a result of measuring the obtained suspension (5) of colored spherical fine particles with a Coulter counter (aperture 100 am), the average particle diameter was 6°30 μm, and the coefficient of variation of the particle diameter was 19.3
It was %. Synthesis Example 6 In place of 50 parts of polybutadiene in Synthesis Example 5, H
YPALON20 (E,,duontde Nom
Same as Synthesis Example 5 except that 30 parts of benzoyl peroxide was used instead of 20 parts of azobisisobutyronitrile and 10 parts of 2.2° azobis(2,4-dimethylvaleronitrile). The operation was carried out to obtain a suspension a(6) of colored spherical fine particles. The obtained suspension (6) of colored spherical fine particles was measured with a Coulter counter (aperture 100 μm), and the average particle diameter was 5.91 μm, and the coefficient of variation of the particle diameter was 2.5%. Example 1 Suspension of colored spherical fine particles obtained in Synthesis Example 1 (1) 1050
30 parts of precipitated barium sulfate (inorganic pigment C, 177120) with an average particle size of 0.2 μm was added to 0 parts, and after sufficient fractionation, filtration and washing were carried out. Drying and heat treatment were performed to obtain 1530 parts of a block-like product in a fused state with grain boundaries remaining and having a bulk density of 0.45 g/cm and a millet-like shape.This block-like product was coarsely crushed. After that, it was crushed using a supersonic jet crusher ID52 model (manufactured by Nippon Ni-Amatic Kogyo ■) at a feed rate of 13 kg/Hr to obtain colored fine particles (1). As a result of measurement with a Coulter counter (aperture 100 μm), the average particle size was 6.
.. The coefficient of variation in particle size was 17.2% at 95 μm. The colored fine particles (1) were used as they were as toner (1) for developing electrostatic images in an electrostatic copying machine (type 4060 (m
(manufactured by Ricoh) and the results were as shown in Table 1. Example 2 Suspension of colored spherical fine particles obtained in Synthesis Example 2 (2) 1003
One portion was passed through the mouth and washed to obtain a colored spherical fine particle paste. This colored spherical fine particle paste has a colorless charge control agent (
Bontron E-84Orient Chemical Industry ■)
13 parts and 20 parts of ultrafine calcium carbonate (inorganic pigment C, l77220) having an average particle size of 0.1 μm were mixed uniformly. The resulting mixture was dried at 120°C using a hot air dryer.
By drying for hours and heat-treating, 1093 parts of a block-like product having a bulk density of 0.35 g/cm and a millet-like shape were obtained in a fused state with grain boundaries remaining. It was crushed using the same model as in Example 1 at a feed rate of 8 kg/Hr to obtain red colored fine particles (2).The properties of the colored fine particles (2) and the colored fine particles (2)
The results were shown in Table 1 when images were produced using an electrostatic copying machine (type 4060 manufactured by Ricoh) using the toner (2) for developing electrostatic images as it was. Example 3 Suspension of colored spherical fine particles obtained in Synthesis Example 4 (1) 1047
After 5 parts were passed through the mouth and washed, they were dried under reduced pressure at 50°C for 5 hours to obtain 1500 parts of colored spherical fine particles. To the colored spherical fine particles, 30 parts of Aerosil R-972 (hydrophobic Nlica, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed uniformly, followed by heat treatment at 85°C for 1 hour using a hot air dryer to fuse the grain boundaries. A block-like product having a bulk density of 0.38 g/am" was obtained in the shape of millet. This block-like product was crushed using the same machine as in Example 1 at a feed rate of 15 kglor to obtain colored fine particles. (3) was obtained. The properties of the colored fine particles (3) and the colored fine particles (3) were used as they were as a toner (3) for developing an electrostatic image by an electrostatic copying machine (type 4060 manufactured by Ricoh). The results of image generation were as shown in the lt table. Example 4 A suspension of colored spherical fine particles containing a magnetic substance obtained in Synthesis Example 3 (3
) 10,450 parts were passed through the mouth and washed to obtain a paste of colored spherical fine particles containing a magnetic substance. This colored spherical fine particle paste containing a magnetic substance was added with an aqueous paste charge control agent (Bontron S-34 Orient Kagaku Kogyo ■) containing 35% of the active ingredient.
(manufactured by Nippon Shokubai Chemical Co., Ltd.) and Seahoster KE-P30 (spherical silica fine particles with an average particle diameter of 0.3 μm, Nippon Shokubai Chemical Co., Ltd.)
After uniformly mixing 29 parts of (made of cloth), the mixture was heated at 80°C for 3 hours at 40°C.
n+m) Drying under reduced pressure with Ig and heat treatment,
Bulk density is 0.52 g/am in fused state with grain boundaries remaining.
1,493 blocks of block-like material having the shape of a millet stirrer were obtained.This block-like material was heated to 35 k by using the same model as in Example 1.
Colored fine particles (4) were obtained by crushing with a feed amount of glow. The properties of the colored fine particles (4) and the results of image formation using an electrostatic copying machine (NP-5000 manufactured by Canon ■) using the colored fine particles (4) as it is as a toner (4) for developing an electrostatic image. (As shown in Table 1.) Example 5 Suspension of colored spherical fine particles obtained in Synthesis Example 5 (5) 1048
After 0 parts were passed through the mouth and washed, drying was carried out under reduced pressure at 50°C for 5 hours to obtain 1500 parts of colored spherical fine particles. After adding 30 parts of Aerosil R805 (hydrophobic titania, Nippon Aerosil Co., Ltd.) to the colored spherical fine particles and uniformly mixing them, heat treatment was performed at 90°C for 1 hour, resulting in a fused state with grain boundaries remaining and a bulk density of 0. A block-like material having the shape of millet roe with a mass of .20 g/crn was obtained. This block-like material was crushed using the same machine as in Example 1 at a feed rate of 0 kglor to obtain colored fine particles (5). The properties of the colored fine particles (5) and the colored fine particles (5) were used as a toner (5) for developing an electrostatic image to produce an image using an electrostatic copying machine (type 4060 manufactured by Ricoh). The results were as shown in Table 1. Example 6 Suspension of colored spherical fine particles obtained in Synthesis Example 6 (6) 1048
After 0 parts were passed through the mouth and washed, drying was carried out under reduced pressure at 50°C for 5 hours to obtain 1500 parts of colored spherical fine particles. After uniformly mixing 15 parts of cerium oxide (optical lens polishing) with an average particle diameter of 0.4 μm and 10 parts of styrene-acrylic fine particles (glass transition temperature 60°C) with an average particle size of 0.3 μm into the colored spherical fine particles, the mixture was heated to 80°C. Heat treatment 1 was carried out for 1 hour at
A block-like object having the shape of a millet-raised millet of "g/cm" was obtained.
Colored fine particles (6) were obtained by crushing with a feed amount of kglor. The properties of the colored fine particles (6) and the results of image formation using an electrostatic copying machine (type 406o manufactured by Ricoh) using the colored fine particles (6) as they are as the electrostatic image developing toner (6) are as follows. The results were as shown in Table 1. Comparative Example 1 Suspension of colored spherical fine particles obtained in Synthesis Example 1 (1) 1050
After passing 0 parts through the mouth and washing, it was heated to 40 mm at 50°C for 24 hours.
) Colored fine particles for comparison (1) 1150 by drying with Ig under reduced pressure
I got the department. The properties of the comparative colored fine particles (1) and the comparative colored fine particles (1) were used as they were as a comparative electrostatic image developing toner (1) in an electrostatic copying machine (type 4060).
The results of image formation using a Ricoh (manufactured by Ricoh) are shown in Table 1. Comparative Example 2 Styrene-acrylic resin (TB-1000F Sanyo Chemical (
2228 parts, carbon black MA-10OR
(Mitsubishi Kasei ■) 187 parts and a charge control agent (Aizen
5pilon Black TRH) were premixed in a Henschel mixer, melted and kneaded in a pressure kneader at 150° C. for 30 minutes, and then cooled to obtain a toner mass. This toner mass is crushed into 0.1 mm to 2 mm using a coarse crusher.
This coarse toner was finely pulverized using the same model as in Example 1 at a feed rate of 5 kg/Hr, and the pulverized material was passed through an air classifier (DS: Model 2 manufactured by Nippon Pneumatic Kogyo ■).
The mixture was classified to obtain 1500 parts of comparative colored fine particles (2). Particle properties of the comparative colored fine particles (2) and electrostatic copying using the comparative colored fine particles (2) as is as a comparative electrostatic image developing toner (2) ff! (Type 406
The results of image formation using 0.0cm (manufactured by Ricoh) are shown in Table 1. Comparative Example 3 Suspension of colored spherical fine particles obtained in Synthesis Example 1 (1) 1O50
After passing 0 parts through the mouth and washing, dry at 90°C using a hot air dryer for 30 minutes.
After drying and heat treatment for a period of time, 1500 parts of a millet-shaped block with a bulk density of 0.30 g/cm' was obtained in a fused state with grain boundaries remaining. After coarsely crushing this block-like material, 7 kg/lar was crushed using the same model as in Example 1.
Colored fine particles (3) for comparison were obtained by crushing with a feed amount of . The properties of the comparative colored fine particles (3) and the comparative colored fine particles (3) were used as they were as a comparative electrostatic image developing toner (3) in an electrostatic copying machine (type 4060 (
...manufactured by Ricoh), and the results were as shown in Table 1. (Note 1) Crushing (pulverization) processing] The feed amount when using a supersonic jet pulverizer ID52 type (Nippon Pneumatic Kogyo ■!R) was defined as the crushing processing amount. (Note 2) Particle properties Particle diameter: Measured using a Coulter counter (Model TA-II, manufactured by Coulter Electronics INC). Coefficient of variation: Measured using a Coulter counter (Model TA-II, manufactured by Coulter Electronics INC). Frictional charge amount: Iron carrier (made by Dowa iron powder: DSP-1)
28) using a blow-off powder charge amount measuring device (manufactured by Toshiba Chemical ■: Model T) using a mixture with (toner concentration 5% by weight)
B-200). Fluidity: The fluidity of the toner was evaluated visually. o Toner particles exist independently and exhibit smooth flow. ○The toner particles are slightly agglomerated, but exhibit normal flow. Considerable agglomeration of Δ toner particles was observed, and a decrease in fluidity was observed. *Toner particles are significantly aggregated and fluidity is significantly decreased. (Note 3) Image output evaluation Evaluated using an image obtained by copying facsimile test chart N (11) using an electrostatic copying machine Image output type 4060 (manufactured by Ricoh or NP-5000 manufactured by Canon). Fog: Ground is toner The presence or absence of spot-like staining phenomenon was investigated.Fine line reproducibility: Evaluated by the readability of the image obtained by copying the facsimile test chart KL.Cleanability: From the image obtained by copying 1 onto the facsimile test chart evaluated.

Claims (1)

【特許請求の範囲】 1、懸濁重合により得られた平均粒子径が1〜100μ
mの着色球状微粒子と該着色球状微粒子より小粒径の無
機微粒子とを混合した後、30〜200℃の条件下に加
熱処理して該粒子同士を融着させてブロック状物とした
後、実質融着前の着色球状微粒子の平均粒子径に解砕し
て得られることを特徴とする着色微粒子。 2、着色球状微粒子に添加する無機微粒子の粒子径が0
.001〜10μmの範囲である請求項1記載の着色微
粒子。 3、無機微粒子の添加量が着色球状微粒子100重量部
に対して0.01〜100重量部の範囲である請求項1
記載の着色微粒子。 4、着色球状微粒子が着色剤として、カーボンブラック
グラフトポリマーを用いて懸濁重合により得られたもの
である請求項1記載の着色微粒子。 5、融着が粒子同士の界面を完全に消失しない範囲で行
なわれたものである請求項1記載の着色微粒子。 6、ブロック状物の嵩密度が0.1〜0.9g/cm^
3の範囲である請求項1記載の着色微粒子。 7、平均粒子径が1〜100μmである請求項1記載の
着色微粒子。 8、粒子径の変動係数が0〜80%である請求項1記載
の着色微粒子。 9、請求項1に記載の着色微粒子を用いてなる静電荷像
現像用トナー。 10、着色球状微粒子に添加する無機微粒子の粒子径が
0.001〜10μmの範囲である請求項9記載の静電
荷像現像用トナー。 11、無機微粒子の添加量が着色球状微粒子100重量
部に対して0.01〜100重量部の範囲である請求項
9記載の静電荷像現像用トナー。 12、着色球状微粒子が着色剤としてカーボンブラック
グラフトポリマーを用いて懸濁重合により得られたもの
である請求項9記載の静電荷像現像用トナー。 13、融着が粒子同士の界面を完全に消失しない範囲で
行なわれたものである請求項9記載の静電薄像現像用ト
ナー。 14、ブロック状物の嵩密度が0.1〜0.9g/cm
^3の範囲である請求項9記載の静電荷像現像用トナー
。 15、着色微粒子の平均粒子径が1〜100μmの範囲
である請求項9記載の静電荷像現像用トナー。 16、着色微粒子の粒子径の変動係数が0〜80%であ
る請求項9記載の静電荷像現像用トナー。
[Claims] 1. The average particle diameter obtained by suspension polymerization is 1 to 100μ
After mixing colored spherical fine particles of m and inorganic fine particles having a smaller particle size than the colored spherical fine particles, heat treatment is performed under conditions of 30 to 200 ° C. to fuse the particles together to form a block-like object, 1. Colored fine particles, characterized in that they are obtained by crushing colored spherical fine particles to an average particle size before substantial fusion. 2. The particle size of the inorganic fine particles added to the colored spherical fine particles is 0.
.. 2. The colored fine particles according to claim 1, having a particle size in the range of 0.001 to 10 μm. 3. Claim 1, wherein the amount of the inorganic fine particles added is in the range of 0.01 to 100 parts by weight per 100 parts by weight of the colored spherical fine particles.
Colored fine particles as described. 4. The colored fine particles according to claim 1, wherein the colored spherical fine particles are obtained by suspension polymerization using a carbon black graft polymer as a colorant. 5. The colored fine particles according to claim 1, wherein the fusion is carried out within a range that does not completely eliminate the interface between the particles. 6. The bulk density of the block-like material is 0.1 to 0.9 g/cm^
3. The colored fine particles according to claim 1, wherein the colored fine particles are in the range of 3. 7. The colored fine particles according to claim 1, having an average particle diameter of 1 to 100 μm. 8. The colored fine particles according to claim 1, which have a coefficient of variation in particle size of 0 to 80%. 9. A toner for developing an electrostatic image using the colored fine particles according to claim 1. 10. The toner for developing electrostatic images according to claim 9, wherein the inorganic fine particles added to the colored spherical fine particles have a particle diameter in the range of 0.001 to 10 μm. 11. The toner for developing electrostatic images according to claim 9, wherein the amount of the inorganic fine particles added is in the range of 0.01 to 100 parts by weight based on 100 parts by weight of the colored spherical fine particles. 12. The toner for developing electrostatic images according to claim 9, wherein the colored spherical fine particles are obtained by suspension polymerization using a carbon black graft polymer as a colorant. 13. The toner for electrostatic thin image development according to claim 9, wherein the fusion is carried out within a range that does not completely eliminate the interface between the particles. 14. The bulk density of the block-like material is 0.1 to 0.9 g/cm
10. The toner for developing an electrostatic image according to claim 9, wherein the toner is in the range of ^3. 15. The toner for developing electrostatic images according to claim 9, wherein the colored fine particles have an average particle diameter in the range of 1 to 100 μm. 16. The toner for developing electrostatic images according to claim 9, wherein the particle size variation coefficient of the colored fine particles is 0 to 80%.
JP2008124A 1989-04-17 1990-01-19 Colored fine particles and toner for developing electrostatic images using the same Expired - Lifetime JP2766540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124A JP2766540B2 (en) 1989-04-17 1990-01-19 Colored fine particles and toner for developing electrostatic images using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1095419A JP2765937B2 (en) 1989-04-17 1989-04-17 Colored fine particles and toner for developing electrostatic images using the same
JP2008124A JP2766540B2 (en) 1989-04-17 1990-01-19 Colored fine particles and toner for developing electrostatic images using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1095419A Division JP2765937B2 (en) 1988-08-30 1989-04-17 Colored fine particles and toner for developing electrostatic images using the same

Publications (2)

Publication Number Publication Date
JPH02275470A true JPH02275470A (en) 1990-11-09
JP2766540B2 JP2766540B2 (en) 1998-06-18

Family

ID=26342569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124A Expired - Lifetime JP2766540B2 (en) 1989-04-17 1990-01-19 Colored fine particles and toner for developing electrostatic images using the same

Country Status (1)

Country Link
JP (1) JP2766540B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540365A (en) * 1991-08-08 1993-02-19 Nippon Shokubai Co Ltd Production of colored fine particle and electrophotographic toner using the same
JPH06175402A (en) * 1992-12-02 1994-06-24 Nippon Shokubai Co Ltd Manufacture of toner for electrophotography
JP2010150480A (en) * 2008-12-26 2010-07-08 Tokuyama Dental Corp Method of producing irregular-shaped non-crosslinked organic resin filler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273757A (en) * 1989-04-17 1990-11-08 Nippon Shokubai Kagaku Kogyo Co Ltd Colored fine particle and toner for developing electrostatic charge image using this particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273757A (en) * 1989-04-17 1990-11-08 Nippon Shokubai Kagaku Kogyo Co Ltd Colored fine particle and toner for developing electrostatic charge image using this particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540365A (en) * 1991-08-08 1993-02-19 Nippon Shokubai Co Ltd Production of colored fine particle and electrophotographic toner using the same
JPH06175402A (en) * 1992-12-02 1994-06-24 Nippon Shokubai Co Ltd Manufacture of toner for electrophotography
JP2010150480A (en) * 2008-12-26 2010-07-08 Tokuyama Dental Corp Method of producing irregular-shaped non-crosslinked organic resin filler

Also Published As

Publication number Publication date
JP2766540B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
EP0357376B1 (en) Coloring fine particle and toner for developing electrostatic images using the same
JP2002244340A (en) Electrostatic latent image developing toner
JP4525549B2 (en) Method for producing toner for developing electrostatic image
JPH0545931A (en) Production of colored fine particles and electrophotographic toner formed by using it
KR100779883B1 (en) Toner and method of preparing the same
US5193751A (en) Coloring fine particles and toner for developing electrostatic images using the same
US5929139A (en) Method for production of microfine colored particles and electrophotographic toner, using the particles
JPH02275470A (en) Colored fine particle and toner for developing electrostatic charge image using this particle
JP2912662B2 (en) Dry toner for electrophotography
JPH07120076B2 (en) Method for manufacturing toner for developing electrostatic image
JP2003202697A (en) Toner and method of producing toner
US5559168A (en) Method for production of microfine colored particles and electrophotographic toner using the particles
JP2765937B2 (en) Colored fine particles and toner for developing electrostatic images using the same
JPH03209267A (en) Colored fine particle and toner for developing electrostatic charge image using the same
JP2007093653A (en) Toner
JP2898715B2 (en) Method for producing colored fine particles and toner for electrophotography using the same
JP2629093B2 (en) Method for producing colored fine particles and toner for electrophotography using the same
JP2003316069A (en) Polymerization toner and method for manufacturing same
KR950003306B1 (en) Electrostatic developing toner
JP2744335B2 (en) Manufacturing method of toner
JPH085964B2 (en) Method for producing colored fine particles and toner for electrophotography using the same
JPH05241376A (en) Toner and its production
JPS63244053A (en) Production of electrostatic charge image developing toner
JPH02167564A (en) Colored fine particle and toner for developing electrostatic image comprising this colored fine particle
JPH04102861A (en) Electrostatic charge image developing toner