JPH0227444B2 - KOSHUSHUKUSEINOAKURIRUKEIGOSEISENI - Google Patents
KOSHUSHUKUSEINOAKURIRUKEIGOSEISENIInfo
- Publication number
- JPH0227444B2 JPH0227444B2 JP2541183A JP2541183A JPH0227444B2 JP H0227444 B2 JPH0227444 B2 JP H0227444B2 JP 2541183 A JP2541183 A JP 2541183A JP 2541183 A JP2541183 A JP 2541183A JP H0227444 B2 JPH0227444 B2 JP H0227444B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- acrylonitrile
- parts
- polyurethane
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 claims description 47
- 239000004814 polyurethane Substances 0.000 claims description 42
- 229920002635 polyurethane Polymers 0.000 claims description 42
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 31
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 19
- 229920002994 synthetic fiber Polymers 0.000 claims description 11
- 239000012209 synthetic fiber Substances 0.000 claims description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 27
- 229920000642 polymer Polymers 0.000 description 20
- 238000009987 spinning Methods 0.000 description 18
- 239000000243 solution Substances 0.000 description 15
- 230000007423 decrease Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000000178 monomer Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 229920002972 Acrylic fiber Polymers 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 5
- 238000001879 gelation Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000000877 morphologic effect Effects 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920006295 polythiol Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- SZHIIIPPJJXYRY-UHFFFAOYSA-M sodium;2-methylprop-2-ene-1-sulfonate Chemical compound [Na+].CC(=C)CS([O-])(=O)=O SZHIIIPPJJXYRY-UHFFFAOYSA-M 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- -1 thiodiglycol Chemical compound 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- LEWNYOKWUAYXPI-UHFFFAOYSA-N 1-ethenylpiperidine Chemical compound C=CN1CCCCC1 LEWNYOKWUAYXPI-UHFFFAOYSA-N 0.000 description 1
- LYGXUCWNFYFFBS-UHFFFAOYSA-N 1-thiomorpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCSCC1 LYGXUCWNFYFFBS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XUDBVJCTLZTSDC-UHFFFAOYSA-N 2-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C=C XUDBVJCTLZTSDC-UHFFFAOYSA-N 0.000 description 1
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- JHUFGBSGINLPOW-UHFFFAOYSA-N 3-chloro-4-(trifluoromethoxy)benzoyl cyanide Chemical compound FC(F)(F)OC1=CC=C(C(=O)C#N)C=C1Cl JHUFGBSGINLPOW-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000000457 gamma-lactone group Chemical group 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- KMBPCQSCMCEPMU-UHFFFAOYSA-N n'-(3-aminopropyl)-n'-methylpropane-1,3-diamine Chemical compound NCCCN(C)CCCN KMBPCQSCMCEPMU-UHFFFAOYSA-N 0.000 description 1
- WHQSYGRFZMUQGQ-UHFFFAOYSA-N n,n-dimethylformamide;hydrate Chemical compound O.CN(C)C=O WHQSYGRFZMUQGQ-UHFFFAOYSA-N 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- OFESGEKAXKKFQT-UHFFFAOYSA-N n-ethenyl-n-methylformamide Chemical compound C=CN(C)C=O OFESGEKAXKKFQT-UHFFFAOYSA-N 0.000 description 1
- LRSCEVQEEBMAHN-UHFFFAOYSA-N n-methylbut-3-enamide Chemical compound CNC(=O)CC=C LRSCEVQEEBMAHN-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 1
- 229950006389 thiodiglycol Drugs 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
Description
本発明は高収縮性のアクリル系合成繊維に関す
る。アクリル系繊維はその良好な染色性、風合い
の豊かさ等より羊毛の代替として、衣料、寝装、
インテリア分野に広く用いられている。近年、加
工方法、加工技術の進歩により高収縮タイプの繊
維を混紡して、高嵩高糸、人工獣毛等がつくられ
ている。ところが本来アクリル繊維は高分子構造
の不安定さの故に、長期間使用すると形くずれ
(伸び、たるみ、へこみ、変形等)が生じ著しく
商品価値を低下させる。特に収縮タイプのアクリ
ル繊維は特にこの傾向が著しく、その原因は収縮
綿或いは高収縮綿の製造方法自体によるものであ
る。
従来の高収縮綿の製造方法は特公昭49−8818号
公報等に示されている可塑性成分の量を通常より
増加させ延伸性や収縮率を上げるという方法や特
公昭40−1825号公報、特公昭40−1827号公報、特
公昭44−28897号公報等には延伸後のトウの乾燥
を緩和な条件下で行ない更に必要ならば2次延伸
を行ない残留収縮率を上げた方法或いは特公昭40
−1462号公報、特公昭40−22008号公報、特公昭
42−6013号公報、特公昭42−13747号公報、特公
昭49−8818号公報等には乾燥以後十分な熱処理・
収縮をさせその後2次延伸を行ない残留収縮率を
増大させる方法等が提案されている。第1の方法
により得られた収縮綿はその耐熱性の低下の為
に、繊維自体の物性(耐熱性、形態安定性、強
度、クリンプ安定性等)が低下し特に収縮時に繊
維が硬くかつ脆くなり又風合い的にゴワゴワした
ものとなる。従つて少量の混紡ではかさ高性の付
与風合の改良が不十分であり逆に多量の混紡では
風合い、外観の低下をまねくものであつた。第
2、第3の方法により得られれた繊維は繊維自体
の物性(耐熱性・形態安定性、クリンプ安定性
等)が低くかつ、染色性、収縮時の再矢透等問題
があるものであつた。
以上述べたようにこれまで大きな収縮率及び繊
維物性及び風合い等商品性能を有した高収縮性の
アクリル系合成繊維は得られていない。
本発明者らは鋭意検討の結果本発明に到達し
た。本発明の目的とするところは非常に大きな収
縮率を有し、かつアクリル系合成繊維の本来有す
る優れた特性を兼ね備えた高収縮性のアクリル系
合成繊維を提供するにある。
本発明はアクリロニトリルを少なくとも88.5重
量%含有するアクリロニトリル系重合体50〜95重
量部と、該アクリロニトリル系重合体と混和性を
有しかつ非相溶性のポリウレタン50〜5重量部と
よりなりかつ下記一般式で示すS−値が10.35以
上である高収縮性のアクリル系合成繊維である。
一般式
S=A/4.8+B×(1−A/100)
但し、A:ポリウレタンの含有率(重量部)
B:アクリロニトリル系重合体中のアクリロニ
トリル以外の成分含有率(重量%)
アクリロニトリル系重合体はアクリロニトリル
を少なくとも88.5重量%含有しアクリロニトリル
以外の可塑成分が11.5重量%以下のものである。
アクリロニトリルが88.5重量%より少ないと収縮
率は大きくなるが繊維の必要とされる他の品質、
性能例えば耐熱性の低下及びそれに起因する製造
工程での操業性、生産性の低下及び品質の均質性
の低下及び染色等后加工におけるトラブルの増大
及び製品品質については風合い硬化及び繊維の脆
化等があり又形態安定性不足による形くずれ等商
品としての大きな欠点となる。繊維の製造工程、
后加工工程及び商品性能等総合的にみるとアクリ
ロニトリル含有率は好ましくは89重量%以上、更
に好ましくは89〜94重量%、特に好ましくは89.5
〜93重量%である。アクリロニトリル系重合体に
共重合しうるその他のモノマーとしてはアクリル
酸エステル、メタクリル酸エステル、酢酸ビニ
ル、スチレン、等の疎水性中性モノマー、アクリ
ルアミド、メタクリルアミド、N−メチルアクリ
ルアミド、NN−ジメチルアクリルアミド、N−
アクリルモルホリン、N−アクリルチオモルホリ
ン、N−ビニル−N−メチルホルムアミド、N−
ビニル−N−メチルアセトアミド、N−ビニルピ
ロリドン、N−ビニルカプロラクタム、N−ビニ
ルピペリジンのような親水性モノマー、P−スチ
レンスルホン酸、メタリルスルホン酸、アリルス
ルホン酸、アクリル酸、メタクリル酸、ビニル安
息香酸又はこれらの塩、2−ビニルピリジン、2
−メチル−5−ビニルピリジンのようなイオン性
モノマーがあげられる。イオン性モノマーとして
はコスト、重合性、取扱い易さ等よりアリルスル
ホン酸ナトリウム、メタリルスルホン酸ナトリウ
ムが好ましく量的には0.3〜1.0重量%でよい。
本発明で使用するポリウレタンは通常のものが
使用されるが例えばポリウレタンは、ポリエステ
ル型、ポリエーテル型、ポリエステルエーテル
型、ポリエステルアミド型およびポリチオエーテ
ル型ポリウレタンがあげられ具体的にはエチレン
グリコール、プロピレングリコール、ブチレング
リコール、ヘキサメチレングリコール、1−4−
シクロヘキシルグリコール、P−キシレングリコ
ール、またはビスフエノール−Aとアジピン酸、
スベリン酸、セバチン酸、テレフタル酸、イソフ
タル酸またはγ−ラクトン等からなるポリエステ
ル、アジピン酸−ジエタノールアミドまたはテレ
フタル酸−ビス−プロパノールアミドおよび前述
のジカルボン酸類とからできるポリエステルアミ
ド、ジエチレングリコール、トリエチレングリコ
ール、1.4−フエニレン−ビスオキシエチルエー
テルまたは2−2′−ジフエニルプロパン−4.4−
ビスオキシエチルエーテル及び前述のジカルボン
酸類とを原料とするポリエステルエーテル、エチ
レンオキサイド、プロピレンオキサイド、テトラ
ヒドロフランからなるポリエーテル、チオジグリ
コールなどのポリチオエーテル類など分子量200
〜3000の末端水酸基を有する線状重合体を有機ジ
イソシアネート例えば1−3−フエニレンジイソ
シアネート、1−4−フエニレンジイソシアネー
ト、2−4−トリレンジイソシアネート、4.4′−
ジフエニルメタンジイソシアネート、ヘキサメチ
レンジイソシアネート、キシレンジイソシアネー
トまたは1.5−ナフチレンジイソシアネートと2
価アルコールの鎖延長剤と共に公知の重合方法で
反応せしめたポリウレタン系重合体である。
ポリウレタンの重合度は重合体濃度20重量%の
ジメチルホルムアミド溶液の20℃の粘度が20ポア
ズ以上が好ましい。又、ポリウレタンの弾性率は
100%伸長時の初期弾性率として40Kg/cm2以上の
ものが好ましい。
アクリロニトリル系重合体とポリウレタンは混
合溶液の状態で混和性は有するが相溶性を有しな
いものが必要である。アクリロニトリル系重合体
とポリウレタンの相溶性が大であれば両者は大き
な混合比においても十分均質な溶液となり新たな
分子の配置構造をとるようになり、それは繊維の
耐熱性の低下や強度の低下、弾性、剛性の低下及
び染色性の低下等をひきおこす。混和性は有する
が相溶性のないものを混合する事により初めて巾
広い混合比率の範囲で良好な品質を有した繊維を
操業性、生産性等を低下させる事なく製造出来る
のである。
混和性を有するとはアクリロニトリル系重合体
とポリウレタンを混合する場合(例えば双方の溶
液或いは片方の溶液へ他方の重合体の溶解混合)
においてゲル化又は凝集せず一方の成分が他方の
成分中によく分散、混合する事を示す。又相溶性
がないときはアクリロニトリル系重合体にポリウ
レタンを混合させた場合肉眼による観察はもとよ
り顕微鏡観察(約600〜1000倍)においても混合
溶液が不均質である事或いは混合溶液から溶剤乾
固して得られたフイルムを延伸すると白化又は多
孔化が認められる事を示す。
本発明繊維の組成はアクリロニトリル系重合体
50〜95重量部とポリウレタン50〜5重量部、好ま
しくはアクリロニトリル系重合体55〜95重量部と
ポリウレタン45〜5重量部、更に好ましくはアク
リロニトリル系重合体60〜90重量部とポリウレタ
ン40〜10重量部である。アクリロニトリル系重合
体が95重量部より大きくかつポリウレタンが5重
量部より小さい時は繊維の収縮率が不十分である
か或いは繊維の耐熱性や形態安定性が不十分であ
り、或いは商品の外観或いは風合いが不良であつ
たりする。
又アクリロニトリル系重合体が50重量部未満で
ポリウレタンが50重量部を超える場合は両者の相
分離の形態が非常に大きくなつたり或いはポリウ
レタン成分中へアクリロニトリル系重合体成分が
島成分として分散する組織をとり、その為に繊維
の強度の急激な低下及び染色性、剛性の低下が生
じるばかりか収縮性も飽和に達するようになり避
けるべきである。
本発明繊維が十分な収縮率のみでなく上述した
ような生産性、繊維物性及び商品性能等に優れた
ものである為には上述したアクリロニトリル系重
合体の組成及びアクリロニトリル系重合体とポリ
ウレタンの含有比率を満足し、かつ前記一般式で
示したS−値が10.35以上、好ましくは11.35以上
でなければならずこのS−値は一般式で示してい
るように繊維の収縮性及び前述した各種の性能の
基準になるものでありS−値が10.35未満では十
分な収縮性及び前述した性能が得られない。
本発明繊維において何故十分な収縮性をもちか
つ、良好な形態安定性を有するという従来相反す
るとみられていた性能を合せもつかは定かではな
いが本発明繊維の形態、構造を十分観察すると、
アクリロニトリル系重合体中にポリウレタンが相
分離して島状に分散して存在し、その島状のポリ
ウレタンはアクリル繊維の紡出及び製造工程での
延伸によつて繊維軸方向に細長く通常短軸と長軸
の比が1:5以上、より好ましくは1:10以上に
伸びた形態を有しておりこの伸びたポリウレタン
は弾性重合体である為に収縮しようとする大きな
エネルギーを有する。こういう状態の繊維が加熱
されれば、例えば沸とう水中に浸漬されればアク
リロニトリル系重合体の軟化、収縮しようとする
力と、ポリウレタンの収縮エネルギーが加算され
通常のアクリロニトリル系合成繊維をはるかにし
のぐ大きな収縮性を示すものと思われる。
本発明繊維は水中或いは水蒸気中或いは空気中
で加熱する事によつて容易に収縮するが、沸とう
水中での収縮率が好ましくは30%以上必要であり
より好ましくは35%以上ある方がよい。収縮率が
30%未満では前述した高収縮綿としての性能が十
分に発揮出来ない事もある。
以上述べてきたようにアクリロニトリル系重合
体を母体として、それと非相溶であるポリウレタ
ンを所定量混合使用する事により、はじめて高度
の収縮性を有しかつ良好な耐熱性や形態安定性及
び強度を有するアクリル系合成繊維を得る事が出
来るのである。
次に本発明繊維の製造方法の一例を示して本発
明を更に詳しく説明していく。
アクリロニトリル系重合体は重合体中のアクリ
ロニトリル含有率が88.5重量%、好ましくは89重
量%以上、更に好ましくは89〜94重量%、特に好
ましくは89.5〜93重量%になるよう通常の重合法
にて重合され、残存モノマーの除去後、紡糸溶剤
に溶解しアクリロニトリル系重合体溶液となる。
アクリロニトリル系重合体の重合及び重合体溶液
の調製という工程のプロセスの密閉性、作業性、
ランニング、コスト及び重合体及び重合体溶液の
均一性という点では溶液重合特に有機溶剤例えば
ジメチルホルムアミド、ジメチルスルホキシド或
いはジメチルアセトアミド等を使用した溶液連続
重合が好ましく中でもジメチルホルムアミドが安
定性、取扱い易さ、回収の容易さ及びポリウレタ
ンの溶剤であるという点で最も好ましい。アクリ
ロニトリル系重合体の重合体濃度は粘度、ゲル化
及び可紡性の点で通常15〜35重量%、より好まし
くは20〜30重量%である。
ポリウレタンもジメチルホルムアミド中にて前
述したモノマーを用いて重合され重合体濃度20〜
40重量%の重合体溶液を得る。アクリロニトリル
系重合体紡糸原液とポリウレタン重合体溶液とを
各々重合体比率で50〜95重量部及び50〜5重量
部、好ましくは55〜95重量部及び45〜5重量部、
更に好ましくは60〜90重量部及び40〜10重量部混
合し紡糸原液をつくる。
混合する方法は公知のあらゆる方法が採用でき
る。但し混合比率が高い場合は混合後の紡糸原液
を長時間、特に加熱下で放置するとポリウレタン
の分散形態が凝集巨大化し操作性の低下や品質の
低下を生じ好ましくない。
混合後の紡糸原液は通常の紡糸口金より凝固浴
中へ紡出される。凝固浴は溶剤回収のコスト及び
回収プロセスの簡略化の為に紡糸原液の有機溶剤
と同じ有機溶剤の水溶液とするのが好ましく、有
機溶剤濃度は40〜70重量%、好ましくは50〜65重
量%であり、温度は15〜35℃、好ましくは18〜28
℃とする。
紡糸原液を凝固浴中へ紡出し、凝固糸状は通常
溶剤濃度の順次低下する数槽の紡糸浴を通じて紡
糸延伸をうける。紡糸延伸倍率は通常3倍以上、
好ましくは4〜6倍である。
紡糸延伸後50℃以上の水洗槽にて、水洗し、前
オイル付着後ホツトローラー型或いは熱風乾燥機
との併用の乾燥機にて乾燥、焼づぶしをうける。
前オイルはポリウレタンの含有量が低い場合、
例えば20〜30重量部以下位では通常の難燃アクリ
ル系合成繊維に使用される油剤及び油剤付着量で
よいがポリウレタン含有率が高い場合は乾燥工程
にて幾分膠着しやすい傾向にある為に油剤も分繊
性にすぐれたものや油剤付着量の増加等を考慮す
る必要がある。この乾燥工程では定長緊張乾燥よ
りも10%前後の若干の収縮を行なわせた方が乾
燥、焼きつぶし効果及び機械的な無理の防止等で
好ましい。
通常のレギユラーアクリル繊維では乾燥前に一
次延伸を行なう方法が多く用いられているが高収
縮繊維の製造においては、乾燥後に一次延伸を行
なつた方が収縮性能、繊維の光沢や染色性という
点でより効果的である。
一次延伸は湿熱60〜110℃、好ましくは80〜100
℃であり、一次延伸倍率はアクリロニトリル系重
合体中のアクリロニトリルの量及び繊維中のポリ
ウレタンの含有率によつて異なつてくるが、収縮
性能、強度、光沢、染色性いつた繊維性能及び操
業性、生産性等より過延伸領域に入る直前の延伸
倍率で行なう方がよい。一次延伸倍率と繊維性
能、ここでは収縮率との関係をみると、延伸倍率
の低いところでは延伸倍率の増加とともに収縮率
も増大していくが延伸倍率がある倍率以上になる
と収縮率が飽和に達したり、或いは逆に延伸倍率
の低下が生じる。この延伸倍率以上を過延伸領域
と呼ぶ。この過延伸領域では収縮率の飽和及び低
下はもちろんであるが繊維の強伸度の低下、染色
性の低下、単糸切れ等種々の欠点が発生してく
る。
本発明の高収縮性のアクリル系合成繊維はポリ
ウレタンを5〜50重量部含有する為にこの過延伸
領域がポリウレタンを含有しないアクリロニトリ
ル系合成繊維に比較してより高い所にありその為
に高収縮率が容易に達成できかつ生産性も高く、
又単糸切れやケバ等の品質低下も小さい。
乾燥焼きつぶしの後かつ一次延伸前に一度大き
な連続収縮例えば20〜50%の収縮を行ないその後
一次延伸を行なう工程もとりうる。この一次延伸
前の連続収縮処理は乾燥、焼きつぶしによつて固
定した繊維の構造をもう一度緩和しより伸びやす
くするという効果を有し、収縮性の向上という点
でも好ましい。収縮処理は連続処理だけでなく回
分処理も出来る事はいうまでもない。
一次延伸後の繊維は後オイル付着、機械クリン
プの付与を行ない、100℃好ましくは80℃以下の
温度で収縮が生じないよう乾燥し製品とする。
本発明繊維は従来のアクリル繊維の特徴はもち
ろんであるが、非常に高い収縮率を有しかつ繊維
の強度も十分でありかつ形態安定性が優れてお
り、又35%以上という高い収縮率においても繊維
の硬化、脆化がみられず従来の高収縮繊維と比較
してすぐれた物性を有する。繊維製造の面におい
ても製造工程での全延伸倍率が従来のアクリロニ
トリル系重合体よりも大きく出来る為に生産性の
飛躍的向上がある。
上述してきたように本発明繊維のもつ工業的意
義は極めて大きい。
以下具体的を示して本発明を具体的に説明す
る。実施例中の部、%は特に言及しないかぎり重
量部、重量%を示す。糸質測定はJISL−1074に
より行なつた。
実施例 1
アクリロニトリル:アクリル酸メチル:メタリ
ルスルホン酸ナトリウム=X:(99.6−x):0.4
(%)の組成を有する重合体をジメチルホルムア
ミド(以下DMFと呼称する)中にてアゾビスイ
ソブチロニトリルを開始剤とした溶液重合にて重
合した。重合液より未反応モノマーの除去を行な
いその後重合体濃度23%水分含有率2%になるよ
う水−DMF混合溶液を添加しアクリロニトリル
系重合体溶液を調製した。
次にポリウレタン溶液の製法を述べる。エチレ
ングリコール100部とメチレン−ビス(4−フエ
ニルイソシアネート)40部、トリレンジイソシア
ネート2部とを反応させイソシアネート末端を有
するウレタンプレポリマーを得た。このプレポリ
マーをDMF100部に溶解後、DMF1500部、メチ
ル−イミノ−ビスプロピルアミン2.5部、エチレ
ンジアミン9.5部及びジエタノールアミン1部よ
りなる溶液中に滴下、撹拌しその後ロータリーエ
バポレーターにて重合体濃度23%まで濃縮し粘稠
なポリウレタン溶液を得た。
アクリロニトリル系重合体溶液を100−X部、
ポリウレタン溶液をX部とをプロペラ型撹拌機に
て混合撹拌して紡糸原液を得た。
紡糸原液は孔径0.06mm、孔数4000個の紡糸口金
よりDMF:水=57:43(%)、15℃の凝固浴中へ
紡出された。紡出された糸条はDMF濃度が30%、
15%と順次低下する2個の浴中にて脱溶剤と5.0
倍の紡糸延伸を行ない70℃の水洗槽にて十分に水
洗し、前オイル槽にて油剤を付着した後、120℃
のホツトローラー及び150℃の熱風を有する乾燥
機にて乾燥緻密化した。乾燥後の繊維は湿熱下
125〜130℃にて20%の連続収縮を受け、しかる後
湿熱90〜105℃にて一次延伸を行なつた。一次延
伸倍率は1.0倍、1.1倍、1.2倍、1.3倍、1.4倍……
と倍率を変化させて行なつた。一次延伸後、後オ
イル付着、機械クリンプの付与後60〜70℃にて温
風乾燥後製品を得た。
製品の収縮率は繊維を51mmにカツトしよく解繊
後、ポリエステル製のネツトに入れて沸とう水中
で30分間の処理を行ない処理前後の繊維長より求
めた。結果を第1表に示す。第1表中の延伸倍率
と収縮率は過延伸領域に入る直前の延伸倍率とそ
の時の収縮率を示す。重合性の評価はDMF溶液
重合に於けるゲル化の状態を観察しゲル化傾向の
大きい方から×、△、〇、◎印をつけた。×印で
は短時間でゲル化の傾向を示示し、又◎印では十
分長時間おいてもゲル化しない事を示す。
操業性は紡糸工程での糸切れ、膠着等のトラブ
ル発生の程度を判断したものである。
本検討試料はIR分光分析法及びスルホン酸基
定量法によりアクリロニトリル系重合体組成及び
ポリウレタン含有率を求めた。
The present invention relates to highly shrinkable acrylic synthetic fibers. Due to its good dyeability and rich texture, acrylic fibers are used as an alternative to wool for clothing, bedding, and
Widely used in the interior field. In recent years, advances in processing methods and technology have led to the creation of high-bulk yarns, artificial animal hair, etc. by blending high-shrinkage type fibers. However, due to the instability of the polymer structure of acrylic fibers, when used for a long period of time, the fibers lose their shape (stretching, sagging, denting, deformation, etc.), which significantly reduces their commercial value. This tendency is especially remarkable with shrink type acrylic fibers, and the reason for this is the manufacturing method itself of shrink cotton or high shrink cotton. Conventional methods for manufacturing high-shrinkage cotton include the method shown in Japanese Patent Publication No. 49-8818, etc., in which the amount of plastic components is increased more than usual to increase the stretchability and shrinkage rate, and the method shown in Japanese Patent Publication No. 40-1825, etc. Publication No. 1827-1972, Japanese Patent Publication No. 28897-1977, etc. describe a method in which the tow is dried after stretching under mild conditions, and if necessary, secondary stretching is performed to increase the residual shrinkage rate.
−1462 Publication, Special Publication No. 40-22008, Special Publication No.
Patent Publications No. 42-6013, Japanese Patent Publication No. 42-13747, Japanese Patent Publication No. 49-8818, etc. require sufficient heat treatment after drying.
A method has been proposed in which the residual shrinkage rate is increased by causing shrinkage and then performing secondary stretching. Due to the decrease in heat resistance of the shrink cotton obtained by the first method, the physical properties of the fiber itself (heat resistance, morphological stability, strength, crimp stability, etc.) decrease, and the fiber becomes hard and brittle especially when contracted. It also has a rough texture. Therefore, with a small amount of blended spinning, the bulkiness and improvement in texture are insufficient, and on the contrary, with a large amount of blended spinning, the texture and appearance deteriorate. The fibers obtained by the second and third methods have low physical properties (heat resistance, shape stability, crimp stability, etc.) and have problems such as dyeability and re-transmission during shrinkage. Ta. As mentioned above, high shrinkage acrylic synthetic fibers with high shrinkage rate and commercial performance such as fiber physical properties and texture have not been obtained so far. The present inventors have arrived at the present invention as a result of intensive studies. An object of the present invention is to provide a highly shrinkable acrylic synthetic fiber that has a very large shrinkage rate and also has the excellent properties inherent in acrylic synthetic fiber. The present invention comprises 50 to 95 parts by weight of an acrylonitrile polymer containing at least 88.5% by weight of acrylonitrile, and 50 to 5 parts by weight of a polyurethane which is miscible with and incompatible with the acrylonitrile polymer, and which has the following general properties. It is a highly shrinkable acrylic synthetic fiber whose S-value shown by the formula is 10.35 or more. General formula S=A/4.8+B×(1-A/100) However, A: Content of polyurethane (parts by weight) B: Content of components other than acrylonitrile in the acrylonitrile polymer (% by weight) Acrylonitrile polymer contains at least 88.5% by weight of acrylonitrile and 11.5% by weight or less of plastic components other than acrylonitrile.
If the acrylonitrile content is less than 88.5% by weight, the shrinkage rate will increase, but other required qualities of the fiber,
Performance, for example, a decrease in heat resistance, resulting in a decrease in operability and productivity in the manufacturing process, a decrease in uniformity of quality, an increase in troubles in processing after dyeing, and product quality such as hardening of texture and embrittlement of fibers, etc. This also causes major drawbacks as a product, such as deformation due to lack of morphological stability. fiber manufacturing process,
Considering the post-processing process and product performance, etc., the acrylonitrile content is preferably 89% by weight or more, more preferably 89-94% by weight, and particularly preferably 89.5% by weight.
~93% by weight. Other monomers that can be copolymerized with acrylonitrile-based polymers include hydrophobic neutral monomers such as acrylic esters, methacrylic esters, vinyl acetate, styrene, acrylamide, methacrylamide, N-methylacrylamide, NN-dimethylacrylamide, N-
Acrylic morpholine, N-acrylthiomorpholine, N-vinyl-N-methylformamide, N-
Hydrophilic monomers such as vinyl-N-methylacetamide, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylpiperidine, P-styrenesulfonic acid, methallylsulfonic acid, allylsulfonic acid, acrylic acid, methacrylic acid, vinyl Benzoic acid or salts thereof, 2-vinylpyridine, 2
Examples include ionic monomers such as -methyl-5-vinylpyridine. As the ionic monomer, sodium allylsulfonate and sodium methallylsulfonate are preferred from the viewpoint of cost, polymerizability, ease of handling, etc., and the amount may be 0.3 to 1.0% by weight. Common polyurethanes are used in the present invention, and examples of polyurethanes include polyester, polyether, polyester ether, polyester amide, and polythioether polyurethanes, specifically ethylene glycol, propylene glycol, etc. , butylene glycol, hexamethylene glycol, 1-4-
cyclohexyl glycol, P-xylene glycol, or bisphenol-A and adipic acid,
Polyesters made of suberic acid, sebacic acid, terephthalic acid, isophthalic acid or γ-lactone, polyesteramides made of adipic acid-diethanolamide or terephthalic acid-bis-propanolamide and the aforementioned dicarboxylic acids, diethylene glycol, triethylene glycol, 1.4-Phenylene-bisoxyethyl ether or 2-2'-diphenylpropane-4.4-
Polyester ethers made from bisoxyethyl ether and the aforementioned dicarboxylic acids, polyethers made from ethylene oxide, propylene oxide, and tetrahydrofuran, polythioethers such as thiodiglycol, etc. with a molecular weight of 200.
Linear polymers with ~3000 terminal hydroxyl groups are prepared using organic diisocyanates such as 1-3-phenylene diisocyanate, 1-4-phenylene diisocyanate, 2-4-tolylene diisocyanate, 4.4'-
Diphenylmethane diisocyanate, hexamethylene diisocyanate, xylene diisocyanate or 1,5-naphthylene diisocyanate and 2
It is a polyurethane polymer reacted with a chain extender of a hydrolic alcohol using a known polymerization method. The degree of polymerization of the polyurethane is preferably such that the viscosity of a dimethylformamide solution with a polymer concentration of 20% by weight at 20°C is 20 poise or more. Also, the elastic modulus of polyurethane is
The initial elastic modulus at 100% elongation is preferably 40 kg/cm 2 or more. The acrylonitrile polymer and polyurethane need to be miscible in a mixed solution, but not compatible with each other. If the compatibility between the acrylonitrile polymer and polyurethane is high, the two will become a sufficiently homogeneous solution even at a large mixing ratio, and a new molecular arrangement structure will be formed, which will lead to a decrease in the heat resistance and strength of the fiber. This causes a decrease in elasticity, stiffness, and dyeability. Only by mixing miscible but incompatible materials can fibers of good quality be produced over a wide range of mixing ratios without reducing operability, productivity, etc. Being miscible means that when an acrylonitrile polymer and polyurethane are mixed (for example, when both are mixed in solution or when the other polymer is dissolved and mixed in one solution)
This indicates that one component is well dispersed and mixed in the other without gelation or aggregation. In addition, when polyurethane is mixed with an acrylonitrile polymer when there is no compatibility, the mixed solution is not homogeneous, not only by visual observation but also by microscopic observation (approximately 600 to 1000 times magnification), or when the mixed solution is dried up. This shows that when the film obtained by this method is stretched, whitening or porosity is observed. The composition of the fiber of the present invention is an acrylonitrile polymer.
50 to 95 parts by weight and 50 to 5 parts by weight of polyurethane, preferably 55 to 95 parts by weight of acrylonitrile polymer and 45 to 5 parts by weight of polyurethane, more preferably 60 to 90 parts by weight of acrylonitrile polymer and 40 to 10 parts by weight of polyurethane. Department. When the acrylonitrile polymer is more than 95 parts by weight and the polyurethane is less than 5 parts by weight, the shrinkage rate of the fibers is insufficient, the heat resistance and shape stability of the fibers are insufficient, or the appearance or appearance of the product is The texture is poor and rough. If the acrylonitrile polymer is less than 50 parts by weight and the polyurethane is more than 50 parts by weight, the phase separation between the two may become very large, or a structure in which the acrylonitrile polymer component is dispersed as island components in the polyurethane component may be formed. This should be avoided since not only does this cause a rapid decrease in fiber strength, dyeability and stiffness, but also the shrinkage reaches saturation. In order for the fiber of the present invention not only to have a sufficient shrinkage rate but also to be excellent in productivity, fiber physical properties, product performance, etc. as described above, the composition of the acrylonitrile polymer and the content of the acrylonitrile polymer and polyurethane as described above are required. The ratio must be satisfied, and the S-value shown in the above general formula must be 10.35 or more, preferably 11.35 or more. This is a standard for performance, and if the S-value is less than 10.35, sufficient shrinkage and the above-mentioned performance cannot be obtained. It is not clear why the fibers of the present invention have both sufficient shrinkage and good morphological stability, which were previously thought to be contradictory properties, but a thorough observation of the morphology and structure of the fibers of the present invention reveals that
Polyurethane exists in the acrylonitrile polymer as a phase-separated and dispersed island-like polyurethane, and the island-like polyurethane is elongated in the fiber axis direction and usually has a short axis due to the spinning of the acrylic fiber and stretching during the manufacturing process. It has an elongated form with a long axis ratio of 1:5 or more, more preferably 1:10 or more, and since this elongated polyurethane is an elastic polymer, it has a large amount of energy to contract. When fibers in this state are heated, for example when immersed in boiling water, the softening and shrinking force of the acrylonitrile polymer is combined with the shrinkage energy of the polyurethane, resulting in a fiber that far exceeds that of ordinary acrylonitrile synthetic fibers. It seems to show great contractility. The fiber of the present invention easily shrinks when heated in water, steam, or air, but the shrinkage rate in boiling water should preferably be 30% or more, and more preferably 35% or more. . Shrinkage rate
If it is less than 30%, the above-mentioned performance as high shrinkage cotton may not be fully exhibited. As mentioned above, by using an acrylonitrile-based polymer as a base material and mixing it with a predetermined amount of polyurethane, which is incompatible with it, it is possible to achieve a high degree of shrinkage, as well as good heat resistance, morphological stability, and strength. Therefore, it is possible to obtain acrylic synthetic fibers that have the following characteristics. Next, the present invention will be explained in more detail by showing an example of a method for producing the fiber of the present invention. The acrylonitrile-based polymer is produced by a normal polymerization method so that the acrylonitrile content in the polymer is 88.5% by weight, preferably 89% by weight or more, more preferably 89 to 94% by weight, particularly preferably 89.5 to 93% by weight. After polymerization and removal of residual monomers, it is dissolved in a spinning solvent to become an acrylonitrile polymer solution.
The sealability and workability of the process of polymerizing acrylonitrile polymer and preparing the polymer solution,
In terms of running time, cost, and uniformity of the polymer and polymer solution, solution polymerization, especially continuous solution polymerization using an organic solvent such as dimethylformamide, dimethylsulfoxide, or dimethylacetamide, is preferred, and among these, dimethylformamide is preferred due to its stability, ease of handling, It is most preferred in terms of ease of recovery and being a solvent for polyurethane. The polymer concentration of the acrylonitrile-based polymer is usually 15 to 35% by weight, more preferably 20 to 30% by weight in terms of viscosity, gelation, and spinnability. Polyurethane is also polymerized using the monomers mentioned above in dimethylformamide and the polymer concentration is 20~
A 40% by weight polymer solution is obtained. 50 to 95 parts by weight and 50 to 5 parts by weight, preferably 55 to 95 parts by weight and 45 to 5 parts by weight of the acrylonitrile polymer spinning stock solution and the polyurethane polymer solution, respectively,
More preferably, 60 to 90 parts by weight and 40 to 10 parts by weight are mixed to prepare a spinning dope. Any known mixing method can be used. However, if the mixing ratio is high, if the spinning stock solution after mixing is left for a long time, especially under heating, the dispersed form of polyurethane will become aggregated and large, resulting in a decrease in operability and quality, which is undesirable. After mixing, the spinning dope is spun into a coagulation bath through a conventional spinneret. In order to reduce the cost of solvent recovery and simplify the recovery process, the coagulation bath is preferably an aqueous solution of the same organic solvent as that of the spinning dope, and the organic solvent concentration is 40 to 70% by weight, preferably 50 to 65% by weight. and the temperature is 15-35℃, preferably 18-28℃
℃. The spinning dope is spun into a coagulation bath, and the coagulated filament is normally subjected to spinning and drawing through several spinning baths in which the solvent concentration is sequentially decreased. The spinning draw ratio is usually 3 times or more,
Preferably it is 4 to 6 times. After spinning and drawing, it is washed with water in a washing tank at 50°C or higher, and after pre-applying oil, it is dried and baked in a hot roller type dryer or a dryer combined with a hot air dryer. If the previous oil has a low polyurethane content,
For example, if it is less than 20 to 30 parts by weight, the amount of oil and oil adhesion that is used for ordinary flame-retardant acrylic synthetic fibers will suffice, but if the polyurethane content is high, it will tend to stick to some extent during the drying process. It is also necessary to consider factors such as an oil agent with excellent fiber splitting properties and an increase in the amount of oil adhesion. In this drying process, it is preferable to cause a slight contraction of around 10% rather than constant length tension drying in terms of drying, burning effect, and prevention of mechanical stress. For ordinary regular acrylic fibers, primary stretching is often used before drying, but in the production of high-shrinkage fibers, primary stretching after drying improves shrinkage performance, fiber luster, and dyeability. more effective in some respects. Primary stretching is done under moist heat at 60-110℃, preferably at 80-100℃
℃, and the primary stretching ratio varies depending on the amount of acrylonitrile in the acrylonitrile polymer and the content of polyurethane in the fiber, but it is suitable for shrinkage performance, strength, gloss, dyeability, fiber performance, and workability. From the viewpoint of productivity etc., it is better to carry out the stretching at a stretching ratio immediately before entering the over-stretching region. Looking at the relationship between the primary draw ratio and fiber performance, here the shrinkage rate, we find that at low draw ratios, the shrinkage rate increases as the draw ratio increases, but when the draw ratio exceeds a certain value, the shrinkage rate reaches saturation. Or, conversely, the draw ratio decreases. A stretching ratio equal to or higher than this stretching ratio is called an overstretching region. In this over-stretching region, not only saturation and decrease in shrinkage rate but also various defects occur such as decrease in fiber strength and elongation, decrease in dyeability, and single yarn breakage. Since the high-shrinkage acrylic synthetic fiber of the present invention contains 5 to 50 parts by weight of polyurethane, this overstretched region is higher than that of acrylonitrile-based synthetic fiber that does not contain polyurethane, resulting in high shrinkage. rate is easily achieved and productivity is high.
In addition, quality deterioration such as single thread breakage and fuzzing is small. After drying and crushing and before primary stretching, a step of performing large continuous shrinkage, for example 20 to 50%, may be performed and then primary stretching is performed. This continuous shrinkage treatment before the primary stretching has the effect of once again relaxing the structure of the fibers fixed by drying and burning, making them easier to stretch, and is also preferable from the point of view of improving shrinkability. It goes without saying that shrinkage processing can be performed not only continuously but also batchwise. After the primary drawing, the fibers are subjected to subsequent oil application and mechanical crimping, and are dried at a temperature of 100°C, preferably 80°C or below, so as not to cause shrinkage, to form a product. The fibers of the present invention not only have the characteristics of conventional acrylic fibers, but also have a very high shrinkage rate, sufficient fiber strength, and excellent shape stability. The fibers do not harden or become brittle, and have superior physical properties compared to conventional high shrinkage fibers. In terms of fiber production, the total stretching ratio in the production process can be made larger than that of conventional acrylonitrile polymers, resulting in a dramatic improvement in productivity. As mentioned above, the industrial significance of the fiber of the present invention is extremely large. The present invention will be explained in detail below with specific details. Parts and % in the examples indicate parts by weight and % by weight unless otherwise specified. The fiber quality was measured according to JISL-1074. Example 1 Acrylonitrile: Methyl acrylate: Sodium methallylsulfonate = X: (99.6-x): 0.4
(%) was polymerized in dimethylformamide (hereinafter referred to as DMF) by solution polymerization using azobisisobutyronitrile as an initiator. Unreacted monomers were removed from the polymerization solution, and then a water-DMF mixed solution was added so that the polymer concentration was 23% and the water content was 2% to prepare an acrylonitrile polymer solution. Next, a method for producing a polyurethane solution will be described. 100 parts of ethylene glycol, 40 parts of methylene-bis(4-phenyl isocyanate), and 2 parts of tolylene diisocyanate were reacted to obtain a urethane prepolymer having isocyanate ends. After dissolving this prepolymer in 100 parts of DMF, it was added dropwise to a solution consisting of 1500 parts of DMF, 2.5 parts of methyl-imino-bispropylamine, 9.5 parts of ethylenediamine, and 1 part of diethanolamine, and the mixture was stirred and then used in a rotary evaporator to reach a polymer concentration of 23%. A concentrated and viscous polyurethane solution was obtained. 100-X parts of acrylonitrile polymer solution,
The polyurethane solution and part X were mixed and stirred using a propeller type stirrer to obtain a spinning stock solution. The spinning stock solution was spun into a coagulation bath containing DMF:water = 57:43 (%) at 15°C from a spinneret with a pore diameter of 0.06 mm and 4000 holes. The spun yarn has a DMF concentration of 30%,
Solvent removal and 5.0 in two baths decreasing sequentially to 15%
After spinning and drawing twice as much, thoroughly washing with water in a 70°C water washing tank, and applying an oil agent in the previous oil tank, 120°C
It was dried and densified using a hot roller and a dryer with hot air at 150°C. After drying, the fibers are placed under moist heat.
It underwent continuous shrinkage of 20% at 125-130°C, and then primary stretching at 90-105°C with wet heat. The primary stretching ratio is 1.0x, 1.1x, 1.2x, 1.3x, 1.4x...
This was done by varying the magnification. After primary stretching, post-oil application, mechanical crimp, and drying with hot air at 60 to 70°C, a product was obtained. The shrinkage rate of the product was determined by cutting the fibers into 51 mm pieces, defibrating them thoroughly, placing them in a polyester net and treating them in boiling water for 30 minutes, and determining the fiber length before and after treatment. The results are shown in Table 1. The stretching ratio and shrinkage ratio in Table 1 indicate the stretching ratio immediately before entering the overstretching region and the shrinkage ratio at that time. For evaluation of polymerization, the state of gelation during DMF solution polymerization was observed, and marks such as ×, △, 〇, and ◎ were assigned in descending order of gelation tendency. The × mark indicates a tendency to gel in a short time, and the ◎ mark indicates that gelation does not occur even after a sufficiently long period of time. Operability is a judgment of the extent of troubles such as yarn breakage and sticking during the spinning process. The acrylonitrile polymer composition and polyurethane content of this sample were determined by IR spectroscopy and sulfonic acid group determination.
【表】【table】
Claims (1)
有するアクリロニトリル系重合体50〜95重量部
と、該アクリロニトリル系重合体と混和性を有し
かつ非相溶性のポリウレタン50〜5重量部とより
なりかつ下記一般式で示すS値が10.35以上であ
る高収縮性のアクリル系合成繊維。 一般式 S=A/4.8+B×(1−A/100) 但し、A:ポリウレタンの含有率(重量部) B:アクリロニトリル系重合体中のアクリロニ
トリル以外の成分含有率(重量%) 2 アクリロニトリル系重合体がアクリロニトリ
ルを少なくとも89重量%含有する特許請求の範囲
第1項記載の繊維。 3 アクリロニトリル系重合体55〜95重量部とポ
リウレタン45〜5重量部とよりなる特許請求の範
囲第1項記載の繊維。 4 アクリロニトリル系重合体60〜90重量部とポ
リウレタン40〜10重量部とよりなる特許請求の範
囲第1項又は第3項記載の繊維。 5 上記一般式で示すS−値が11.35以上である
特許請求の範囲第1〜第4項のいずれかに記載の
繊維。 6 熱水収縮率が30%以上である特許請求の範囲
第1〜第5項記載の繊維。[Scope of Claims] 1. 50 to 95 parts by weight of an acrylonitrile polymer containing at least 88.5% by weight of acrylonitrile, and 50 to 5 parts by weight of a polyurethane that is miscible with and incompatible with the acrylonitrile polymer. A highly shrinkable acrylic synthetic fiber having an S value of 10.35 or more as expressed by the following general formula. General formula S=A/4.8+B×(1-A/100) However, A: Content of polyurethane (parts by weight) B: Content of components other than acrylonitrile in the acrylonitrile polymer (% by weight) 2 Acrylonitrile weight 2. The fiber of claim 1, wherein the aggregate contains at least 89% by weight acrylonitrile. 3. The fiber according to claim 1, comprising 55 to 95 parts by weight of an acrylonitrile polymer and 45 to 5 parts by weight of polyurethane. 4. The fiber according to claim 1 or 3, comprising 60 to 90 parts by weight of an acrylonitrile polymer and 40 to 10 parts by weight of polyurethane. 5. The fiber according to any one of claims 1 to 4, which has an S-value represented by the above general formula of 11.35 or more. 6. The fiber according to claims 1 to 5, which has a hot water shrinkage rate of 30% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2541183A JPH0227444B2 (en) | 1983-02-16 | 1983-02-16 | KOSHUSHUKUSEINOAKURIRUKEIGOSEISENI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2541183A JPH0227444B2 (en) | 1983-02-16 | 1983-02-16 | KOSHUSHUKUSEINOAKURIRUKEIGOSEISENI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59150112A JPS59150112A (en) | 1984-08-28 |
JPH0227444B2 true JPH0227444B2 (en) | 1990-06-18 |
Family
ID=12165178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2541183A Expired - Lifetime JPH0227444B2 (en) | 1983-02-16 | 1983-02-16 | KOSHUSHUKUSEINOAKURIRUKEIGOSEISENI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0227444B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100807041B1 (en) | 2004-12-31 | 2008-02-25 | 주식회사 효성 | Elastic Fiber with Easy Setting Property |
-
1983
- 1983-02-16 JP JP2541183A patent/JPH0227444B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS59150112A (en) | 1984-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI314168B (en) | High self-crimping polyester conjugate yarn and process of producing thereof | |
US4409289A (en) | Cellulose-acrylonitrile polymer solutions, articles, and methods of making same | |
DE3535368C2 (en) | Polyacrylonitrile fiber with high strength and high modulus of elasticity | |
JPH0227444B2 (en) | KOSHUSHUKUSEINOAKURIRUKEIGOSEISENI | |
JPS5936720A (en) | Acrylic conjugate fiber having high shrink characteristics | |
WO2015151220A1 (en) | Polyamide latent crimped yarn and method for manufacturing same | |
JPH06158422A (en) | Flame-retardant acrylic fiber having high shrinkage | |
JPH0830283B2 (en) | Method for producing polyphenylene sulfide monofilament | |
JPH11222745A (en) | Production of polyester-based combined filament yarn and knitted fabric | |
JPH09250024A (en) | Pill-resistant ultrafine acrylic fiber and its production | |
JPS6221817A (en) | Ultra-high speed spinning of polyester fiber | |
JPH0227443B2 (en) | KOSHUSHUKUSEINONANNENAKURIRUKEIGOSEISENI | |
JP2566890B2 (en) | Flame-retardant acrylic high shrink fiber | |
JPH02264024A (en) | Latently bulky acrylic mixed yarn | |
JP2566891B2 (en) | Flame-retardant acrylic high shrink fiber | |
JPH02277810A (en) | Flame-retardant high-shrinkage modacrylic fiber | |
JPS6081316A (en) | Conjugated yarn of sheath-core type | |
DE3021889A1 (en) | POROESE, FIRE-COMBUSTIBLE SYNTHETIC ACRYLIC FIBERS AND METHOD FOR THE PRODUCTION THEREOF | |
JP2601775B2 (en) | Flame retardant acrylic composite fiber | |
JP3128529B2 (en) | Method for producing cationically dyeable spontaneously extensible polyester filament yarn, and method for producing fabric using filament yarn obtained by the method | |
JPS5936718A (en) | Conjugated fiber | |
JPS5982410A (en) | Flame-proofing acrylic composite fiber having latent crimpability | |
JP3796522B2 (en) | Polyester different shrinkage mixed yarn | |
JPS59116409A (en) | Production of acrylic yarn having pilling resistance | |
JP2519185B2 (en) | Flame-retardant acrylic composite fiber |