JPH02275182A - Non-contact type mechanical seal - Google Patents

Non-contact type mechanical seal

Info

Publication number
JPH02275182A
JPH02275182A JP9547789A JP9547789A JPH02275182A JP H02275182 A JPH02275182 A JP H02275182A JP 9547789 A JP9547789 A JP 9547789A JP 9547789 A JP9547789 A JP 9547789A JP H02275182 A JPH02275182 A JP H02275182A
Authority
JP
Japan
Prior art keywords
seal
dynamic pressure
groove
pressure generating
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9547789A
Other languages
Japanese (ja)
Other versions
JPH0646071B2 (en
Inventor
Tadayuki Shimizu
清水 忠之
Toshihiko Fuse
敏彦 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP9547789A priority Critical patent/JPH0646071B2/en
Publication of JPH02275182A publication Critical patent/JPH02275182A/en
Publication of JPH0646071B2 publication Critical patent/JPH0646071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Sealing (AREA)

Abstract

PURPOSE:To avoid the contact of seal faces with each other by forming a dynamic pressure generation group which communicates with fluid introducing grooves and extends in one circumferential direction, and a static pressure generation group which communicates with the grooves selected from the fluid introducing grooves and extends in a certain circumferential direction. CONSTITUTION:In a seal face 2a in a rotation seal ring 2A at a rotation side seal element 2, there is provided fluid introducing grooves 5 where outer ends are opened to the outside-diametrical side of a seal face 2a at particular intervals in a circumferential direction and the like, and inner ends exist in the seal face 2a and extend in an inside-diametrical direction. The grooves 5 contain the first introducing grooves 5a in approx. 5mum-1mm depth which extend from the outer ends of the seal faces 2a in a radial direction at a rate of approx. 70 to 90% to the width W1 of the seal face 2a, and the second introducing grooves 5B in approx. 5mum-1mm depth which extend from the outside the seal faces 2a in an inside-radial direction at a rate of approx. 30 to 50% to the width W of the seal faces 2a are formed alternatively in turn. A dynamic pressure generation group 6 which extends in one circumferential direction is formed in communication with each of the grooves 5A and 5B, and a static pressure generation group 7 is formed in communication with the grooves 5A.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1例えばガスタービン、ブロアーおよびニアコ
ンプレッサーなどの高圧流体機器の軸封部に適用される
非接触形メカニカルシールに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-contact mechanical seal that is applied to shaft seals of high-pressure fluid equipment such as gas turbines, blowers, and near compressors.

[従来の技術J 従来より、例えばガスタービン、ブロアーおよび工−メ
コ゛/ブI/1.リー などの高圧流体機器の軸封部に
適用されるシール装置と1.て第1図に示すように、被
4i+h 14機器の回転部材1(図・f:、例では回
転軸IAと同時回転する回転スリーブIB)と回向回転
する回転密j4環2Aを設けた回転側シール要、82と
、被輔月機器のグー・タング3側に固定されたスプリン
グリテーナ3Aに、周方向等間隔で配置1.た回り1(
−めビン3Bを介1.て回転不能に保持、され、かつス
プリング3Cにより回転密封環2A側に常時付勢される
静圧密封環4. Aを設けた固定側シール面同士4を有
し、回転密封環2Aのシール面2aには、第4図にイ、
すよ−2に、円周方向等間隔で径方向にのびる幅狭深底
の流体導入溝5を複数形成12、これら流体導入溝5の
それぞれに連通し、かつ円周方向の−・方(例えば矢印
aで示す回転力向の反対側)にのびる輻広7−u、底の
動圧発生グルーブ6を形成した非接触形メカニカルシー
ルが知jうれているや このメカニカルシーニールでは、回転部Jfi2Aが回
転するど、高圧側Yの流体が流体導入溝5から動圧発生
グルー・ヅ6に流入り、て、シール面2aと、静止密封
jワAAのシール面4aとの間に動圧を発生さぜ、シ・
−ル面4aをシール面2aから離ず方向に付勢12、シ
ール面4aをシール面2aに当接させる方向lJX付勢
しているスプリング3Cの1xねjlとのバランス点の
圧力によって、シール面2a 、4a間に例えば5−2
0gm程度の狭いシール隙間を形俵4し低圧側Xと高圧
111Yとを非接触状態でシールするように構成されて
いる。
[Prior Art J] Conventionally, for example, gas turbines, blowers and industrial machinery/builds I/1. A sealing device applied to the shaft seal of high-pressure fluid equipment such as As shown in Fig. 1, the rotating member 1 of the 4i+h 14 equipment (Fig. f:, in the example, the rotating sleeve IB that rotates simultaneously with the rotating shaft IA) and the rotary ring 2A that rotates counterclockwise are provided. Side seals 82 and spring retainers 3A fixed to the goo tongue 3 side of the device to be supported are arranged at equal intervals in the circumferential direction. Tamawari 1 (
- Through Mebin 3B 1. 4. A static pressure sealing ring which is held non-rotatably by a spring 3C and is always urged toward the rotary sealing ring 2A side. The fixed side sealing surfaces 4 are provided with A, and the sealing surface 2a of the rotary sealing ring 2A is provided with A and A in FIG.
A plurality of narrow, deep-bottomed fluid introduction grooves 5 extending in the radial direction at equal intervals in the circumferential direction are formed 12 in the -2 direction, communicating with each of these fluid introduction grooves 5, and extending in the circumferential direction ( For example, a non-contact type mechanical seal is known which has a radius 7-u extending in the direction opposite to the direction of rotational force shown by arrow a, and a dynamic pressure generating groove 6 at the bottom. When Jfi2A rotates, the fluid on the high pressure side Y flows from the fluid introduction groove 5 into the dynamic pressure generating groove 6, and dynamic pressure is generated between the sealing surface 2a and the sealing surface 4a of the stationary seal jAA. Let's make it happen, sh.
- The pressure at the balance point between the spring 3C and the spring 3C, which is biased 12 in the direction away from the seal surface 4a and in the direction lJX to bring the seal surface 4a into contact with the seal surface 2a, is applied to the seal. For example, 5-2 between surfaces 2a and 4a
The bale 4 has a narrow seal gap of about 0 gm and is configured to seal the low pressure side X and the high pressure 111Y in a non-contact state.

[発明が解決し、ようとする課題] ところで、高圧流体が封入されている高圧側Yに配置X
れた回転密封環2Aに、径方向に不均等な負荷の分布状
態で高い圧力が負荷された場合、負荷の不均等分布が起
因1.て回転密封環2Aに歪を生じることがあるのにも
かかわらず、従来の非接触形メカニカルシールでは1回
転密封環2Aのシール面2aに、流体導入溝5に連通ず
る動圧発生グルーブ6のみが形成されているだけである
から、前述の歪によって動圧発生グルーブ6の動圧発生
機能が低下し、シール面2aを開けようとする力とスプ
リング3Cのばね力を含む静止密封環4Aの背面側から
のシール面2dを閉じようとする力のバランスがくずれ
隙間を縮小もしくは消失させ、その結果、シール面2a
 、4a同士が接触してシール破壊を生じさ七ることに
なる。
[Problems to be solved and attempted by the invention] By the way, the X placed on the high pressure side Y where high pressure fluid is sealed
If a high pressure is applied to the rotary sealing ring 2A with an uneven load distribution in the radial direction, the uneven distribution of the load causes 1. However, in the conventional non-contact type mechanical seal, only the dynamic pressure generating groove 6 that communicates with the fluid introduction groove 5 is provided on the sealing surface 2a of the one-turn sealing ring 2A. , the dynamic pressure generating function of the dynamic pressure generating groove 6 is reduced due to the above-mentioned distortion, and the static sealing ring 4A, which includes the force trying to open the sealing surface 2a and the spring force of the spring 3C, is The balance of the force trying to close the sealing surface 2d from the back side collapses, reducing or eliminating the gap, and as a result, the sealing surface 2a
, 4a may come into contact with each other and cause seal failure.

また、回転部封環2Aに前述の歪が生じない場合でも、
起動時または停止前の低速回転時のように、動圧が低ド
する低回転領域において、シール面2a、Aa回!Sの
接触によりシー・ル破壊を起こすおそれが有る。し、か
も、動用発生グルーブ6が流体導入溝5に連通し5で円
周方向の一方にのみのびて形J&されているかtう、回
転密封環2Aを矢印aで示ず回転方向、つまり流体導入
溝5を前側に位置させた方向に回転、8′姓なければ、
動圧発生グルーブ6によって動圧を自効に発生させるこ
とができない。したがって1回転方向が一方向(、二の
み制限される問題点を有している。
Moreover, even if the above-mentioned distortion does not occur in the rotating part sealing ring 2A,
In a low rotation region where the dynamic pressure is low, such as during startup or low speed rotation before stopping, the seal surface 2a, Aa times! Contact with S may cause damage to the seal. However, the rotary sealing ring 2A is not shown by the arrow a and is connected to the fluid introduction groove 5 and extends only in one direction in the circumferential direction. Rotate in the direction where the introduction groove 5 is located on the front side.
Dynamic pressure cannot be generated automatically by the dynamic pressure generating groove 6. Therefore, there is a problem in that one direction of rotation is limited to only one direction (or two).

本発明はこのような事情に啄みなされたもので、回転部
封環に歪が生じて動圧発生機能な低下させたり、低回転
領域において動圧が低下したと1、でも、シール隙間を
確保でき、シール面同士の接触を回避しで、シー・ル破
壊を未然に防止することができ、しかも、正逆回転が可
能な非接触形メカニカルシールの)2供を目的としてい
る。
The present invention was developed in response to these circumstances, and it is possible to reduce the dynamic pressure generation function due to distortion in the sealing ring of the rotating part, or to reduce the seal gap even if the dynamic pressure decreases in the low rotation range. The objective is to create a non-contact type mechanical seal that can be rotated in forward and reverse directions, and that can prevent damage to the seal by avoiding contact between the seal surfaces.

[課題を解決するための手段] 前記目的を達成するために、本発明に係る第1の発明は
回転密封環のシール面に円周方向等間隔で外端が径外側
に開111.かつ内端がシール面内に存在して径内方向
にのびる流体導入溝が複数形成され、これら流体導入溝
に連通しかつ円周方向の一方にのびる動圧発生グルーブ
が形成されるとともに、前記流体導入溝から選択された
溝に連通1゜て円周方向の一方にのびる静圧発生グルー
ブが形成されたものであるや また、本発明に係る第2の発明は回転部t4’ Elの
シール面に円周方向等間隔で外端が径外側に開口しかつ
内端がシール面内に存在して径内方向にのびる流体導入
溝が複数形成され、これら流体導入溝から選択された溝
に連通しかつ円周方向の両方にのびる動圧発生グルーブ
が形成されるとともに、前記選択された溝以外の流体導
入溝に連通して円周方向の両方にのびる静圧発生グルー
ブが形成されたものである。
[Means for Solving the Problem] In order to achieve the above-mentioned object, a first aspect of the present invention provides a rotary sealing ring having outer ends opening radially outward at equal intervals on the sealing surface of the rotary sealing ring. A plurality of fluid introduction grooves are formed whose inner ends lie within the sealing surface and extend radially inward, and a dynamic pressure generating groove is formed which communicates with these fluid introduction grooves and extends in one direction in the circumferential direction. A static pressure generating groove is formed that communicates with a groove selected from the fluid introduction grooves and extends in one direction in the circumferential direction. A plurality of fluid introduction grooves are formed on the surface at equal intervals in the circumferential direction, the outer ends of which are open radially outward, and the inner ends of which are located within the sealing surface and extend radially inward. A dynamic pressure generating groove that communicates and extends in both circumferential directions is formed, and a static pressure generating groove that communicates with a fluid introduction groove other than the selected groove and extends in both circumferential directions is formed. It is.

[作用] 本発明に係る第1の発明によれば、回転密封環の回転に
より、流体導入溝に連通ずる動子発生グルーブに径外側
(高圧側)から流体が進入して動圧を発生させ、この動
圧によって所定のシール隙間を形成して非接触状態でシ
ールする。
[Operation] According to the first aspect of the present invention, due to the rotation of the rotary sealing ring, fluid enters the mover generation groove communicating with the fluid introduction groove from the radially outer side (high pressure side) to generate dynamic pressure. This dynamic pressure forms a predetermined seal gap and seals in a non-contact state.

同時に、選択された流体導入溝に連通ずる静圧発生グル
ーブに流体が進入してポケット圧を発生させる。したが
って、回転密封環に歪が生じて動圧発生グルーブの動圧
発生機能が低下して、動圧が低下したり、或いは起動時
や停止前などの低回転領域において動圧が低下したとし
ても、静圧発生グルーブで発生するポケット圧が静圧と
して作用しシール面同士の接触を回避させることができ
る。
At the same time, fluid enters the static pressure generating groove communicating with the selected fluid introduction groove to generate pocket pressure. Therefore, even if distortion occurs in the rotating sealing ring and the dynamic pressure generation function of the dynamic pressure generating groove deteriorates, resulting in a decrease in dynamic pressure, or even if the dynamic pressure decreases in the low rotation range such as during startup or before stopping, The pocket pressure generated in the static pressure generating groove acts as static pressure and can avoid contact between the seal surfaces.

また、第2の発明によれば、回転密封環の回転により、
選択された流体導入溝に連通ずる動圧発生グルーブに径
外側(高圧側)から流体が進入して動圧を発生させ、こ
の動圧によって所定のシール隙間を形成して非接触状態
でシールする。
Further, according to the second invention, due to the rotation of the rotary sealing ring,
Fluid enters the dynamic pressure generation groove that communicates with the selected fluid introduction groove from the radially outer side (high pressure side) to generate dynamic pressure, and this dynamic pressure forms a predetermined seal gap and seals in a non-contact state. .

同時に、選択された流体導入溝以外の溝に連通ずる静圧
発生グルーブに流体が進入してポケット圧を発生させる
。したがって、回転密封環に歪が生じて動圧発生グルー
ブの動圧発生機能が低下して、動圧が低下したり、或い
は起動時や停止前などの低回転領域において動圧が低下
したとしても、静圧発生グルーブで発生するポケット圧
が静圧として作用しシール面同士の接触を回避させるこ
とができる。
At the same time, fluid enters the static pressure generating grooves communicating with grooves other than the selected fluid introducing groove to generate pocket pressure. Therefore, even if distortion occurs in the rotating sealing ring and the dynamic pressure generation function of the dynamic pressure generating groove deteriorates, resulting in a decrease in dynamic pressure, or even if the dynamic pressure decreases in the low rotation range such as during startup or before stopping, The pocket pressure generated in the static pressure generating groove acts as static pressure and can avoid contact between the seal surfaces.

しかも、動圧発生グルーブが流体導入溝に連通して円周
方向の両方にのびて形成されているから、回転密封環を
正逆いずれの方向に回転させても、動圧を発生させるこ
とができる。
Moreover, since the dynamic pressure generating groove is formed to communicate with the fluid introduction groove and extend in both circumferential directions, dynamic pressure can be generated even if the rotary seal ring is rotated in either the forward or reverse direction. can.

[実施例] 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
[Example] Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図は非接触形メカニカルシールの全体構成を示す縦
断側面図、第2図は回転a’M環の第1実施例を示す正
面図であり、本発明の特徴は回転密封環のシール面に動
圧発生グルーブと静止発生グルーブの両者を形成した構
成に係り、この点を除く他の部材および構成は従来例と
異ならないので、第2図において、第4図に相当する部
分には、それぞれ同一符号を付して、その詳細な説明は
省略する。
FIG. 1 is a longitudinal sectional side view showing the overall configuration of a non-contact mechanical seal, and FIG. 2 is a front view showing a first embodiment of a rotating a'M ring.The feature of the present invention is that the seal surface of the rotating seal ring Regarding the configuration in which both a dynamic pressure generating groove and a stationary pressure generating groove are formed, other members and configurations other than this point are the same as the conventional example, so in FIG. 2, the parts corresponding to FIG. 4 are as follows. The same reference numerals are given to each, and detailed explanation thereof will be omitted.

第1図および第2図において、回転密封環2Aのシール
面2aには、円周方向等間隔で外端がシール面2aの径
外側(高圧側Y)に開口し、内端がシール面2a内に存
在して径内方向にのびる流体導入溝5が複数(例えば1
2)形成されている。
In FIGS. 1 and 2, the sealing surface 2a of the rotary sealing ring 2A has an outer end opening radially outward (high pressure side Y) of the sealing surface 2a at equal intervals in the circumferential direction, and an inner end opening radially outward of the sealing surface 2a (high pressure side Y). A plurality of fluid introduction grooves 5 (for example, one
2) Formed.

流体導入溝5はシール面2aの面幅Wl(径方向の寸法
)に対して、70〜90%の割合(図示例では約70%
)でシール面2aの外端から径内方向にのびる深さ51
Lm”1mmの第1導入溝5Aと、シール面2aの面幅
Wに対して、30〜50%の割合(図示例では約50%
)でシール面2aの外端から径内方向にのびる深さ5I
Lm〜1mmの第2導入溝5Bとを階数ごとに形成する
ことによって構成されている。そして、第1導入溝5A
と第2導入溝5Bのそれぞれに連通して円周方向の一方
(反時計方向)にのびる動圧発生グルーブ6、つまり円
周方向の長さを4〜10mm、幅寸法W2を面@W1の
30〜50%(図示例では約30%)、深さ4〜8戸m
に設定した動圧発生グルーブ6が形成されるとともに、
第1導入溝5Aに連通して静圧発生グルーブ7、即ち、
円周方向の一方に向って隣接している動圧発生グルーブ
6の終端と径内側でラップする位置までのび、幅寸法W
3を0.3〜21111、深さを5〜204 mに設定
した静止発生グルーブ7が形成されている。
The fluid introduction groove 5 has a ratio of 70 to 90% (approximately 70% in the illustrated example) with respect to the surface width Wl (radial dimension) of the sealing surface 2a.
) is the depth 51 extending radially inward from the outer end of the sealing surface 2a.
The ratio of 30 to 50% (approximately 50% in the illustrated example) of the first introduction groove 5A of 1 mm Lm and the surface width W of the sealing surface 2a.
) at a depth of 5I extending radially inward from the outer end of the sealing surface 2a.
It is constructed by forming a second introduction groove 5B with a length of Lm to 1 mm for each floor. And the first introduction groove 5A
and the second introduction groove 5B and extend in one direction (counterclockwise) in the circumferential direction. 30-50% (approximately 30% in the illustrated example), depth 4-8 m
The dynamic pressure generating groove 6 set to is formed, and
The static pressure generating groove 7 communicates with the first introduction groove 5A, that is,
It extends to a position where it overlaps the terminal end of the dynamic pressure generating groove 6 adjacent to one side in the circumferential direction on the radially inner side, and the width dimension W
3 is set to 0.3 to 21111 m and the depth is set to 5 to 204 m.

このような構成であれば、回転密封環2Aを矢印a方向
に回転させることによって、流体導入溝5における第1
および第2流入溝5A 、5Bから高圧側Yの流体が動
圧発生グルーブ6に流入して、回転密封環2Aのシール
面2aと、静止密封環4Aのシール面4aの間に動圧を
発生させ、シ−ル面2aをシール面4aから離す方向に
付勢し、スプリング3Cのばね力とのバランス点の圧力
によって、シール面2a 、4a間に例えば5〜20g
m程度の狭いシール隙間を形成して、低圧側Xと高圧側
Yとを非接触状態でシールするものである。
With such a configuration, by rotating the rotary sealing ring 2A in the direction of the arrow a, the first
The fluid on the high pressure side Y flows from the second inflow grooves 5A and 5B into the dynamic pressure generating groove 6, generating dynamic pressure between the sealing surface 2a of the rotating sealing ring 2A and the sealing surface 4a of the stationary sealing ring 4A. The seal surface 2a is biased in the direction away from the seal surface 4a, and by the pressure at the balance point with the spring force of the spring 3C, a force of, for example, 5 to 20 g is applied between the seal surfaces 2a and 4a.
A narrow sealing gap of about m is formed to seal the low pressure side X and the high pressure side Y in a non-contact state.

同時に、第1導入溝5Aに連通ずる静圧発生グルーブ7
にも流体が進入してポケット圧を発生させる。したがっ
て、回転密封Q2Aに、例えば前述の理由による歪が生
じて、動圧発生グルーブ6の動圧発生機能が低下して、
動圧が小さくなったり、或いは回転密封環2Aの起動時
や停止前などの低回転領域において動圧が低下したとし
ても、静圧発生グルーブ7で発生するポケット圧が静圧
として作用してシール面2a、4a同士の接触を回避さ
せるので、所定シール隙間が確保されてシール破壊を未
然に防止するものである。
At the same time, the static pressure generating groove 7 communicating with the first introduction groove 5A
Fluid also enters the area, creating pocket pressure. Therefore, distortion occurs in the rotary seal Q2A due to the above-mentioned reasons, and the dynamic pressure generating function of the dynamic pressure generating groove 6 deteriorates.
Even if the dynamic pressure decreases, or even if the dynamic pressure decreases in a low rotation range such as when the rotary sealing ring 2A is started or before stopping, the pocket pressure generated in the static pressure generating groove 7 acts as static pressure and seals. Since the surfaces 2a and 4a are prevented from coming into contact with each other, a predetermined seal gap is ensured and seal breakage is prevented.

第3図は回転密封環2Aの第2実施例を示す正面図であ
り、この実施例では、前記第1実施例と同じ構成の第1
導入5Aに連通して円周方向の両方に向ってのびる第1
実施例と同じ構成の静圧発生グルーブ7を形成するとと
もに、第1実施例と同じ構成の第2導入溝5Bに連通し
て円周方向の両方に向ってのびる第1実施例と同じ構成
の動圧発生グルーブ6を形成した構成になっている。
FIG. 3 is a front view showing a second embodiment of the rotary sealing ring 2A.
The first part communicates with the introduction 5A and extends in both circumferential directions.
A static pressure generating groove 7 having the same structure as the first embodiment is formed, and a groove 7 having the same structure as the first embodiment communicates with the second introduction groove 5B having the same structure as the first embodiment and extends in both circumferential directions. It has a configuration in which a dynamic pressure generating groove 6 is formed.

このような構成であれば、回転密封環2Aを矢印a、b
で示す正逆方向の回転時において、前記第1実施例と同
じ作用効果を奏することができる。即ち、回転方向が−
・方向にのみ制限されることなく、正逆いずれの方向に
回転密封環2Aを回転させても、非接触状態でシールこ
とができるメカニカルシールを提供し得るものである。
With such a configuration, the rotary sealing ring 2A is aligned with the arrows a and b.
When rotating in the forward and reverse directions indicated by , the same effects as in the first embodiment can be achieved. That is, the rotation direction is -
- It is possible to provide a mechanical seal that can seal in a non-contact state even if the rotary sealing ring 2A is rotated in either forward or reverse direction without being limited only in direction.

[発明の効果] 本発明は上述のとおり構成されているので、つぎに記載
する効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

Kn 求項(1)の非接触形メカニカルシールにおいて
は、回転密封環の回転により、流体導入溝に連通ずる動
圧発生グルーブに径外側(高圧側)から流体が進入して
動圧を発生させ、この動圧によって所定のシール隙間を
形成して非接触状態でシールすることができる。
Kn In the non-contact mechanical seal of requirement (1), due to the rotation of the rotating sealing ring, fluid enters the dynamic pressure generating groove that communicates with the fluid introduction groove from the radially outer side (high pressure side) and generates dynamic pressure. This dynamic pressure allows a predetermined sealing gap to be formed and a non-contact seal to be achieved.

また、同時に、選択された流体導入溝に連通ずる静圧発
生グルーブに流体が進入してポケット圧を発生させる。
At the same time, fluid enters the static pressure generating groove communicating with the selected fluid introducing groove to generate pocket pressure.

したがって、回転密封環に歪が生じて動圧発生グルーブ
の動圧発生機能が低下して、動圧が小さくなったり、或
いは起動時や停止前などの低回転領域において動圧が低
下したとしても、静圧発生グルーブで発生するポケット
圧、が静圧として作用し、シール面同士の接触を回避さ
せることができるため、所定の隙間が確保され、シール
破壊を未然に防止することができる。
Therefore, even if distortion occurs in the rotating sealing ring and the dynamic pressure generating function of the dynamic pressure generating groove deteriorates, resulting in a decrease in dynamic pressure, or even if the dynamic pressure decreases in the low rotation range such as during startup or before stopping, The pocket pressure generated in the static pressure generating groove acts as static pressure and can avoid contact between the seal surfaces, thereby ensuring a predetermined gap and preventing seal breakage.

また、請求項(2)の非接触形メカニカルシールにおい
ては、回転密封環の回転により1選択された流体導入溝
に連通ずる動圧発生グルーブに径外側(高圧側)から流
体が進入して動圧を発生させ、この動圧によって所定の
シール隙間を形成して非接触状態でシールする。
In addition, in the non-contact mechanical seal of claim (2), fluid enters the dynamic pressure generating groove from the radially outer side (high pressure side) which communicates with one selected fluid introduction groove by the rotation of the rotary sealing ring, causing the fluid to move. Pressure is generated, and this dynamic pressure forms a predetermined sealing gap and seals in a non-contact state.

同時に、前記選択された流体導入溝以外のに溝に連通ず
る静圧発生グルーブに流体が進入してポケット圧を発生
させる。したがって、回転密封環に歪が生じて動圧発生
グルーブの動圧発生機能が低下して、動圧が小さくなっ
たり、或いは起動時や停止前などの低回転領域において
動圧が低下したとしても、静圧発生グルーブで発生する
ポケット圧が静圧として作用し、シール面同士の接触を
回避させることができる。したがって、所定のシール隙
間が確保され、シール破壊を未然に防止することができ
るとともに、回転密封環の回転方向が制限されず、正逆
いずれの方向に回転密封環を回転させても、非接触状態
でシールすることができる。
At the same time, fluid enters static pressure generating grooves communicating with grooves other than the selected fluid introducing groove to generate pocket pressure. Therefore, even if distortion occurs in the rotating sealing ring and the dynamic pressure generating function of the dynamic pressure generating groove deteriorates, resulting in a decrease in dynamic pressure, or even if the dynamic pressure decreases in the low rotation range such as during startup or before stopping, The pocket pressure generated in the static pressure generating groove acts as static pressure, and it is possible to avoid contact between the seal surfaces. Therefore, a predetermined seal gap is secured, seal breakage can be prevented, and the direction of rotation of the rotary seal ring is not limited, so even if the rotary seal ring is rotated in either the forward or reverse direction, there is no contact. Can be sealed in any condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の実施例を示し、第1図は
全体構成を示す縦断側面図、第2図は回転密封環の第1
実施例を示す拡大正面図、第3図は回転密封環の第2実
施例を示す拡大正面図、第4図は従来の回転密封環の上
半部を示す拡大正面図である。 l・・・回転部材 2・・・回転側シール要素 2A・・・回転密封環 2a・・・シール面 3・・・ケーシング 3C・・・スプリング 4・・・固定側シール要素 4A・・・静止密封環 5・・・流体導入溝 5A・・・第1導入溝 5B・・・第2導入溝 6・・・動圧発生グルーブ 7・・・静圧発生グルーブ
1 to 3 show embodiments of the present invention, FIG. 1 is a vertical sectional side view showing the overall configuration, and FIG. 2 is a first embodiment of the rotary sealing ring.
FIG. 3 is an enlarged front view showing the second embodiment of the rotary sealing ring, and FIG. 4 is an enlarged front view showing the upper half of the conventional rotary sealing ring. l...Rotating member 2...Rotating side sealing element 2A...Rotating sealing ring 2a...Sealing surface 3...Casing 3C...Spring 4...Stationary side sealing element 4A...Stationary Sealing ring 5...Fluid introduction groove 5A...First introduction groove 5B...Second introduction groove 6...Dynamic pressure generation groove 7...Static pressure generation groove

Claims (2)

【特許請求の範囲】[Claims] (1)被軸封機器の回転部材と同時回転する回転密封環
を設けた回転側シール要素と、被軸封機器のケーシング
側に回転不能に保持され、かつスプリングにより回転密
封環側に常時付勢される静止密封環を設けた固定側シー
ル要素を有すメカニカルシールにおいて、回転密封環の
シール面に円周方向等間隔で外端が径外側に開口しかつ
内端がシール面内に存在して径内方向にのびる流体導入
溝が複数形成され、これら流体導入溝に連通しかつ円周
方向の一方にのびる動圧発生グルーブが形成されるとと
もに、前記流体導入溝から選択された溝に連通して円周
方向の一方にのびる静圧発生グルーブが形成されている
ことを特徴とする非接触形メカニカルシール。
(1) A rotary-side seal element equipped with a rotary sealing ring that rotates simultaneously with the rotating member of the shaft-sealed device, and a rotary-side seal element that is non-rotatably held on the casing side of the shaft-sealed device and is always attached to the rotary sealing ring side by a spring. In a mechanical seal having a stationary seal element with a stationary seal ring that is energized, the outer end opens radially outward at equal intervals in the circumferential direction on the seal surface of the rotating seal ring, and the inner end lies within the seal surface. A plurality of fluid introduction grooves extending radially inward are formed, and a dynamic pressure generating groove is formed that communicates with these fluid introduction grooves and extends in one direction in the circumferential direction. A non-contact mechanical seal characterized by forming a static pressure generating groove that communicates and extends in one direction in the circumferential direction.
(2)被軸封機器の回転部材と同時回転する回転密封環
を設けた回転側シール要素と、被軸封機器のケーシング
側に回転不能に保持され、かつスプリングにより回転密
封環側に常時付勢される静止密封環を設けた固定側シー
ル要素を有すメカニカルシールにおいて、回転密封環の
シール面に円周方向等間隔で外端が径外側に開口しかつ
内端がシール面内に存在して径内方向にのびる流体導入
溝が複数形成され、これら流体導入溝から選択された溝
に連通しかつ円周方向の両方にのびる動圧発生グルーブ
が形成されるとともに、前記選択された溝以外の流体導
入溝に連通して円周方向の両方にのびる静圧発生グルー
ブが形成されていることを特徴とする非接触形メカニカ
ルシール。
(2) A rotary-side seal element equipped with a rotary sealing ring that rotates simultaneously with the rotating member of the shaft-sealed device, and a rotary-side seal element that is non-rotatably held on the casing side of the shaft-sealed device and is always attached to the rotary sealing ring side by a spring. In a mechanical seal having a stationary seal element with a stationary seal ring that is energized, the outer end opens radially outward at equal intervals in the circumferential direction on the seal surface of the rotating seal ring, and the inner end lies within the seal surface. A plurality of fluid introduction grooves extending in the radial direction are formed, and a dynamic pressure generating groove is formed that communicates with a selected groove from these fluid introduction grooves and extends in both circumferential directions, and a dynamic pressure generating groove is formed that extends in both circumferential directions. A non-contact type mechanical seal characterized in that a static pressure generating groove is formed that communicates with a fluid introduction groove other than that and extends in both circumferential directions.
JP9547789A 1989-04-14 1989-04-14 Non-contact mechanical seal Expired - Lifetime JPH0646071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9547789A JPH0646071B2 (en) 1989-04-14 1989-04-14 Non-contact mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9547789A JPH0646071B2 (en) 1989-04-14 1989-04-14 Non-contact mechanical seal

Publications (2)

Publication Number Publication Date
JPH02275182A true JPH02275182A (en) 1990-11-09
JPH0646071B2 JPH0646071B2 (en) 1994-06-15

Family

ID=14138704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9547789A Expired - Lifetime JPH0646071B2 (en) 1989-04-14 1989-04-14 Non-contact mechanical seal

Country Status (1)

Country Link
JP (1) JPH0646071B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590050U (en) * 1992-02-06 1993-12-07 イーグル工業株式会社 Bidirectional rotating gas seal
JPH0590048U (en) * 1992-02-06 1993-12-07 イーグル工業株式会社 Bidirectional rotating gas seal
JPH0590049U (en) * 1992-02-06 1993-12-07 イーグル工業株式会社 Bidirectional rotating gas seal
US5664787A (en) * 1994-03-22 1997-09-09 Nippon Pillar Packing Co., Ltd. Non-contacting shaft sealing device
US7744094B2 (en) * 2004-11-09 2010-06-29 Eagle Industry Co., Ltd. Mechanical seal device
US10907684B2 (en) 2017-08-28 2021-02-02 Eagle Industry Co., Ltd. Sliding part

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590050U (en) * 1992-02-06 1993-12-07 イーグル工業株式会社 Bidirectional rotating gas seal
JPH0590048U (en) * 1992-02-06 1993-12-07 イーグル工業株式会社 Bidirectional rotating gas seal
JPH0590049U (en) * 1992-02-06 1993-12-07 イーグル工業株式会社 Bidirectional rotating gas seal
US5664787A (en) * 1994-03-22 1997-09-09 Nippon Pillar Packing Co., Ltd. Non-contacting shaft sealing device
US7744094B2 (en) * 2004-11-09 2010-06-29 Eagle Industry Co., Ltd. Mechanical seal device
US10907684B2 (en) 2017-08-28 2021-02-02 Eagle Industry Co., Ltd. Sliding part
EP3677802A4 (en) * 2017-08-28 2021-05-26 Eagle Industry Co., Ltd. Sliding part

Also Published As

Publication number Publication date
JPH0646071B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US3926442A (en) Sliding ring seal
US3622164A (en) Seal for shafts
US6494460B2 (en) Rotary barrier face seal
JPH0450559A (en) Dynamic pressure non-contact type mechanical seal
JPS6148612B2 (en)
JP2639883B2 (en) Non-contact type shaft sealing device
JPH09329247A (en) Non-contact end surface seal
JPS62200077A (en) Sealing device for rotary machine
JPH05322050A (en) Noncontact mechanical seal
JPH02275182A (en) Non-contact type mechanical seal
JPH07117167B2 (en) Non-contact mechanical seal device
US2369249A (en) Pumping device
JPH052869B2 (en)
JPH0743038B2 (en) Non-contact end face seal
JPS6223503A (en) Shaft seal device of turbo machine
JPS62278377A (en) Magnetic fluid sealing device
JPH04272581A (en) Non-contact type sealing device
JP2510397Y2 (en) Seal device
JPH08296745A (en) Mechanical seal
JPH07117166B2 (en) Non-contact type sealing device
JPH08277941A (en) Mechanical seal
JPH0714697Y2 (en) Non-contact sealing device
JPH09112536A (en) Bearing device
JP3035053B2 (en) Shaft sealing device
JPH09287405A (en) Non-contact seal