JPH02275067A - Pump - Google Patents

Pump

Info

Publication number
JPH02275067A
JPH02275067A JP9596489A JP9596489A JPH02275067A JP H02275067 A JPH02275067 A JP H02275067A JP 9596489 A JP9596489 A JP 9596489A JP 9596489 A JP9596489 A JP 9596489A JP H02275067 A JPH02275067 A JP H02275067A
Authority
JP
Japan
Prior art keywords
fluid
pipeline
heating resistors
pump
under pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9596489A
Other languages
Japanese (ja)
Inventor
Kensuke Miwa
三輪 憲介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP9596489A priority Critical patent/JPH02275067A/en
Publication of JPH02275067A publication Critical patent/JPH02275067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

PURPOSE:To evaporate a fluid filled up in a pipeline and simultaneously generate these as well as to feed the fluid quietly and efficiently under pressure by setting up a lot of heating resistors along the longitudinal direction in the pipeline, and generating heat in respective heating resistors in succession. CONSTITUTION:A section U-shaped frame body 2 is tightly installed on a substrate 1 consisting of ceramics and so on, and a pipeline 3 of specified length is formed. Many heating resistors R1-R6, a common electrode 4 and many individual electrodes 5a-5f are set up on the substrate 1 in the pipeline 3 by means of printing or the like. After a fluid of water or the like is filled up in the pipeline 3, each pair of these heating resistors R1, R4; R2, R5; R3, R6 themselves are intermittently heated in succession. With this heat generation, the fluid is evaporated while pressure is generated there, whereby the fluid is successively fed under pressure in a fixed direction A along the longitudinal direction in the pipeline 3. On the other hand, energizing timing in these heating resistors R1-R6 is controlled in reverse, through which the fluid is fed to the reverse direction B under pressure.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、水やオイル等の流体を圧送するポンプに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pump that pumps fluids such as water and oil.

[従来技術及び課題] 従来、一般に使用されているポンプは、例えば、羽根車
等を電動モータで回転させて流体にエネルギーを与えて
おり、アクチュエータが大きくなるとともに機械力で駆
動するため振動や騒音の発生を抑制することが困難であ
った。
[Prior art and issues] Conventionally, commonly used pumps, for example, rotate an impeller with an electric motor to give energy to the fluid.As the actuator becomes larger, it is driven by mechanical force, which causes vibration and noise. It was difficult to suppress the occurrence of

この発明の目的は、全く新規なる構造にて、小型化が可
能で、かつ振動や騒音の発生を抑制することができるポ
ンプを提供することにある。
An object of the present invention is to provide a pump that has a completely new structure, can be downsized, and can suppress the generation of vibration and noise.

[課題を解決するための手段] この発明は、管路の内壁面に対し当該管路の長手方向に
発熱抵抗体を配設し、その発熱抵抗体を順次通電するこ
とにより発熱抵抗体を発熱させて管路内の流体を圧送す
るようにしてなるポンプをその要旨とするものである。
[Means for Solving the Problems] The present invention provides heat generating resistors arranged in the longitudinal direction of the pipe on the inner wall surface of the pipe, and sequentially energizes the heat generating resistors to generate heat. The gist of the pump is to pump fluid in a pipe by force.

[作用] 管路の内壁面の長手方向に配設された発熱抵抗体が順次
通電されることにより発熱抵抗体に接する流体が気化し
て順次圧力が生じその圧力により流体が圧送され−る。
[Operation] The heating resistors arranged in the longitudinal direction of the inner wall surface of the conduit are sequentially energized, so that the fluid in contact with the heating resistors is vaporized, pressure is sequentially generated, and the fluid is pumped by the pressure.

[実施例] 以下、この発明を具体化した一実施例を図面に従って説
明する。
[Example] An example embodying the present invention will be described below with reference to the drawings.

第1図〜第3図に示すように、セラミックよりなる基板
1上に断面コテ状の枠体2が密着した状態で固設され、
両部材1,2により所定長さの管路3が形成されている
As shown in FIGS. 1 to 3, a frame body 2 having a trowel-shaped cross section is fixedly attached to a substrate 1 made of ceramic,
Both members 1 and 2 form a conduit 3 of a predetermined length.

管路3内における基板1上には第3図に示すように発熱
抵抗体R1−R6、共通電極4及び個別1極5a−5f
が印刷により形成されている。即ち、発熱抵抗体R1−
R6は管路3の5手方向に所定間隔をおいて配設される
とともに、発熱抵抗体R1へ=R6には共通電極4と個
別電極5a−・5fが接続されている。ざら11基板1
」−の一部には制御素子、ドライバ等を含んだ駆動制御
回路(図示路)が実装されている。
As shown in FIG. 3, heating resistors R1-R6, a common electrode 4 and individual poles 5a-5f are disposed on the substrate 1 in the conduit 3.
is formed by printing. That is, the heating resistor R1-
R6 are arranged at predetermined intervals in the five directions of the conduit 3, and the common electrode 4 and the individual electrodes 5a to 5f are connected to the heating resistor R1 and R6. Rough 11 board 1
A drive control circuit (shown in the figure) including a control element, a driver, etc. is mounted on a part of the drive control circuit.

第4図には本ポンプの駆動制御回路の一部を示す。同図
においで、共通端子6に対し発熱抵抗体R1、R4が並
列に接続されるとともにドライバ7を介して第1制御端
子8が接続されている。又、共通端子6に対し発熱抵抗
体R2、R5が並列に接続されるとともにドライバ9を
介して第2制御端子10が接続されている。ざらに、共
通端子6に対し発熱抵抗体R3,R6が並列に接続され
るとともにドライバ11を介して第3制御喘子12が接
続されている。
FIG. 4 shows a part of the drive control circuit of this pump. In the figure, heating resistors R1 and R4 are connected in parallel to a common terminal 6, and a first control terminal 8 is connected via a driver 7. Further, heating resistors R2 and R5 are connected in parallel to the common terminal 6, and a second control terminal 10 is also connected via a driver 9. Roughly speaking, heating resistors R3 and R6 are connected in parallel to the common terminal 6, and a third control pane 12 is connected via a driver 11.

そして、各制御端子8,10.12から第5図に示す遅
れ時間2”1を有1″るパルス信号(制御信号)SG1
”SG3が出力さ4′17、このバルスイへ号3G1〜
SG3がドライバ7.9.11にて増幅される。その結
果、時間下1づつ各発熱抵抗体R1=−R6に電流が流
れて、各発熱抵抗体R1へ−R6が発熱動作する。
Then, from each control terminal 8, 10.12, a pulse signal (control signal) SG1 having a delay time of 2"1 as shown in FIG.
``SG3 outputs 4'17, No. 3G1 to this bar sui ~
SG3 is amplified by driver 7.9.11. As a result, current flows through each heat generating resistor R1=-R6 one by one, and -R6 operates to generate heat in each heat generating resistor R1.

次に、このように構成したポンプの作用を説明する。Next, the operation of the pump configured as described above will be explained.

まず、管路3の吸入口を水、オイル等のタンクに接続す
るとともに管路3内を流体(水、オイル等)で充満させ
る。そして、この状態で第1制御端子8がハイレベルに
なることにより発熱抵抗体R1,R4に電流が流れ、発
熱抵抗体R1,R4がジコール熱により発熱する。する
と、発熱抵抗体R1,R4に接する流体が気化し圧力が
発生し、この圧力により流体が管路3の長子方向に移動
する。
First, the inlet of the conduit 3 is connected to a tank for water, oil, etc., and the inside of the conduit 3 is filled with fluid (water, oil, etc.). In this state, when the first control terminal 8 becomes high level, current flows through the heat generating resistors R1 and R4, and the heat generating resistors R1 and R4 generate heat due to dicor heat. Then, the fluid in contact with the heating resistors R1 and R4 is vaporized and pressure is generated, and this pressure causes the fluid to move in the longitudinal direction of the pipe line 3.

次に、圧力伝播時間τ1だけズしたタイミングで第2制
御端子10がハイレベルになることにより発熱抵抗体R
2,R5に電流が流れ、発熱抵抗体R2,R5がジュー
ル熱により発熱する。すると、発熱抵抗体R2,R5に
接する流体が気化し圧力が発生し、この圧力により流体
が管路3の長手方向(第1図中、六方向)に移動する。
Next, the second control terminal 10 becomes high level at a timing deviated by the pressure propagation time τ1, so that the heating resistor R
Current flows through 2 and R5, and the heating resistors R2 and R5 generate heat due to Joule heat. Then, the fluid in contact with the heating resistors R2 and R5 is vaporized and pressure is generated, and this pressure causes the fluid to move in the longitudinal direction of the pipe line 3 (six directions in FIG. 1).

さらに、時間τ1だけズしたタイミングで第3制御喘子
12がハイレベルになることにより発熱抵抗体R3,R
6に電流が流れ、発熱抵抗体R3、R6がジュール熱に
より発熱する。すると、発熱抵抗体R3,R6に接−リ
ーる流体が気化し圧力が発生し、この圧力により流体が
管路3の長手方向(第1図中、六方向)に移動する。
Further, the third control pane 12 goes to a high level at a timing delayed by time τ1, so that the heating resistors R3 and R
6, the heating resistors R3 and R6 generate heat due to Joule heat. Then, the fluid in contact with the heating resistors R3 and R6 is vaporized and pressure is generated, and this pressure causes the fluid to move in the longitudinal direction of the pipe line 3 (six directions in FIG. 1).

このような動作の繰り返しくより流体を第1図中、Δ方
向に圧送することができる。
By repeating such operations, the fluid can be pumped in the Δ direction in FIG. 1.

又、各発熱抵抗体R1へ−R6の通電タイミングを逆に
1−ることにより流体を第1図中、B方向に圧送゛yる
ことができる。
Furthermore, by reversing the timing of energization of -R6 to each heating resistor R1, the fluid can be pumped in the direction B in FIG.

このように本実施例!、:′、8いては、管路3の内壁
面に対し当該管路3の長手方向に発熱抵抗体R1〜R6
を配設するとともに、その発熱抵抗体R1〜R6を順次
通電することにより各発熱抵抗体R1〜R6を発熱さけ
圧力を発生させて管路内の流体を圧送する3」こうにし
た。従って、従来の羽根車式ポンプに比ベアクヂャエー
タを小さくでき小型化できるとともに、機械力で駆動し
ていないため振動、電磁ノイズ、騒音等の発生を抑制す
ることができる。又、管路3の出入口部分に一方向のみ
の流体の移動を許容する逆止弁を使用することなく流体
を一ブノ向(第1図中、六方向あるいはB方向)に圧送
することができるとともに、各発熱抵抗体R1〜R6の
通電タイミングを調整することにより流体を逆方向に圧
送することができる。。
This is how this example works! , :', 8, heating resistors R1 to R6 are arranged in the longitudinal direction of the pipe 3 against the inner wall surface of the pipe 3.
At the same time, by sequentially energizing the heat generating resistors R1 to R6, the heat generating resistors R1 to R6 are prevented from generating heat, and pressure is generated to pump the fluid in the conduit. Therefore, compared to the conventional impeller type pump, the bearing diaphragm can be made smaller and more compact, and since it is not driven by mechanical force, generation of vibrations, electromagnetic noise, noise, etc. can be suppressed. In addition, fluid can be pumped in one direction (six directions or direction B in Fig. 1) without using a check valve that allows fluid movement in only one direction at the inlet and outlet portions of the conduit 3. At the same time, the fluid can be pumped in the opposite direction by adjusting the energization timing of each heating resistor R1 to R6. .

このように構造が単純で可動部が全くなく信頼性の高い
ものとすることができる。さらには、発熱抵抗体R1〜
R6が印刷されたセラミック基板1の一部に駆動制御回
路を形成したので、ポンプ仝体を小型化及び集積化する
ことができる。
In this way, the structure is simple and has no moving parts, making it highly reliable. Furthermore, the heating resistor R1~
Since the drive control circuit is formed on a part of the ceramic substrate 1 on which R6 is printed, the pump body can be downsized and integrated.

尚、この発明は上記実施例に限定されるものではなく、
例えば、第6図に示ずようし一管路3の一方の内壁面に
発熱抵抗体R1−=−R6を配置するとともに対向する
内壁面に発熱抵抗体R7−R12を配設することにより
、より効率的に流体を圧送することができる。又、その
発熱抵抗体R1〜R6及びR7−R12の配置として、
第7図に示すように、互いにズラして配置してもよい。
Note that this invention is not limited to the above embodiments,
For example, as shown in FIG. 6, by arranging heat generating resistors R1-=-R6 on one inner wall surface of one conduit 3 and arranging heat generating resistors R7-R12 on the opposing inner wall surface, Fluid can be pumped more efficiently. In addition, the arrangement of the heating resistors R1 to R6 and R7 to R12 is as follows:
As shown in FIG. 7, they may be arranged offset from each other.

[発明の効果] 以上詳述したようにこの発明によれば、小型化が可能で
、かつ撮動や騒音の発生を抑制することができる優れた
効果を発揮する。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to reduce the size and exhibit excellent effects of suppressing imaging and noise generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例のポンプの断面図、第2図はポンプの側
面図、第3図はポンプを平面から見た一部断面図、第4
図はポンプの駆動制御回路の一部を示す図、第5図は制
御信号を示すタイムチャート、第6図は別例のポンプの
断面図、第7図は他の別例のポンプの断面図である。 1は基板、2は枠体、3は管路、R1−R6は発熱抵抗
体。
Fig. 1 is a sectional view of the pump of the embodiment, Fig. 2 is a side view of the pump, Fig. 3 is a partial sectional view of the pump seen from above, and Fig. 4 is a sectional view of the pump of the embodiment.
The figure shows a part of the pump drive control circuit, Figure 5 is a time chart showing control signals, Figure 6 is a sectional view of another example of the pump, and Figure 7 is a sectional view of another example of the pump. It is. 1 is a board, 2 is a frame, 3 is a conduit, and R1-R6 are heating resistors.

Claims (1)

【特許請求の範囲】[Claims] 1、管路の内壁面に対し当該管路の長手方向に発熱抵抗
体を配設し、その発熱抵抗体を順次通電することにより
発熱抵抗体を発熱させて管路内の流体を圧送するように
してなるポンプ。
1. Heat-generating resistors are arranged in the longitudinal direction of the pipe on the inner wall surface of the pipe, and the heat-generating resistors are sequentially energized to generate heat and pump the fluid in the pipe. A pump that can be used as a pump.
JP9596489A 1989-04-15 1989-04-15 Pump Pending JPH02275067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9596489A JPH02275067A (en) 1989-04-15 1989-04-15 Pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9596489A JPH02275067A (en) 1989-04-15 1989-04-15 Pump

Publications (1)

Publication Number Publication Date
JPH02275067A true JPH02275067A (en) 1990-11-09

Family

ID=14151892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9596489A Pending JPH02275067A (en) 1989-04-15 1989-04-15 Pump

Country Status (1)

Country Link
JP (1) JPH02275067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099090A1 (en) * 2015-12-11 2017-06-15 Funai Electric Co., Ltd. Fluidic pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099090A1 (en) * 2015-12-11 2017-06-15 Funai Electric Co., Ltd. Fluidic pump
US9989049B2 (en) 2015-12-11 2018-06-05 Funai Electric Co., Ltd. Microfluidic pump
CN108368857A (en) * 2015-12-11 2018-08-03 船井电机株式会社 Fluid pump

Similar Documents

Publication Publication Date Title
CN1538612B (en) Ultrasonic vibrator and ultrosonic electric machine
US4406323A (en) Piezoelectric heat exchanger
ATE370520T1 (en) PIEZOELECTRIC ACTUATOR
DE69717255T2 (en) VIBRATING MEMBRANE PUMP
JPS642793B2 (en)
JPH02275067A (en) Pump
JPH07508148A (en) Low frequency underwater sonic projector configuration
JP4064527B2 (en) Actuator device
US20200292683A1 (en) Thermal excitation acoustic-wave-generating device and acoustic-wave-generating system
WO2002055966A3 (en) Flow meter
US5267836A (en) Madreporitic resonant pump
JP2007232185A (en) Automatic transmission
JPS6023794A (en) Heat exchange device
JPS58501092A (en) Internal combustion engine fuel consumption measuring device
JP2005069052A (en) Piezoelectric pump
JP3896141B2 (en) Micropump and micropump system
USRE26509E (en) Pulsation type pumps
JPH02275068A (en) Pump
WO2004022222A1 (en) Activation apparatus
US1259396A (en) Vibrator.
JP3551421B2 (en) Ultrasonic actuator
JPH0442534Y2 (en)
JP2017110842A (en) Heat transport system
JP2007298010A (en) Fluid transportation mechanism and fluid transportation method
JPS5958174A (en) Electromagnetic pump