JPH02275415A - Manufacture of ferroelectric liquid crystal display element - Google Patents

Manufacture of ferroelectric liquid crystal display element

Info

Publication number
JPH02275415A
JPH02275415A JP9811689A JP9811689A JPH02275415A JP H02275415 A JPH02275415 A JP H02275415A JP 9811689 A JP9811689 A JP 9811689A JP 9811689 A JP9811689 A JP 9811689A JP H02275415 A JPH02275415 A JP H02275415A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
crystal display
display element
rubbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9811689A
Other languages
Japanese (ja)
Inventor
Hideo Hama
秀雄 浜
Akihiro Mochizuki
昭宏 望月
Mitsuaki Hirose
光章 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9811689A priority Critical patent/JPH02275415A/en
Publication of JPH02275415A publication Critical patent/JPH02275415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To realize the liquid crystal element which is superior in contrast and memory performance by manufacturing the liquid crystal element by repeating a process wherein an orienting film is formed on a transparent electrode and rubbed. CONSTITUTION:A high polymer film for orienting film formation which is formed by coating is rubbed in a normal way and then a high polymer film is formed by coating and rubbed. Thus, the coating and rubbing of a high polymer film are repeated to form the orienting film 3 where a defect is generated at a low frequency. This is affected remarkably by the orientation of a lower orienting film 3 because the high polymer films which are formed one over another are extremely thin and the orientation is therefore considered to be improved. The number of times of the repetition is limited and the orientation is saturated speedily. Consequently, ferroelectric liquid crystal 5 can be formed uniformly to large area, and consequently the ferroelectric liquid crystal display element which has superior contrast and memory performance can be put in practical use.

Description

【発明の詳細な説明】 〔概要] 強誘電性液晶表示素子の製造方法に関し、コントラスト
とメモリ性の優れた液晶表示素子を実用化することを目
的とし、 複数の透明電極を設けた二枚のガラス基板上に配向膜を
設け、スペーサを介して透明電極をマトリックス状に直
交せしめ、該透明電極間に強誘電性液晶を封入してなる
液晶表示素子において、前記透明電極上に配向膜を形成
してラビングを行う工程を複数回繰り返し行って強誘電
性液晶表示素子の製造方法を構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a ferroelectric liquid crystal display element, the purpose of this invention is to put into practical use a liquid crystal display element with excellent contrast and memory properties. In a liquid crystal display element in which an alignment film is provided on a glass substrate, transparent electrodes are arranged perpendicularly to each other in a matrix via spacers, and ferroelectric liquid crystal is sealed between the transparent electrodes, the alignment film is formed on the transparent electrodes. A method for manufacturing a ferroelectric liquid crystal display element is constructed by repeating the rubbing process a plurality of times.

〔産業上の利用分野〕[Industrial application field]

本発明はコントラストとメモリ性を向上した強誘電性液
晶表示素子の製造方法に関する。
The present invention relates to a method for manufacturing a ferroelectric liquid crystal display element with improved contrast and memory properties.

液晶表示(Liquid Crystal Displ
y略称LCD)は消費電力と駆動電圧が少なく、薄くて
軽い表示素子の実用化が可能なことから、時計や電卓な
どの小容量表示として広く普及しているが、最近ではパ
ーソナルコンピュータやワードプロセッサなどオフィス
オートメーション機器(略称OA機器)用としての需要
が増し、より情報量の大きな液晶表示素子の開発が求め
られている。
Liquid Crystal Display
y (abbreviated as LCD) has low power consumption and drive voltage, and it is possible to put a thin and light display element into practical use, so it is widely used as a small-capacity display for watches, calculators, etc., but recently it has become popular for use in personal computers, word processors, etc. Demand for use in office automation equipment (abbreviated as OA equipment) is increasing, and there is a need to develop liquid crystal display elements with a larger amount of information.

〔従来の技術〕[Conventional technology]

現在主として用いられているLCDはTN (Twis
 tedNematic)液晶を用いたTN型であり、
帯状の透明電極を備えた二枚のガラス基板をスペーサを
介して帯状電極が直交するように対向させて配置し、こ
の中に数10〜百数10度捩れた状態でTN液晶分子が
封入されている。
The LCD currently mainly used is TN (Twis
tedNematic) is a TN type using liquid crystal,
Two glass substrates equipped with band-shaped transparent electrodes are placed facing each other with a spacer in between so that the band-shaped electrodes are perpendicular to each other, and TN liquid crystal molecules are sealed inside the glass substrates with a twist of several tens to hundreds of degrees. ing.

そして、このTN型LCDには、 ■ 単純マトリックス方式と、 ■ アクティブマトリックス方式とがある。And this TN type LCD has ■ Simple matrix method and ■ There is an active matrix method.

こ−で、■の単純マトリックス方式は製造コストが低い
反面、電界のオン・オフに際してメモリ性がなく、然も
闇値特性が急峻でないために、640 X400 ドツ
ト以上のような大容量表示を行おうとすると、累積応答
効果により非表示部分も半表示状態になると云うクロス
トークの問題がある。
Therefore, although the manufacturing cost of the simple matrix method (2) is low, there is no memory when the electric field is turned on and off, and the dark value characteristic is not steep, so it is not possible to perform large-capacity displays such as 640 x 400 dots or more. If you try to do so, there is a problem of crosstalk in which non-displayed areas become half-displayed due to cumulative response effects.

また、応答時間が数m秒〜数1011秒と長いために精
密な大容量の動画表示ができないと云う問題もある。
Another problem is that the response time is long, ranging from several milliseconds to several 1011 seconds, making it impossible to accurately display large amounts of moving images.

一方、■のアクティブマトリックス方式は一つの画素に
一個の薄膜トランジスタ(略称TPT)を設けたもので
、クロストークの問題はない代わりに低コストで、欠陥
を生ずることなく TPTを大面積に亙って形成するこ
とが困難であると云う問題がある。
On the other hand, the active matrix method (■) has one thin film transistor (abbreviated as TPT) in one pixel, and there is no problem of crosstalk, but it is low cost and can be used over a large area without causing defects. The problem is that it is difficult to form.

さて、このTN型LCDに用いられており、低コストで
すむ単純マトリックス方式を用い、大容量の動画表示が
可能な新しいLCDとして強誘電性のカイラルスメテイ
ックC液晶(略称sc1液晶)を用いた強誘電性液晶表
示(Ferroelectric LiquidCry
stal Display略称FLCD)が提案されて
いる。
Now, as a new LCD that uses the simple matrix method that is used in this TN type LCD and is low-cost and can display large-capacity video, it uses ferroelectric chiral smetic C liquid crystal (abbreviated as SC1 liquid crystal). Ferroelectric LiquidCry
stal Display (abbreviated as FLCD) has been proposed.

このFLCD素子は液晶層の厚みをSc*液晶の螺旋ピ
ッチと同程度がそれ以下とするもので、このようにする
と配向規制力により螺旋がほどけて自発分極と双安定状
態とが出現する。
In this FLCD element, the thickness of the liquid crystal layer is made to be about the same as, but less than, the helical pitch of the Sc* liquid crystal, and when this is done, the helix is unraveled by the alignment regulating force, and spontaneous polarization and a bistable state appear.

この双安定性を有するためにPLCD素子はメモリ性を
もち、また、従来のTN型液晶に見られる累積応答効果
によるクロストークがないので大容量表示が可能となる
Because of this bistability, the PLCD element has memory properties, and since there is no crosstalk due to the cumulative response effect seen in conventional TN type liquid crystals, large capacity display is possible.

また、FLCD素子は自発分極を有するので、駆動電界
は液晶分子の双極子モーメントに直接に作用する。
Furthermore, since the FLCD element has spontaneous polarization, the driving electric field directly acts on the dipole moment of the liquid crystal molecules.

そのため、印加電界が液晶分子に及ぼすトルクはTN液
晶に較べて約1000倍も大きいので応答時間も数μ秒
〜数10μ秒と短くすることができ、従ってFLCDは
動画の表示や大容量表示が可能となる。
Therefore, the torque exerted on the liquid crystal molecules by the applied electric field is about 1000 times larger than that of TN liquid crystal, so the response time can be shortened from several microseconds to several tens of microseconds. Therefore, FLCD is suitable for displaying videos and large-capacity displays. It becomes possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、強誘電性液晶表示素子を有効に動作させるために
は、Sc′液晶分子が基板に平行に配列して均一なドメ
インを形成する必要がある。
However, in order to effectively operate a ferroelectric liquid crystal display element, the Sc' liquid crystal molecules must be aligned parallel to the substrate to form uniform domains.

第1図はFLCD素子の断面構造を示すもので、ガラス
基板lの上にパターン形成されている透明電極2の上に
はポリイミドなどの高分子からなる配向膜3が塗布され
ている。
FIG. 1 shows a cross-sectional structure of a FLCD element, in which an alignment film 3 made of a polymer such as polyimide is coated on a transparent electrode 2 patterned on a glass substrate l.

そして、これらの基板1はスペーサ4を介して張り合わ
されており、この隙間に強誘電性液晶5が封入されてい
る。
These substrates 1 are pasted together with a spacer 4 in between, and a ferroelectric liquid crystal 5 is sealed in this gap.

なお、ガラス基板1の両側には光源側には偏光子6が、
また反対側には検光子7が配置されている。
In addition, on both sides of the glass substrate 1, there are polarizers 6 on the light source side.
Further, an analyzer 7 is arranged on the opposite side.

か\る構成をとるFLCDにおいて、液晶分子は基板に
平行に配向しており、液晶分子の自発分極は上向きか或
いは下向きかの双安定状態をとっていることが特徴であ
る。
A FLCD having such a configuration is characterized in that the liquid crystal molecules are oriented parallel to the substrate, and the spontaneous polarization of the liquid crystal molecules is bistable, either upward or downward.

第2図はFLC(強誘電性液晶)の動作を説明するもの
で、棒で示したFLC分子8は長軸に対し垂直方向に自
発分極をもち、本来螺旋状に配列しているが、二枚のガ
ラス基板1の間隙をFLCの螺旋ピッチより少なくする
ことによりFLC分子8の配列方向がガラス基板1と平
行に揃えられる。
Figure 2 explains the operation of FLC (ferroelectric liquid crystal).FLC molecules 8, shown as sticks, have spontaneous polarization in the direction perpendicular to the long axis, and are originally arranged in a spiral shape. By making the gap between the glass substrates 1 smaller than the helical pitch of the FLC, the arrangement direction of the FLC molecules 8 can be aligned parallel to the glass substrate 1.

第2図(A)はこのようにして揃えられたFLC分子8
の自発分極の方向を示すもので、上向き↑の方向に向い
た状態を示している。
Figure 2 (A) shows FLC molecules 8 aligned in this way.
It shows the direction of spontaneous polarization of , and shows the state facing upward ↑.

次に、同図(B)に示すように、上下のガラス基板1の
透明電極2の間に電圧を印加して自発分極と反対の方向
に電界9を加えると、同図(C)に示すように円錐(C
one)の外周に沿う形で反対側に回転し、自発分極は
下向きaとなる。
Next, as shown in Figure (B), a voltage is applied between the transparent electrodes 2 of the upper and lower glass substrates 1, and an electric field 9 is applied in the opposite direction to the spontaneous polarization, as shown in Figure (C). Like a cone (C
one) rotates to the opposite side along the outer periphery, and the spontaneous polarization becomes downward a.

そして、電界が無くなってもこの状態を維持する。This state is maintained even when the electric field is removed.

このようにFLC分子の自発分極は↓か?の何れかの方
向をとるのでメモリ性をもち、自発分極が電界に直接に
反応するために応答速度が速い。
In this way, is the spontaneous polarization of FLC molecules ↓? Since it takes either direction, it has memory properties, and its response speed is fast because its spontaneous polarization responds directly to the electric field.

さて、FLCD素子を実用化するにはFLC分子を基板
と平行に均一配向させることが必要であり、この方法と
してスメクテイック人相の温度範囲で基板に剪断応力を
加えるシアリング法、数10にガウスの強磁場を印加し
なからsc*相まで徐冷する磁場配列方法、基板に形成
した高分子膜をブラシなどで擦るラビング法などが知ら
れている。
Now, in order to put FLCD devices into practical use, it is necessary to uniformly align the FLC molecules parallel to the substrate, and methods for this include the shearing method, which applies shear stress to the substrate in the temperature range of smectic physiognomy, and the Gaussian Known methods include a magnetic field arrangement method in which a strong magnetic field is not applied and then slowly cooled to the sc* phase, and a rubbing method in which a polymer film formed on a substrate is rubbed with a brush or the like.

これらの制御法のうち、シアリング法は大容量化に難点
があり、磁場配同法はパネルギャップの大きな場合には
有効であるが、2μ−程度の薄いパネルでは配向させる
ことが難しいと云う問題がある。
Among these control methods, the shearing method has difficulty in increasing capacity, and the magnetic field distribution method is effective when the panel gap is large, but it has the problem that it is difficult to align panels as thin as 2μ. There is.

これに対し、従来のネマチック液晶の配向制御法として
広く用いられている高分子膜のラビング法はSc1液晶
の均一配向に極めて有効なことが知られている。
On the other hand, it is known that the polymer film rubbing method, which is widely used as a conventional alignment control method for nematic liquid crystals, is extremely effective for uniformly aligning Sc1 liquid crystals.

然し、Sc1液晶は従来のTN液晶と異なり、層構造を
もつため、従来どおりのラビング法では充分均一に配向
させることができず、線状の欠陥が多数発生してしまい
、コントラストやメモリ性などの表示特性が劣ることが
問題であった。
However, unlike conventional TN liquid crystals, Sc1 liquid crystals have a layered structure, so conventional rubbing methods cannot align them sufficiently uniformly, resulting in many linear defects, resulting in problems such as contrast and memory performance. The problem was that the display characteristics were poor.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は複数の透明電極を設けた二枚のガラス基板
上に配向膜を設け、スペーサを介して透明電極をマトリ
ックス状に直交せしめ、該透明電極間に強誘電性液晶を
封入してなる液晶表示素子において、前記透明電極上に
配向膜を形成してラビングを行う工程を複数回繰り返し
行って強誘電性液晶表示素子を製造することにより解決
することができる。
The above problem can be solved by providing an alignment film on two glass substrates each having a plurality of transparent electrodes, making the transparent electrodes orthogonal to each other in a matrix shape via a spacer, and sealing a ferroelectric liquid crystal between the transparent electrodes. This problem can be solved by manufacturing a ferroelectric liquid crystal display element by repeating the process of forming an alignment film on the transparent electrode and rubbing it several times in the liquid crystal display element.

〔作用〕[Effect]

ラビング処理を行った配向膜により液晶の配向が行われ
る理由については各種の説があって未だ確定されてはい
ないが、発明者等はラビングによって高分子膜が僅かな
がら延伸し、これにより高分子の主鎖が延伸方向に揃う
ためと考えている。
There are various theories as to why the liquid crystal is aligned by the alignment film that has been subjected to rubbing treatment, and it is not yet confirmed, but the inventors believe that rubbing causes the polymer film to stretch slightly, which causes the polymer This is thought to be due to the main chains being aligned in the stretching direction.

この考えからすると、FLCを完全に配向させるにはラ
ビングを徹底して行えばよいと思われるが、従来のラビ
ング法を行って配向した液晶を偏光顕微鏡で観察すると
線状の欠陥が多数しているのが観察でき、これは層構造
をとるFLCに歪みや曲がりなどの欠陥が発生している
ことを示している。
Based on this idea, it seems that thorough rubbing is sufficient to completely align the FLC, but when liquid crystals that have been aligned using the conventional rubbing method are observed under a polarizing microscope, many linear defects are found. This indicates that defects such as distortion and bending have occurred in the FLC, which has a layered structure.

これらのことから、ラビングを過度に行うことは却って
欠陥を多発させる結果になる。
For these reasons, excessive rubbing results in more defects.

本発明はFLCを充分に配向させる方法として塗布した
配向膜形成用の高分子膜に通常のラビングを行った後、
更に高分子膜の塗布形成を行い、これにラビングを行う
ことにより欠陥の少ない配向ができることを見出したも
のである。
In the present invention, as a method for fully orienting FLC, after performing normal rubbing on the applied polymer film for forming an alignment film,
Furthermore, it has been discovered that alignment with fewer defects can be achieved by coating and forming a polymer film and rubbing it.

このように高分子膜の塗布とラビングを繰り返すことに
より欠陥の発生が少ない配向膜を形成できる理由につい
ては明確ではないが、恐らく、重ねて形成した高分子膜
はその厚さが薄いために下側の配向膜の配向性が顕著に
影響し、そのため配向性が向上するものと思われる。
It is not clear why it is possible to form an alignment film with fewer defects by repeating coating and rubbing of polymer films in this way, but it is probably because the polymer films formed in layers are thinner and cause the formation of an alignment film with fewer defects. It is thought that the orientation of the side alignment film has a significant influence, and therefore the orientation improves.

但し、この繰り返し回数には限度があり配向性は急速に
飽和する。
However, there is a limit to the number of repetitions, and the orientation quickly saturates.

〔実施例〕〔Example〕

配向膜形成材としてポリビニルアルコールを選び、この
3%水溶液を4枚のガラス基板状にスピンコードし、厚
さが約1000人の膜を形成した。
Polyvinyl alcohol was selected as the alignment film forming material, and this 3% aqueous solution was spin coded onto four glass substrates to form a film approximately 1000 thick.

次に、これらの基板を150・°Cで1時間乾燥した後
、ナイロン製の布を巻いたローラを用いてラビングを行
い、更に、このうちの二枚について先と同様にポリビニ
ルアルコールの3%水溶液を約1000人の厚さに形成
し、同様な条件で乾燥した後、ラビングを行った。
Next, after drying these substrates at 150°C for 1 hour, they were rubbed using a roller wrapped in nylon cloth, and two of these substrates were treated with 3% polyvinyl alcohol as before. An aqueous solution was formed to a thickness of about 1000 mm, dried under similar conditions, and then rubbed.

次に、ラビング方向が反平行となるように、それぞれラ
ビング処理が一回づつと二回づつの基板を張り合わせ、
間隔が2μ鴎のパネルを作った。
Next, the substrates that have been rubbed once and twice are pasted together so that the rubbing directions are antiparallel.
I made panels with a spacing of 2μ.

そして、この間隙に市販の強誘電体結晶(品名C5−1
013,チッソ社製)を封入して液晶パネルを形成した
A commercially available ferroelectric crystal (product name C5-1) is placed in this gap.
013, manufactured by Chisso Corporation) to form a liquid crystal panel.

次に、クロスニコルの下でこれらの液晶バネルを観察し
、ラビング処理回数の違いによる液晶の配向状態の違い
を調べた。
Next, these liquid crystal panels were observed under crossed nicol conditions to examine differences in the alignment state of the liquid crystal due to the difference in the number of times of rubbing treatment.

第1表はこの結果である。Table 1 shows the results.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFLCDの断面構造図、 第2図はFLCが電界により反転する状態の説明図、 である。 図において、 1はガ→ス基板、    2は透明電極、3は配向膜、
       8はFLC+分子、である。 このように、ラビング回数が二回のものは一回のものに
較べ、総ての点について特性が優れていることが判る。
FIG. 1 is a cross-sectional structural diagram of the FLCD, and FIG. 2 is an explanatory diagram of a state in which the FLC is inverted by an electric field. In the figure, 1 is a gas substrate, 2 is a transparent electrode, 3 is an alignment film,
8 is an FLC+ molecule. In this way, it can be seen that the properties of the product that has been rubbed twice are better in all respects than those that have been rubbed once.

Claims (1)

【特許請求の範囲】[Claims]  複数の透明電極を設けた二枚のガラス基板上に配向膜
を設け、スペーサを介して透明電極をマトリックス状に
直交せしめ、該透明電極間に強誘電性液晶を封入してな
る液晶表示素子において、前記透明電極上に配向膜を形
成してラビングを行う工程を複数回繰り返し行うことを
特徴とする強誘電性液晶表示素子の製造方法。
In a liquid crystal display element in which an alignment film is provided on two glass substrates provided with a plurality of transparent electrodes, the transparent electrodes are arranged perpendicularly in a matrix shape via a spacer, and ferroelectric liquid crystal is sealed between the transparent electrodes. . A method for manufacturing a ferroelectric liquid crystal display element, characterized in that the step of forming an alignment film on the transparent electrode and rubbing it is repeated multiple times.
JP9811689A 1989-04-18 1989-04-18 Manufacture of ferroelectric liquid crystal display element Pending JPH02275415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9811689A JPH02275415A (en) 1989-04-18 1989-04-18 Manufacture of ferroelectric liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9811689A JPH02275415A (en) 1989-04-18 1989-04-18 Manufacture of ferroelectric liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH02275415A true JPH02275415A (en) 1990-11-09

Family

ID=14211336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9811689A Pending JPH02275415A (en) 1989-04-18 1989-04-18 Manufacture of ferroelectric liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH02275415A (en)

Similar Documents

Publication Publication Date Title
KR100251216B1 (en) Ferroelectric liquid crystal display device
KR100228521B1 (en) Lcd device using ferroelectric and/or anti-ferroelectric phase
JPH08101370A (en) Ferroelectric liquid crystal element
JP2000047211A (en) Liquid crystal element and its production
JPS63237031A (en) Liquid crystal display element
JPH02275415A (en) Manufacture of ferroelectric liquid crystal display element
JPH08271921A (en) Liquid crystal device and its production
JPH10123529A (en) Production for ferroelectric liquid crystal display device
JP2610516B2 (en) Liquid crystal electro-optical device
JPS6330828A (en) Manufacture of liquid crystal display device
JP2574473B2 (en) Manufacturing method of ferroelectric liquid crystal display element
JP3042424B2 (en) Display element and method of manufacturing the same
JPH0412314A (en) Liquid crystal display element
KR100477132B1 (en) Method for manufacturing liquid crystal display of using feroelectric liquid crystal material
JPH09311315A (en) Ferroelectric liquid crystal element and ferroelectric liquid crystal material
JPS62247327A (en) Production of ferroelectric liquid crystal element
JPH11311790A (en) Manufacture of liquid crystal electrooptic device
JPH07120762A (en) Liquid crystal display device and its production
JPH0943574A (en) Antiferroelectric liquid crystal display and its driving method
JPS63280221A (en) Production of ferroelectric liquid crystal display element
JP3086682B2 (en) Liquid crystal electro-optical device
JPS6370227A (en) Ferroelectric liquid crystal display element
JP3091742B2 (en) Liquid crystal electro-optical device
JP3091741B2 (en) Liquid crystal electro-optical device
JP3239310B2 (en) Ferroelectric liquid crystal display device