JPH02275463A - Production of electrophotographic sensitive material - Google Patents

Production of electrophotographic sensitive material

Info

Publication number
JPH02275463A
JPH02275463A JP9772189A JP9772189A JPH02275463A JP H02275463 A JPH02275463 A JP H02275463A JP 9772189 A JP9772189 A JP 9772189A JP 9772189 A JP9772189 A JP 9772189A JP H02275463 A JPH02275463 A JP H02275463A
Authority
JP
Japan
Prior art keywords
paint
coating
gun
shielding member
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9772189A
Other languages
Japanese (ja)
Inventor
Mitsuru Honda
充 本田
Kazunari Nakamura
一成 中村
Shigeto Tanaka
成人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9772189A priority Critical patent/JPH02275463A/en
Publication of JPH02275463A publication Critical patent/JPH02275463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent the disturbance in end parts, such as coating ends or the build-up in the coating ends by having shielding members for a coating compd. at both ends of a cylindrical base and allowing the coating compd. discharged from a very small aperture to fly like lines with substantially no atomization. CONSTITUTION:The shielding members 101 are provided at both ends of the cylindrical base 102 and the coating compd. discharged from the very small aperture of a nozzle tip 104 provided at the front end of a discharging gun 103 is stuck as the spiral coating compd. 105 onto the cylindrical base 102 to form a uniformly coated film surface 106. The coating compd. does not stick to the lower part of the shielding members 101 if the coating compd. 201 exists on the cylindrical base 102. On the other hand, the coating compd. sticks onto the cylindrical base 102 when the coating compd. 201 discharged while moving in an arrow direction passes the shielding members 101. The generation of the coating ends or the build-up in the coating end parts is obviated at both ends of the cylindrical base 102.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塗料を微小開口部より制御しつつ吐出し、成膜
する電子写真感光体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an electrophotographic photoreceptor in which a coating material is controlled and discharged from a minute opening to form a film.

〔従来の技術〕[Conventional technology]

従来、電子写真感光体形成用塗料を用いて支持体上に塗
膜を形成し電子写真感光体を製造する方法としては、例
えば支持体を塗料中に浸漬し、徐々に引き上げることに
より支持体と塗料の表面張力を利用して塗膜を形成する
浸漬塗布方法や、ロール上に一度塗料層を形成し該塗料
層を支持体上に転写することにより塗膜を形成するロー
ルコーティング法などが知られている。
Conventionally, as a method for manufacturing an electrophotographic photoreceptor by forming a coating film on a support using a paint for forming an electrophotographic photoreceptor, for example, the support is immersed in the paint and gradually pulled up. Known methods include the dip coating method, which uses the surface tension of the paint to form a paint film, and the roll coating method, which forms a paint layer once on a roll and then transfers the paint layer onto a support. It is being

浸漬塗布方法は膜厚の均一な塗膜が比較的簡単に形成で
きるが、使用すべき塗料が多量に必要であり、被塗布物
の形状・大きさによっては装置が大型化してしまう。ま
た、浸漬部分は全て塗布されるので被塗布物の塗膜不要
部分にも塗膜が形成されてしまい、塗膜の除去を必要と
し作業能率が低下してしまう。さらに、多層コーティン
グの際に下地層を溶解してしまう可能性があり、それに
よる塗膜中への混入により特性劣化などがおこり下地層
と上塗層の組み合わせが限定されてしまう。
Although the dip coating method can relatively easily form a coating film with a uniform thickness, it requires a large amount of paint and the size of the equipment increases depending on the shape and size of the object to be coated. Furthermore, since all the immersed parts are coated, a coating film is formed even on parts of the object to be coated which do not require a coating film, making it necessary to remove the coating film and reducing work efficiency. Furthermore, there is a possibility that the base layer will be dissolved during multilayer coating, and the resulting mixture in the coating film will cause property deterioration, and the combinations of the base layer and top coat will be limited.

また、ロールコーティング法は形成される塗膜状態がロ
ールと被塗布物の距離に依存しており、この距離を制御
しやすいシート物・円筒状支持体の塗布に用いられるが
、やはり多量の塗料を必要とし特に円筒状支持体などに
塗布した場合塗膜に継ぎ目を生じてしまう。
In addition, in the roll coating method, the state of the coating film formed depends on the distance between the roll and the object to be coated, and it is used for coating sheet objects and cylindrical supports where this distance can be easily controlled, but it still requires a large amount of paint. Particularly when applied to a cylindrical support, seams occur in the coating film.

一方、前記のような塗布方法のほかにスプレー法と呼ば
れる塗布方法も知られている。
On the other hand, in addition to the above-mentioned coating method, a coating method called a spray method is also known.

スプレー法は、微小開口部を有するノズルより塗料を吐
出し、霧化することにより生成した微小液滴を被塗布物
上に付着させて塗膜を形成する方法であり、いろいろな
形状や大きさの感光体基体等にしかも広範囲にわたって
塗膜を形成することができ、円筒状基体等に継ぎ目なし
の塗布も可能であり、非常に有効な電子写真感光体の製
造方法である。
The spray method is a method in which paint is ejected from a nozzle with a minute opening and atomized, resulting in minute droplets that adhere to the object to be coated to form a coating film. Furthermore, it is possible to form a coating film over a wide range of photoreceptor substrates, etc., and seamless coating can be applied to cylindrical substrates, etc., making it a very effective method for producing electrophotographic photoreceptors.

しかしながら、このスプレー法によれば霧化するときの
圧力により塗料が飛翔し、塗料中の揮発成分が著しく揮
発して塗料組成が変質する傾向にあること、また、高圧
により泡が発生しこの泡を巻き込みやすい塗膜になるな
どの問題点があり、均一な塗膜を得るのが難しい。さら
に、塗料は圧力等により霧化されて放射状になるため被
塗布物への付着効率が低(、損失した塗料を排出するた
めの排気と汚染防止のための塗料回収設備も必要となっ
てしまう。
However, with this spray method, the pressure during atomization causes the paint to fly off, and the volatile components in the paint tend to evaporate significantly, resulting in a change in the paint composition.Also, the high pressure causes bubbles to form. There are problems such as the coating film tends to get mixed up, making it difficult to obtain a uniform coating film. Furthermore, because the paint is atomized by pressure and becomes radial, it has low adhesion efficiency to the object being coated (and requires exhaust to remove lost paint and paint recovery equipment to prevent contamination). .

また、被塗布物と相対的にスプレーガンを移動させなが
ら被塗布物上に塗膜を形成させると、すでに塗膜が形成
された部分に飛散霧化塗料の一部が付着して被塗布物上
に塗膜欠陥が生じてしまう。
Additionally, if a paint film is formed on the object while moving the spray gun relative to the object, some of the scattered atomized paint may adhere to the area where the coating has already been formed, causing the spray gun to move relative to the object. Paint film defects will occur on the top.

さらに塗膜の非形成部分にも塗料の回り込みを生ずるた
め、剥離もしくは塗料付着防止のために保護手段等が必
要となってしまう等の問題がある。
Furthermore, since the paint wraps around to areas where the paint film is not formed, there are problems such as the need for protective means to prevent peeling or paint adhesion.

他に、特開昭52−119651号公報に見られるよう
に被塗布物表面に注液塗布機またはカーテン塗布機を近
接して配置し、塗料の粘度および表面張力を利用して被
塗布物および注液塗布機またはカーテン塗布機の間に塗
料を支持し、塗料のもれを防止しながら成膜する方法が
提案されている。
In addition, as seen in Japanese Patent Application Laid-Open No. 52-119651, a liquid injection coating machine or a curtain coating machine is placed close to the surface of the object to be coated, and the viscosity and surface tension of the paint are used to coat the object. A method has been proposed in which the paint is supported between a liquid injection coater or a curtain coater to form a film while preventing paint leakage.

しかしながら、かかる塗布方法は塗膜の状況が塗料の支
持状態に依存していることから、被塗布物と注液塗布機
またはカーテン塗布機の間隔を精密に制御する必要があ
り、また特にカーテン塗布注液部によるオビ状の継ぎ目
ムラが生じ画像にスジムラを生じることとなり、塗膜の
精度並びに表面状態を優れたものにするためには被塗布
物の精度および注液塗布機またはカーテン塗布機の精度
をきわめて高いものにする必要を生じ、コストアップが
著しく、また、被塗布物と塗布機の間隙から塗料もれを
生じやすく、安定な成膜条件の維持がきわめて困難であ
る。
However, since the state of the coating film in this coating method depends on the support state of the paint, it is necessary to precisely control the distance between the object to be coated and the liquid injection coating machine or curtain coating machine, and especially in curtain coating. Ove-like seam unevenness due to the injection part causes streaks in the image. To achieve excellent coating film accuracy and surface condition, it is necessary to check the accuracy of the object to be coated and the accuracy of the injection coating machine or curtain coating machine. This requires extremely high precision, which significantly increases costs.Also, paint tends to leak from the gap between the object to be coated and the coating machine, and it is extremely difficult to maintain stable film-forming conditions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記、従来技術における塗膜形成の工程を詳しく分析し
た結果、均一な塗膜とは細分化した部分において均一量
の均質な塗料が分布し、それらが連続しているものであ
ると考えて、所定速度で回転する支持体上に塗料吐出ガ
ンのノズルチップの微小開口部から微小量の塗料を実質
的に霧化せずに筋状に吐出することにより支持体の塗布
面に徐々に塗料を耐着せしめ、支持体全体を塗布する方
法を本件出願人は先に提案した(特願昭62−2608
57号)。
As a result of detailed analysis of the process of forming a paint film in the above-mentioned conventional technology, we believe that a uniform paint film is one in which a uniform amount of homogeneous paint is distributed in subdivided parts, and that they are continuous. Paint is gradually applied to the coated surface of the support by discharging a small amount of paint in a streak-like manner without substantially atomizing it from the minute opening of the nozzle tip of the paint dispensing gun onto the support that rotates at a predetermined speed. The applicant had previously proposed a method of coating the entire support to make it resistant to adhesion (Japanese Patent Application No. 62-2608).
No. 57).

本件出願人が先に提案した塗布方法では、回転する円筒
状支持体上にその回転軸と平行に一定速度で移動する塗
料吐出ガンから塗料が筋状に吐出されると、円筒状支持
体上の塗布始点や塗布始点では第7図(a)に示したよ
うに塗料の塗布端が形成される。このような塗布端を形
成させずに、従来の浸漬塗布方法で製造されるような回
転軸に対して直角となる端部(第7図(b))を形成す
るためには、塗布始点で吐出ガンの移動を一旦停止して
1回転分塗布し、再び吐出ガンを動かし、また塗布終点
では吐出ガンの移動を停止して1回転塗布を継続した後
塗料の吐出を停止するという操作が必要であった。
In the coating method previously proposed by the applicant, when paint is discharged in streaks onto a rotating cylindrical support from a paint dispensing gun that moves at a constant speed parallel to the rotation axis of the rotating cylindrical support, At the coating start point and the coating start point, coating edges of the paint are formed as shown in FIG. 7(a). In order to avoid forming such a coating edge and to form an edge (Fig. 7(b)) that is perpendicular to the axis of rotation as produced by the conventional dip coating method, it is necessary to It is necessary to temporarily stop the movement of the discharge gun, apply one rotation, move the discharge gun again, and at the end of coating, stop the movement of the discharge gun, continue applying one rotation, and then stop discharging the paint. Met.

しかしながら、このような操作によって吐出ガンの停止
位置で丁度1回転分の塗布を行うことは、円筒状支持体
の回転精度や外径公差、吐出ガンの停止時間の精度など
の点で難かしく、1回転分以上例えば1.1〜1.5回
転分璋布されることにより、余分な塗料がすでに塗布さ
れた塗料部分に重なってしまって塗布端部に盛り上がり
が生じてしまうことがあった。特に複数の微小開口部か
ら塗料を吐出する場合には顕著であった。
However, it is difficult to perform coating for exactly one rotation at the stop position of the discharge gun by such an operation due to the rotation accuracy of the cylindrical support, the tolerance of the outer diameter, the accuracy of the stop time of the discharge gun, etc. When the paint is spread for more than one rotation, for example, 1.1 to 1.5 rotations, the excess paint may overlap the already applied paint portion, resulting in a bulge at the coated end. This was particularly noticeable when the paint was discharged from a plurality of minute openings.

このような塗布端や塗布端部の盛り上がりが円筒状支持
体の端部に形成された感光体を電子写真装置に適用した
場合、スリーブや現像器などに設けられているスペーサ
ーコロが、円筒状支持体の塗布端にのりあげてしまった
りして、正確なギャップが維持できないという問題点が
あった。
When a photoreceptor in which such a coating end or a bulge at the coating end is formed at the end of a cylindrical support is applied to an electrophotographic device, the spacer rollers provided on the sleeve or developing device, etc. There was a problem that an accurate gap could not be maintained because it would stick to the coated end of the support.

本発明の目的は、塗布端や塗布端部の盛り上がりなどの
端部乱れの少ない電子写真感光体の製造方法を提供する
ことにある。
An object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor with less edge disturbance such as a coating edge or a swell at the coating edge.

また、本発明の目的は、吐出ガンの移動モードを簡略化
した電子写真感光体の製造方法を提供することにある。
Another object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor in which the movement mode of a discharge gun is simplified.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、微小開口部から電子写真感光体形
成用塗料を吐出して円筒状支持体上の被塗布面に塗布す
る電子写真感光体の製造方法において、円筒状支持体の
両端部に塗料遮蔽部材を有し、微小開口部から吐出する
該塗料が実質的に霧化せず筋状に連続して飛翔すること
を特徴とする電子写真感光体の製造方法である。
That is, the present invention provides a method for manufacturing an electrophotographic photoreceptor in which a paint for forming an electrophotographic photoreceptor is discharged from a minute opening and applied to a surface to be coated on a cylindrical support. This method of manufacturing an electrophotographic photoreceptor includes a paint shielding member and is characterized in that the paint discharged from a minute opening is not substantially atomized and flies continuously in a streaky manner.

第1図(a)に示したように本発明における遮蔽部材1
01は円筒状支持体102の両端部に設けられている。
As shown in FIG. 1(a), a shielding member 1 according to the present invention
01 are provided at both ends of the cylindrical support 102.

これによつて吐出ガン103の先端に設けられたノズル
チップ104の微小開口部から吐出した塗料は円筒状支
持体102上にラセン状塗料105として付着しレベリ
ングして均一な塗膜面106となる。第2図に示すよう
に吐出している塗料201が遮蔽部材101の真上にあ
る場合にはその下部には塗料は付着しない。−方、矢印
方向に移動しながら吐出している塗料201が遮蔽部材
101を通りすぎると円筒状支持体102上に塗料は付
着する。これにより円筒状支持体の両端部には塗布端や
塗布端部の盛り上がりは発生せずに円筒状支持体の長袖
方向に対して垂直な塗布端面が形成できる。
As a result, the paint discharged from the minute opening of the nozzle tip 104 provided at the tip of the discharge gun 103 adheres to the cylindrical support 102 as a spiral paint 105 and is leveled to form a uniform coating surface 106. . As shown in FIG. 2, if the paint 201 being discharged is directly above the shielding member 101, no paint will adhere to the lower part thereof. - On the other hand, when the paint 201 being discharged while moving in the direction of the arrow passes through the shielding member 101, the paint adheres to the cylindrical support 102. As a result, coating end surfaces perpendicular to the long sleeve direction of the cylindrical support can be formed at both ends of the cylindrical support without forming a coating end or a bulge at the coating end.

遮蔽部材と円筒状支持体との距離202は、一般的には
0.3mm 〜10mm、好ましくは0.4mm 〜5
mm、特に好ましくは0.5mm〜2mmの範囲がよい
The distance 202 between the shielding member and the cylindrical support is generally 0.3 mm to 10 mm, preferably 0.4 mm to 5 mm.
mm, particularly preferably in the range of 0.5 mm to 2 mm.

遮蔽部材と円筒状支持体との距離が10mmを越えると
塗料筋が次々に遮蔽部材の端から衝突していき、遮蔽部
材の端に溜った塗料を次に衝突する塗料ビームがはじき
飛ばして、遮蔽部材の裏側の円筒状支持体表面に塗料飛
まつが付着することがある。遮蔽部材表面に塗料の付着
しやすい材料であるほど、塗料がたまりやすくなり、上
記現象は起りやすくなる。逆に、遮蔽部材材料が塗料を
付着しに(いものであれば、かなり条件がよくなる。又
、遮蔽部材と円筒状支持体との距離もより近接する方が
、たとえ塗料飛まつが生じたとしても、円筒状支持体上
への付着を小さ(することができるが、0.3mmより
小さ(なると遮蔽部材と円筒状支持体が接触してしまう
ことがある。
If the distance between the shielding member and the cylindrical support exceeds 10 mm, the paint streaks will collide with each other from the end of the shielding member one after another, and the paint that has accumulated at the end of the shielding member will be repelled by the next colliding paint beam, causing the shielding to fail. Paint spatter may adhere to the surface of the cylindrical support on the back side of the component. The more easily the paint adheres to the surface of the shielding member, the more likely the paint will accumulate, and the more likely the above phenomenon will occur. On the other hand, if the material of the shielding member is one that does not allow paint to adhere to it, the conditions will be much better.Also, if the distance between the shielding member and the cylindrical support is closer, even if paint splashes occur, the conditions will be much better. Although it is possible to reduce the adhesion onto the cylindrical support, if the thickness is smaller than 0.3 mm, the shielding member and the cylindrical support may come into contact with each other.

上記した円筒状支持体上への塗料飛まつの発生原因は主
に遮蔽部材上、特にその先端に塗料の溜りができて、そ
の上に塗料ビームの次の筋が衝突して飛まつを発生させ
ることにある。
The cause of paint splashes on the cylindrical support mentioned above is mainly due to paint buildup on the shielding member, especially at its tip, and then the next streak of the paint beam collides on top of it, causing splashes. It's about letting people know.

従って、遮蔽部材上の同一箇所に塗料がいつまでも滞留
せず先端方向に流れないような構造にすれば、飛まつの
付着が生じにくり、且つ、過剰塗料のカットをさらに実
現できる。
Therefore, if the structure is such that the paint does not stay at the same location on the shielding member forever and does not flow toward the tip, adhesion of flying paint is less likely to occur, and excess paint can be further removed.

このような遮蔽部材の構造としては、 1、付着塗料が曲面を伝って速やかに無くなるように円
筒状支持体と類似の曲率半径をもたせる。
The structure of such a shielding member is as follows: 1. It should have a radius of curvature similar to that of the cylindrical support so that the adhered paint can be quickly lost along the curved surface.

2、付着した塗料が下部に流れ落ちるように遮蔽部材の
縦方向(円筒状支持体の回転方向)に縦溝を設ける。
2. A vertical groove is provided in the vertical direction of the shielding member (rotation direction of the cylindrical support) so that the adhered paint flows down to the bottom.

などが挙げられる。Examples include.

さらに、遮蔽部材の先端部の形状としては、例えば第3
図に示したものが挙げられる。
Furthermore, the shape of the tip of the shielding member may be, for example, a third shape.
Examples include those shown in the figure.

これらの中でも(d)のように遮蔽部材の先端前方部3
Q1が鋭角構造であって、先端後方部302が鈍角構造
であり、塗料吐出秀句303と先端壁面304の方向3
05とのなす角度306が鋭角になる形状が好ましい。
Among these, as shown in (d), the front end portion 3 of the shielding member
Q1 has an acute angle structure, and the tip rear part 302 has an obtuse angle structure, and the direction 3 of the paint discharge feature 303 and the tip wall surface 304 is
05 is preferably an acute angle.

このような形状は、先端前方部に衝突した吐出塗料が壁
面抵抗を受けずに即座に開放されるので遮蔽部材先端方
向307に塗料がふ(れずに、塗料先端付近308と塗
料の外側309における流速はほとんど変わらない。し
たがって遮蔽部材の裏側に塗料が回り込んで飛び散るこ
とがほとんどない。
With such a shape, the discharged paint that collides with the front part of the tip is immediately released without being subjected to wall resistance, so that the paint does not spill in the direction 307 of the tip of the shielding member, and the paint is spread around the tip 308 of the paint and on the outside 309 of the paint. The flow velocity hardly changes.Therefore, there is almost no chance of the paint going around to the back side of the shielding member and scattering.

さらに(d)の改良型である(e)は、先端が2段に分
かれており、後段部310は先端後方部301に衝突し
て発生したわずかな飛び散りをカットするものである。
Furthermore, in (e), which is an improved version of (d), the tip is divided into two stages, and the rear section 310 cuts off slight scattering caused by collision with the rear tip section 301.

遮蔽部材の先端後方部301が直角になっている場合(
第3図(a)、(b)) 、遮蔽部材先端付近に流れる
塗料は、塗料吐出方向302と平行方向の面をもつ先端
壁面303から抵抗を受け、塗料の流れ方向の力との合
力により、先端方向304に塗料がふくれながら流れる
。このとき、先端付近を通る塗料はどその速度は遅い。
When the tip rear part 301 of the shielding member is at a right angle (
3(a), (b)), the paint flowing near the tip of the shielding member receives resistance from the tip wall surface 303, which has a surface parallel to the paint discharge direction 302, and due to the resultant force with the force in the flow direction of the paint. , the paint swells and flows in the tip direction 304. At this time, the speed of the paint passing near the tip is slow.

そして遮蔽部材を通過したところで先端壁面からの抵抗
が開放されて、遮蔽部材の裏側に多少回り込むような方
向に塗料は流れる。
Then, after passing through the shielding member, the resistance from the tip wall surface is released, and the paint flows in a direction that goes around the back side of the shielding member to some extent.

また、遮蔽部材の先端が半丸棒状の場合(第3図(C)
) 、そこから受ける抵抗の方向は徐々に変わる。これ
と塗料吐出流の方向との合力は、先端後方部31が直角
になっている場合と異なり、ゆるやかに方向を変えなが
ら、遮蔽部材の裏側へ多少回り込む。
In addition, when the tip of the shielding member is semi-round bar-shaped (Fig. 3 (C)
), the direction of the resistance received from it gradually changes. The resultant force of this and the direction of the paint discharge flow is different from the case where the rear end portion 31 is at a right angle, and the resultant force changes direction gently and wraps around to the back side of the shielding member to some extent.

本発明における微小開口部から塗料を吐出し塗膜を形成
する方法においては、実質的に霧化しない状態とは吐出
角度が3°以下、好ましくは0゜の筋状に連続して飛翔
する状態を示すものである。
In the method of the present invention for forming a coating film by discharging paint from a minute opening, a state in which the paint is not substantially atomized is a state in which the paint is continuously sprayed in a streak-like manner with a discharge angle of 3° or less, preferably 0°. This shows that.

微小領域への集中化(基板上では塗料が若干法がるため
面積で約1/100に集中)を考慮すると吐出速度は3
0m/sec以下が好ましく、さらには25m/ s 
e c 〜2m/ s e cの範囲、特には10m/
sec〜5m/seaの範囲が好ましい。
Considering the concentration in a minute area (the paint spreads slightly on the board, it concentrates in about 1/100 of the area), the discharge speed is 3.
0 m/sec or less is preferable, more preferably 25 m/s
ec to 2 m/sec, especially 10 m/sec
A range of sec to 5 m/sea is preferred.

被塗布物と微小開口部との距離は2〜100mm、特に
は5〜50mmの範囲であることが好ましい。塗料は溶
剤中に固形分を溶解あるいは分散させたものや、固形分
のみのものなど広(適用することができる。また、溶剤
は揮発性のものはもちろんであるが、不揮発性のものも
適用することができる。また塗料の粘度は、基板上に塗
料が付着後表面張力により平滑化するために1000c
ps、さらには200cps以下、特には50Cps〜
4cpsの範囲とするのが好ましい。
The distance between the object to be coated and the minute opening is preferably in the range of 2 to 100 mm, particularly 5 to 50 mm. Paints can be applied to a wide range of applications, including those with solid content dissolved or dispersed in a solvent, and those with only solid content.In addition, not only volatile solvents but also non-volatile solvents can be used. The viscosity of the paint is 1000c because the paint is smoothed by surface tension after it adheres to the substrate.
ps, even 200cps or less, especially 50Cps~
A range of 4 cps is preferable.

また、微小開口部の吐出口口径は、200μm以下が好
ましく、さらには50μm〜180μmの範囲、特には
60μm〜150μmの範囲が好ましい。微小開口部か
らの塗料の吐出圧は3K g f / c rd以下が
好ましく、さらには0.3Kgf/crrr 〜1.5
Kgf/crrrの範囲、特に。
Further, the discharge port diameter of the minute opening is preferably 200 μm or less, more preferably in the range of 50 μm to 180 μm, particularly preferably in the range of 60 μm to 150 μm. The discharge pressure of the paint from the minute opening is preferably 3Kgf/crrd or less, more preferably 0.3Kgf/crrr to 1.5
Kgf/crrr range, especially.

は0.5Kgf/cnf 〜IKgf/crrrの範囲
が好ましい。塗料の吐出量は20cc/分以下、特には
0.8cc/分〜15 c c/分の範囲であることが
好ましい。
is preferably in the range of 0.5 Kgf/cnf to IKgf/crrr. The amount of paint discharged is preferably 20 cc/min or less, particularly in the range of 0.8 cc/min to 15 cc/min.

電子写真感光体形成用塗料としては、電荷発生層形成用
塗料や電荷輸送層形成用塗料などの感光層形成用塗料、
あるいは、接着性およびバリヤー性向上のための下引き
層形成用塗料や、金属シリング−の局部電池の防止や欠
陥の隠ぺいのための導電層形成用塗料などの中間層形成
用塗料、等が挙げられる。
Paints for forming electrophotographic photoreceptors include paints for forming photosensitive layers such as paints for forming charge generation layers and paints for forming charge transport layers;
Other examples include paints for forming an undercoat layer to improve adhesion and barrier properties, and paints for forming intermediate layers such as paints for forming a conductive layer to prevent local batteries in metal seals and hide defects. It will be done.

電荷発生層形成用塗料としては、アゾ顔料、キノン顔料
、キノシアニン顔料、ペリレン顔料、インジゴ顔料、フ
タロシアニン顔料などの電荷発生物質を、ポリビニルブ
チラール、ポリスチレン、アクリル樹脂、ポリエステル
、ポリ酢酸ビニル、ポリカーボネートなどの結着剤樹脂
と、さらにアルコール、ケトン、エーテル、脂肪族ハロ
ゲン化炭化水素、芳香族系などの有機溶剤とに分散した
分散液等が挙げられる。
As the paint for forming the charge generation layer, charge generation substances such as azo pigments, quinone pigments, quinocyanine pigments, perylene pigments, indigo pigments, and phthalocyanine pigments may be used. Examples include dispersions in which a binder resin is further dispersed in an organic solvent such as alcohol, ketone, ether, aliphatic halogenated hydrocarbon, or aromatic solvent.

電荷輸送層形成用塗料としては、スチリル系化合物、ヒ
ドラゾン系化合物、カルバゾール系化合物、ピラゾリン
系化合物、ベンジジン系化合物、トリアリールメタン系
化合物などの電荷輸送物質と、ボリアリレート、ポリス
チレン、アクリル樹脂、ポリエステル、ポリカーボネー
トなどの結着剤樹脂とを、前述のような有機溶剤に溶解
した溶液等が挙げられる。
The paint for forming the charge transport layer includes charge transport substances such as styryl compounds, hydrazone compounds, carbazole compounds, pyrazoline compounds, benzidine compounds, and triarylmethane compounds, as well as polyarylates, polystyrene, acrylic resins, and polyesters. Examples include a solution in which a binder resin such as polycarbonate is dissolved in an organic solvent as described above.

下引き層形成用塗料としては、カゼイン、ポリビニルア
ルコール、ポリアミドなどの樹脂を前述のような有機溶
剤に溶解した溶液、等が挙げられる。
Examples of the paint for forming the undercoat layer include solutions in which resins such as casein, polyvinyl alcohol, and polyamide are dissolved in the organic solvents mentioned above.

導電層形成用塗料としては、酸化チタン、酸化スズ、カ
ーボンブラックなどの導電性粒子をエポキシ樹脂、フェ
ノール樹脂、ポリウレタンなどの適当な樹脂と、さらに
前述のような有機溶剤とに分散した分散液等が挙げられ
る。
The paint for forming the conductive layer includes a dispersion of conductive particles such as titanium oxide, tin oxide, and carbon black dispersed in a suitable resin such as epoxy resin, phenol resin, and polyurethane, and an organic solvent as described above. can be mentioned.

なお、これらの各塗料には、潤滑剤、酸化防止剤、レベ
リング剤などの添加剤を加えてもよい。
Note that additives such as lubricants, antioxidants, and leveling agents may be added to each of these paints.

円筒状支持体としては、アルミニウムシリンダー、アル
ミニウム合金シリンダー、ステンレスシリンダーなどが
挙げられる。
Examples of the cylindrical support include an aluminum cylinder, an aluminum alloy cylinder, and a stainless steel cylinder.

電子写真感光体の層構成としては、支持体上に中間層お
よび感光層が順次積層されており、詳しくは中間層は、
導電層と下引き層が積層されており、また、感光層は、
電荷発生層と電荷輸送層が積層されている。
As for the layer structure of the electrophotographic photoreceptor, an intermediate layer and a photosensitive layer are sequentially laminated on a support.
A conductive layer and an undercoat layer are laminated, and the photosensitive layer is
A charge generation layer and a charge transport layer are laminated.

各層の好ましい膜厚は、導電層は、5〜30μm1下引
き層は0.1〜5μm1電荷発生層は0.01〜3μm
1電荷輸送層は10〜30μmである。
The preferred thickness of each layer is 5 to 30 μm for the conductive layer, 0.1 to 5 μm for the undercoat layer, and 0.01 to 3 μm for the charge generation layer.
One charge transport layer has a thickness of 10 to 30 μm.

本発明の塗布方法は、導電層、下引き層、電荷発生層お
よび電荷輸送層の全層を形成するのに適用することがち
りとも好ましいが、これらの層のうちの1層あるいは2
層などいくつかの層を、浸漬塗布方法などの他の塗布方
法によって形成しても良い。また、電子写真感光体の層
構成として、導電層および/または下引き層は形成しな
くてもよい。さらに、感光層の構成において、電荷発生
層は電荷輸送層の上に形成してもよく、また、感光層は
、積層タイプではなく、単一層型であってもよい。
The coating method of the present invention is preferably applied to form all of the conductive layer, undercoat layer, charge generation layer and charge transport layer, but only one or two of these layers may be applied.
Some of the layers may also be formed by other coating methods, such as dip coating methods. Further, as the layer structure of the electrophotographic photoreceptor, it is not necessary to form a conductive layer and/or an undercoat layer. Furthermore, in the structure of the photosensitive layer, the charge generation layer may be formed on the charge transport layer, and the photosensitive layer may be of a single layer type instead of a laminated type.

本発明による塗布方法を用い、電子写真感光体のような
円筒状シリンダー表面に塗膜を形成するための塗布装置
の具体例を第4図に示す。
FIG. 4 shows a specific example of a coating apparatus for forming a coating film on the surface of a cylindrical cylinder such as an electrophotographic photoreceptor using the coating method according to the present invention.

第4図において、円筒状支持体102はこれを保持を兼
用する回転軸401に固定される。又、回転軸401は
回転モーター402により所定の回転速度で回転される
。一方、ビーム状の塗布液を吐出するためのガン103
は、横送り機構の架台403に乗せられており、円筒状
支持体102の回転軸方向と平行方向に移動する。また
、ガン103は、フィルター404および導出管405
を経由してタンク406に接続されている。エアーバイ
ブ407で導入された圧縮エアーにより、ゲージ408
で定めた圧力にタンク406内の塗料は加圧され、フィ
ルター404および導出管405を経由してガン103
の先端のノズルチップ(不図示)から吐出される。
In FIG. 4, the cylindrical support 102 is fixed to a rotating shaft 401 which also serves as a support. Further, the rotating shaft 401 is rotated by a rotating motor 402 at a predetermined rotational speed. On the other hand, a gun 103 for discharging a beam-shaped coating liquid
is placed on a pedestal 403 of the lateral feed mechanism, and moves in a direction parallel to the rotation axis direction of the cylindrical support 102. Further, the gun 103 includes a filter 404 and an outlet pipe 405.
It is connected to tank 406 via. The compressed air introduced by the air vibrator 407 causes the gauge 408 to
The paint in the tank 406 is pressurized to the pressure determined by , and is sent to the gun 103 via the filter 404 and the outlet pipe
It is discharged from a nozzle tip (not shown) at the tip of the.

この装置を用いて実際に塗布する場合、ガンの横送り機
構のスイッチとガン・ニードルのエアースイッチをセッ
トし、円筒状支持体102の所定位置からビーム状の塗
布液を吐出する。同時に回転モーターのスイッチも入れ
、円筒状支持体保持の回転軸を回転させる。ガンの先端
に設けられたノズルチップから吐出したビーム状の塗布
液は、円筒状支持体上にネジを切ったようなパターンで
糸巻き状(らせん状)に付着し、レベリングすることに
より塗膜が成膜される。レベリングによる塗膜の生成工
程は、以下に示すとおりである。すなわち、円筒状支持
体上に付着した糸巻き状塗料は、塗料の衝突エネルギー
および塗料の表面張力ならびに被塗布物の表面張力の為
、第5図(a)に示すように、徐々に幅広く拡がってい
き、隣接する塗料がたがいに接触し被塗布物の塗布面を
すきなくおおう。そして、塗料の表面張力および拡散性
ならびに被塗布物の表面張力により適切な時間経過後、
ピッチに応じて生じていた当初の塗膜凹凸がレベリング
しならされて、第5図(b)に示すように、平滑な面と
して成膜される。なお、糸巻き状に付着する塗料は、塗
料の端部どうしが重なり合うように付着しても重なり合
わないように付着してもよい。更に、塗料の溶剤蒸気を
制御する為にフードを併用すれば表面をより平滑にする
ことも可能である。
When actually applying coating using this device, the switch for the transverse feed mechanism of the gun and the air switch of the gun needle are set, and a beam-shaped coating liquid is discharged from a predetermined position on the cylindrical support 102. At the same time, the rotation motor is also turned on to rotate the rotation shaft holding the cylindrical support. The beam-shaped coating liquid discharged from the nozzle tip provided at the tip of the gun adheres to the cylindrical support in a threaded pattern (spiral shape), and the coating film is formed by leveling. A film is formed. The process of forming a coating film by leveling is as shown below. In other words, the spool-shaped paint deposited on the cylindrical support gradually spreads over a wider area as shown in Figure 5(a) due to the collision energy of the paint, the surface tension of the paint, and the surface tension of the object being coated. Then, adjacent paints come into contact with each other and cover the surface of the object to be coated without gaps. After an appropriate amount of time has passed depending on the surface tension and diffusivity of the paint and the surface tension of the object being coated,
The initial unevenness of the coating film depending on the pitch is smoothed out by leveling, and a smooth surface is formed as shown in FIG. 5(b). It should be noted that the paint applied in a spool shape may be applied such that the ends of the paint overlap or do not overlap. Furthermore, if a hood is also used to control the solvent vapor of the paint, it is possible to make the surface smoother.

ビームにより形成する糸巻きのラインのピッチは、回転
速度とガンの送り速度によって決まる。
The pitch of the line of spools formed by the beam is determined by the rotation speed and gun feed rate.

又、単位面積上の塗布液の量は吐出量が一定であれば送
り速度によって決まる。
Further, the amount of coating liquid per unit area is determined by the feed speed if the discharge amount is constant.

P−r ΔV・“o、d Δv、二単億単位面積当出量(CC7分・crrf)P
 :吐出圧(Kgf/cボ) r :吐出口径(am) d ニオリフイスのベアリング長(c m )υ :送
り速度(cm/分) また、ビームのピッチ巾に関しては、次の関係がある。
P-r ΔV・“o, d Δv, 2 billion unit area equivalent amount (CC7 min・crrf) P
: Discharge pressure (Kgf/c) r : Discharge opening diameter (am) d Niorifice bearing length (cm) υ : Feed speed (cm/min) Regarding the pitch width of the beam, the following relationship exists.

Pw (Xニー p、:ビームピッチ中(cm) Ro ニジリンダ−回転数(rpm) 第6図に塗料の吐出口の具体例を示す。第6図(a)は
標準的な単一吐出口を有するノズルチップ104を示す
が、塗布速度を早める為に3つの吐出口を有するノズル
チップ104′の形態のように多数の吐出口を有する形
態をとってもよい。
Pw (X kneep,: Beam pitch (cm) Ro Niji cylinder rotation speed (rpm) Figure 6 shows a specific example of a paint discharge port. Figure 6 (a) shows a standard single discharge port. Although the nozzle chip 104 is shown having a plurality of ejection ports, in order to increase the coating speed, the nozzle chip 104' may have a plurality of ejection ports, such as a nozzle chip 104' having three ejection ports.

底ブタが形成された円筒体の底ブタに孔をあけただけの
ものなども使用することができる。
It is also possible to use a cylindrical body with a bottom cover formed therein, which is simply made with a hole in the bottom cover.

以下実施例により本発明を更に説明する。なお、部はす
べて重量部を示す。
The present invention will be further explained below with reference to Examples. Note that all parts are by weight.

実施例−1 導電層用塗料としてフェノール樹脂10部(大日本イン
キ社製、商品名ニブライオ−フェンJ−325)と酸化
スズと酸化アンチモンで表面処理した酸化チタン11部
、アルミナで表面処理した酸化チタン11部、メタノー
ルを4部とメチルセルソルブ9部に分散用としてfmm
φの硬質ガラスピーズを材料と同容量入れサンドミル分
散機で2時間分散した。分散された塗料をメタノールと
メチルセルソルブ1対1の混合溶剤で固形分が35%に
なるように希釈する。このとき塗料の粘度は15cps
であった。
Example-1 As a paint for the conductive layer, 10 parts of phenolic resin (manufactured by Dainippon Ink Co., Ltd., trade name Nibryophen J-325), 11 parts of titanium oxide whose surface was treated with tin oxide and antimony oxide, and oxide whose surface was treated with alumina were used. fmm for dispersion in 11 parts of titanium, 4 parts of methanol, and 9 parts of methylcellosolve.
Hard glass beads of φ were placed in the same volume as the material and dispersed for 2 hours using a sand mill disperser. The dispersed paint is diluted to a solid content of 35% with a mixed solvent of 1:1 methanol and methylcellosolve. At this time, the viscosity of the paint is 15 cps.
Met.

この塗料を導電層塗布用タンクに入れ、第4図の塗布装
置を用いてビームガンの先端に口径70μmのノズルチ
ップを取り付け、タンクにIK g f / c rd
のエア圧力をかけてガンの塗料吐出量を測定したところ
毎分12ccであり、吐出速度は9m/secであった
。また遮蔽部材の形状はシリンダーの形状に沿った曲面
とし、その先端の形状は第3図(e)のものとした。ま
た遮蔽部材とシリンダーの距離は1mmとした。
Put this paint into a conductive layer coating tank, attach a nozzle tip with a diameter of 70 μm to the tip of a beam gun using the coating device shown in Figure 4, and apply IK g f / crd to the tank.
The amount of paint discharged from the gun was measured by applying an air pressure of 12 cc per minute, and the discharge speed was 9 m/sec. The shape of the shielding member was a curved surface that followed the shape of the cylinder, and the shape of the tip was as shown in FIG. 3(e). Further, the distance between the shielding member and the cylinder was 1 mm.

次に、ガンと被塗布物との距離を20mmに調節して径
80mmφ、長さ360mmのアルミシリンダーを回転
数1100rpでガンの送り速度を420mm毎分にし
て塗料を霧化させず筋状で導電層を塗布した。ピッチ巾
約2mmで糸状に塗料がシリンダー上に付着し、続いて
塗布されて重なりあった塗料のラインどうしが混合して
レベリングが始まり、5分後に表面粗さ0.2μm以下
の平滑な面となりビームのピッチムラはなくなった。こ
の塗膜を強制排気して溶剤を蒸発させた後、140°C
の乾燥炉で30分硬化させた。このときの導電層の膜厚
は20μmであった。
Next, the distance between the gun and the object to be coated was adjusted to 20 mm, and an aluminum cylinder with a diameter of 80 mmφ and a length of 360 mm was rotated at 1,100 rpm and the gun was fed at a speed of 420 mm/min to form streaks without atomizing the paint. A conductive layer was applied. The paint adheres to the cylinder in the form of threads with a pitch width of approximately 2 mm, and then the lines of overlapping paint that are applied mix and leveling begins, and after 5 minutes, a smooth surface with a surface roughness of 0.2 μm or less is formed. The beam pitch unevenness is gone. After the coating film was forcibly evacuated to evaporate the solvent, it was heated to 140°C.
It was cured for 30 minutes in a drying oven. The thickness of the conductive layer at this time was 20 μm.

前記導電層を塗布したアルミシリンダーを冷却し室温に
戻した後、下引き層としてポリアミド樹脂(東し株式会
社製、商品名:アミランCM−8000)1部とメトキ
シメチル変性6ナイロンのポリアミド樹脂(帝国化学社
製、商品名ニドレジンEF−30T)3部をメタノール
130部と1−ブタノール66部に溶解し下引き要用塗
料を作った。塗料粘度は10cpsであった。
After cooling the aluminum cylinder coated with the conductive layer and returning it to room temperature, 1 part of polyamide resin (manufactured by Toshi Co., Ltd., trade name: Amilan CM-8000) and a methoxymethyl-modified 6-nylon polyamide resin ( A paint requiring undercoating was prepared by dissolving 3 parts of Niresin EF-30T (trade name, manufactured by Teikoku Kagaku Co., Ltd.) in 130 parts of methanol and 66 parts of 1-butanol. The paint viscosity was 10 cps.

この塗料を下引き履用塗料タンクに入れ、ガンの先端に
口径100μmノズルチップを取り付け、タンクに0.
6Kgf/crrrの圧力をかけてガンの塗料吐出量を
測定したところ毎分8ccであり、吐出速度は8m/s
eaであった。このガンと被塗布物との距離を20mm
に調節して、導電層を塗布しであるシリンダーを回転数
12Orpmでガンの送り速度を660mm毎分にして
下引き層を塗布した。導電層上に付着した下引き層のビ
ームの巾は約2mmで、糸状に塗料が付着し、続いて塗
布されて重なりあった塗料のライン同志が混合してレベ
リングが始まり、5分後に表面粗さが0.1μmの平滑
な面となりビームのピッチムラはな(なった。この塗膜
を強制排気して溶剤を蒸発させた後、90℃の乾燥炉で
10分間乾燥させた。この時、この下引き層の膜厚は0
.5μmであった。
Pour this paint into a paint tank for underpainting, attach a 100 μm diameter nozzle tip to the tip of the gun, and add 0.0 μm to the tank.
When applying a pressure of 6 kgf/crrr and measuring the amount of paint discharged from the gun, it was 8 cc per minute, and the discharge speed was 8 m/s.
It was ea. The distance between this gun and the object to be coated is 20mm.
The conductive layer was applied to the cylinder at a rotational speed of 12 rpm and a gun feed rate of 660 mm/min to apply the undercoat layer. The width of the beam of the undercoat layer deposited on the conductive layer is approximately 2 mm, and the paint adheres in the form of threads, and leveling begins when the overlapping paint lines are mixed and the surface becomes rough after 5 minutes. The surface was smooth with a diameter of 0.1 μm, and the pitch unevenness of the beam was eliminated. After the coating film was forcibly evacuated to evaporate the solvent, it was dried in a drying oven at 90°C for 10 minutes. The thickness of the undercoat layer is 0.
.. It was 5 μm.

前記下引き層を塗布したアルミシリンダーを冷却し室温
に戻す。次に、ポリ(ビニル・アセテートーコービニル
・アルコールーコービニルベンザール)10部を90部
のシクロヘキサノンに溶解し、この溶液にジスアゾ顔料
(2−[−4’(3−(2−クロロフェニル)カルバモ
イル−2−ヒドロキシ−1−ナフチルアゾ)ベンズオキ
サゾール)を固形分として25部加えて、さらに300
部のシクロヘキサノンと250部のテトラヒドロフラン
を加えて、全体の量と等容量の1mm径の硬質ガラスピ
ーズとともにサンドミル中で900rpm、40hr分
散しビーズを分離したのちシクロヘキサンを加えて固形
分を0.5%に調整した。この塗料を電荷発生層塗布用
タンクに入れ、ビームガンの先端に口径75−μmのノ
ズルチップを取り付け、タンクに0.5Kgf/crd
の圧力をかけてガンの塗料吐出量を測定したところ毎分
2.5ccであり、吐出速度は9m/secであった。
The aluminum cylinder coated with the undercoat layer is cooled to room temperature. Next, 10 parts of poly(vinyl acetate-corvinyl alcohol-corvinylbenzal) was dissolved in 90 parts of cyclohexanone, and disazo pigment (2-[-4'(3-(2-chlorophenyl) 25 parts of carbamoyl-2-hydroxy-1-naphthylazo)benzoxazole) were added as a solid content, and an additional 300 parts of
1 part of cyclohexanone and 250 parts of tetrahydrofuran were added, and the mixture was dispersed in a sand mill at 900 rpm for 40 hours with an equal volume of 1 mm diameter hard glass beads to separate the beads, and then cyclohexane was added to reduce the solid content to 0.5%. Adjusted to. Put this paint in a charge generation layer coating tank, attach a nozzle tip with a diameter of 75-μm to the tip of a beam gun, and add 0.5Kgf/crd to the tank.
The amount of paint discharged from the gun was measured by applying a pressure of 2.5 cc per minute, and the discharge speed was 9 m/sec.

次に、このガンと被塗布物との距離を10mmに調節し
て導電層及び下引き層を塗布しであるシリンダーを60
rpmの回転で回しながらビームガンを毎分240mm
でシリンダーの母線方向に移動させ、塗料を霧化せず筋
状で電荷発生層を塗布した。下引き層上に付着した電荷
発生層のビームの巾は約1.5mmで糸状に塗料が付着
し、つづいて塗布されて重なりあった塗料のライン同志
が混合してレベリングが始まり、5分後に塗布膜が均一
化されて濃度ムラのない面となりビームのピッチムラは
なくなった。
Next, the distance between this gun and the object to be coated was adjusted to 10 mm, and the conductive layer and undercoat layer were applied.
Rotate the beam gun at 240mm per minute while rotating at rpm.
The charge generation layer was applied in streaks without atomizing the paint by moving it in the direction of the generatrix of the cylinder. The width of the beam of the charge generation layer deposited on the undercoat layer is approximately 1.5 mm, and the paint adheres in the form of threads.The overlapping paint lines are then mixed and leveling begins, and after 5 minutes. The coating film was made uniform, resulting in a surface with no density unevenness, and the pitch unevenness of the beam was eliminated.

この塗膜を強制排気して溶剤を蒸発させた後、90℃の
乾燥炉で5分間乾燥させた。この時の電荷発生層の膜厚
は0.15μmであった。
After the coating film was forcibly evacuated to evaporate the solvent, it was dried in a drying oven at 90° C. for 5 minutes. The thickness of the charge generation layer at this time was 0.15 μm.

前記電荷発生層を塗布したアルミシリンダーを冷却し室
温に戻す。次に、ポリカーボネート樹脂(三菱ガス化学
型、商品名:Z−200)10部とヒドラゾン化合物(
p−(N、N−ジエチルアミノ)ベンズアルデヒド−N
′ −α−ナフチル−N′−フェニルヒドラゾン)9.
5部を100部のモノクロロベンゼンと40部のジクロ
ロメタンに溶解する。塗料の粘度は15cpsであった
The aluminum cylinder coated with the charge generation layer is cooled to room temperature. Next, 10 parts of polycarbonate resin (Mitsubishi Gas Chemical type, trade name: Z-200) and a hydrazone compound (
p-(N,N-diethylamino)benzaldehyde-N
'-α-naphthyl-N'-phenylhydrazone)9.
5 parts are dissolved in 100 parts of monochlorobenzene and 40 parts of dichloromethane. The viscosity of the paint was 15 cps.

この塗料を電荷輸送層用塗布タンクに入れ、ビームガン
の先端に口径150μmのノズルチップを取り付け、タ
ンクに0.6Kgf/cn(のエア圧力をかけてガンの
塗料吐出量を測定したところ毎分28ccであり、吐出
速度は9m/secであった。
This paint was placed in a coating tank for the charge transport layer, a nozzle tip with a diameter of 150 μm was attached to the tip of a beam gun, and an air pressure of 0.6 kgf/cn was applied to the tank, and the paint discharge rate from the gun was measured to be 28 cc/min. The discharge speed was 9 m/sec.

次に、このガンと被塗布物との距離を20mmに調節し
て電荷発生層まで塗布しであるアルミシリンダーを12
0rpmで回転させながらビームガンを毎分560mm
でシリンダーの母線方向に移動させ、塗料を霧化させず
筋状で電荷発生層を塗布した。
Next, adjust the distance between this gun and the object to be coated to 20 mm, apply the coating to the charge generation layer, and then attach the aluminum cylinder to 12 mm.
Beam gun at 560mm per minute while rotating at 0rpm
was moved in the direction of the generatrix of the cylinder, and the charge generation layer was applied in streaks without atomizing the paint.

電荷発生層上に付着した電荷輸送層のビームの巾は約2
mmで糸状に塗料が付着し、つづいて塗布されて重なり
あった塗料のライン同志が混合されてレベリングが始ま
り、5分後に表面粗さが0.2μm以下の平滑な面とな
りビームのピッチムラはなくなった。この塗膜を強制排
気して溶剤を蒸発させた後、120℃の乾燥炉中で60
分間乾燥させた。この時の塗膜の膜厚は20μmであっ
た。
The beam width of the charge transport layer deposited on the charge generation layer is approximately 2
The paint adheres in the form of threads at a depth of 1.5 mm, and then the overlapping paint lines are mixed and leveling begins. After 5 minutes, the surface becomes smooth with a surface roughness of 0.2 μm or less, and the beam pitch unevenness disappears. Ta. After the coating film was forcibly evacuated to evaporate the solvent, it was placed in a drying oven at 120℃ for 60 minutes
Let dry for a minute. The thickness of the coating film at this time was 20 μm.

実施例−2 遮蔽部材の先端形状を第3図(d)のものとする以外は
実施例−1と同様にして電子写真感光体を製造した。
Example 2 An electrophotographic photoreceptor was manufactured in the same manner as in Example 1 except that the tip shape of the shielding member was changed to that shown in FIG. 3(d).

実施例−3 遮蔽部材の先端形状を第3図(a)のものとする以外は
実施例−1と同様にして電子写真感光体を製造した。
Example 3 An electrophotographic photoreceptor was manufactured in the same manner as in Example 1 except that the tip end shape of the shielding member was changed to that shown in FIG. 3(a).

実施例−4 遮蔽部材とシリンダーの距離を4mmとする以外は実施
例−3と同様にして電子写真感光体を製造した。
Example 4 An electrophotographic photoreceptor was manufactured in the same manner as Example 3 except that the distance between the shielding member and the cylinder was 4 mm.

実施例−5 遮蔽部材の形状を平面状とする以外は実施例3と同様に
して電子写真感光体を製造した。
Example 5 An electrophotographic photoreceptor was manufactured in the same manner as in Example 3 except that the shielding member had a planar shape.

比較例−1 遮蔽部材を設けないほかは実施例1 て電子写真感光体を製造した。Comparative example-1 Example 1 except that no shielding member is provided An electrophotographic photoreceptor was manufactured.

以上の結果を第1表に示す。The above results are shown in Table 1.

第   1   表 と同様にし 図、 第2図は吐出される塗料の移動状態を模式的に示した図
、 第3図は遮蔽部材の先端部の形状と塗料の流れを模式的
に示した概念図、 第4図は塗布装置の模式図、 第5図は付着した塗料の状態の模式図、第6図は塗料の
吐出口の具体例、 第7図は円筒状支持体の端部の模式図である。
Figure 2 is a diagram schematically showing the movement state of the discharged paint, and Figure 3 is a conceptual diagram schematically showing the shape of the tip of the shielding member and the flow of paint. , Fig. 4 is a schematic diagram of the coating device, Fig. 5 is a schematic diagram of the state of adhered paint, Fig. 6 is a specific example of the paint discharge port, and Fig. 7 is a schematic diagram of the end of the cylindrical support. It is.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の電子写真感光体の製造方法によれ
ば、端部乱れのない電子写真感光体を得ることができる
As described above, according to the method for manufacturing an electrophotographic photoreceptor of the present invention, an electrophotographic photoreceptor without edge disturbance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] (1)微小開口部から電子写真感光体形成用塗料を吐出
して円筒状支持体上の被塗布面に塗布する電子写真感光
体の製造方法において、円筒状支持体の両端部に塗料遮
蔽部材を有し、微小開口部から吐出する該塗料が実質的
に霧化せず筋状に連続して飛翔することを特徴とする電
子写真感光体の製造方法。
(1) In a method for manufacturing an electrophotographic photoreceptor in which a paint for forming an electrophotographic photoreceptor is discharged from a minute opening and applied to a surface to be coated on a cylindrical support, a paint shielding member is provided at both ends of the cylindrical support. 1. A method for producing an electrophotographic photoreceptor, characterized in that the paint discharged from a minute opening is not substantially atomized and flies continuously in a streaky manner.
JP9772189A 1989-04-18 1989-04-18 Production of electrophotographic sensitive material Pending JPH02275463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9772189A JPH02275463A (en) 1989-04-18 1989-04-18 Production of electrophotographic sensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9772189A JPH02275463A (en) 1989-04-18 1989-04-18 Production of electrophotographic sensitive material

Publications (1)

Publication Number Publication Date
JPH02275463A true JPH02275463A (en) 1990-11-09

Family

ID=14199757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9772189A Pending JPH02275463A (en) 1989-04-18 1989-04-18 Production of electrophotographic sensitive material

Country Status (1)

Country Link
JP (1) JPH02275463A (en)

Similar Documents

Publication Publication Date Title
JPH01231966A (en) Coating method and production of electrophotographic sensitive body
JP2006227179A (en) Spray coater for electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
JP2644582B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH02275463A (en) Production of electrophotographic sensitive material
EP0538795B1 (en) Photosensitive member for electronic photography and method for preparation thereof
JPH02272568A (en) Production of electrophotographic sensitive body
JP2746304B2 (en) Electrophotographic photoreceptor
JP2510721B2 (en) Paint stirrer
JPH02272566A (en) Electrophotographic sensitive body
EP1222964B1 (en) Liquid spray-coating method and electrophotographic photoreceptor formed by the method
JP2647491B2 (en) Rotary coating method
JP4264947B2 (en) Spray coating apparatus for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP3503005B2 (en) Coating method of cylindrical substrate
JP3661303B2 (en) Cylindrical substrate coating method and coating apparatus
JPH01119357A (en) Spray coating device
JPH02272563A (en) Production of electrophotographic sensitive body
JP2647505B2 (en) Coating method
JPH02188757A (en) Formation of coated film and electrophotographic sensitive body
JP3837789B2 (en) Coating method and coating apparatus
JPH02272565A (en) Production of electrophotographic sensitive body
JPH10113592A (en) Coating device and coating process
JPH0411934A (en) Paint agitating device
JPH0332773A (en) Formation of multilayered endless film
JP2637552B2 (en) Touch drying method of coating layer of electrophotographic photoreceptor
JPH0332772A (en) Formation of multilayered endless film