JPH02274405A - Polycrystal diamond tool for cutting - Google Patents

Polycrystal diamond tool for cutting

Info

Publication number
JPH02274405A
JPH02274405A JP9322489A JP9322489A JPH02274405A JP H02274405 A JPH02274405 A JP H02274405A JP 9322489 A JP9322489 A JP 9322489A JP 9322489 A JP9322489 A JP 9322489A JP H02274405 A JPH02274405 A JP H02274405A
Authority
JP
Japan
Prior art keywords
diamond
tool
cutting
polycrystalline diamond
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9322489A
Other languages
Japanese (ja)
Other versions
JP2722649B2 (en
Inventor
Tetsuo Nakai
哲男 中井
Keizo Asai
浅井 敬三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1093224A priority Critical patent/JP2722649B2/en
Publication of JPH02274405A publication Critical patent/JPH02274405A/en
Application granted granted Critical
Publication of JP2722649B2 publication Critical patent/JP2722649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To facilitate work so as to make it possible to manufacture a rotary tool and reinforce its edge point by connecting sintered diamond of 0.05 to 0.2mm thickness to an alloy of cemented carbide or the like and reducing a diamond area when a flank is ground by a diamond glindstone. CONSTITUTION:Polycrystal diamond of 0.2mm or less and 0.05mm or more thickness, which is sintered diamond manufactured by the gas phase synthesizing method or under a condition of super high pressure and high temperature, is connected to cemented carbide or steel. A thin film of Ti or Ti compound and iron group metal or the like adheres to a polycrystal diamond surface connected to the cemented carbide or the steel by silver brazing and palladium brazing or a Ni steel material and the like. A rotary tool of diameter less than 6mm can be also manufactured by setting a wedge angle in the tool edge point to 40 deg. to 75 deg., and a polycrystal diamond tool for cutting excellent in its wear resistance and defect resistance and with a low cost is manufactured, showing performance excellent in non-metal cutting, facilitating edging and easily obtaining also dimensional accuracy.

Description

【発明の詳細な説明】 11111月11 本発明は耐摩耗性と耐欠損性に優れ、かつ安価な切削用
多結晶ダイヤモンド工具に関する。
DETAILED DESCRIPTION OF THE INVENTION November 11, 111 The present invention relates to a polycrystalline diamond tool for cutting which has excellent wear resistance and chipping resistance and is inexpensive.

良え東且l ダイヤモンドは硬度と熱伝導率が高いため切削工具や耐
摩工具として使用されている。しかし単結晶ダイヤモン
ドは壁間する欠点があるので、この欠点を抑制するため
特公昭52−12126号公報に記載されているように
超高圧焼結技術を用いてダイヤモンド工具を結晶した焼
結ダイヤモンドが開発され市販されている。
Due to its hardness and high thermal conductivity, diamond is used as cutting tools and wear-resistant tools. However, single-crystal diamond has the disadvantage of inter-wall formation, so in order to suppress this disadvantage, sintered diamond is made by crystallizing diamond tools using ultra-high pressure sintering technology, as described in Japanese Patent Publication No. 52-12126. developed and commercially available.

これらの焼結ダイヤモンドは一般に超硬合金母材上に厚
さ0.5〜1.0@園の焼結ダイヤモンド層が接合され
たもので、超硬合金母材は焼結ダイヤモンドの強度向上
と鑞付けを可能にするため超高圧焼結時にダイヤモンド
粒子の焼結と同時に接合されたものであり、そして非鉄
金属の切削加工用工具、木材や無機物質の切削加工用工
具あるいは岩石掘削用ビットとして優れた性能を示すも
のである。
These sintered diamonds are generally made by bonding a sintered diamond layer with a thickness of 0.5 to 1.0 mm on a cemented carbide base material, and the cemented carbide base material improves the strength of the sintered diamond. It is joined together with diamond particles during ultra-high pressure sintering to enable brazing, and can be used as a tool for cutting non-ferrous metals, a tool for cutting wood and inorganic materials, or a bit for rock drilling. This shows excellent performance.

また近年は超高圧高温技術を使用せずに、特公昭59−
27753号、特公昭59−27754号各公報に記載
されているような気相ダイヤモンド合成法の研究が情力
的“に行われている。この多結晶ダイヤモンドは超高圧
により製造された焼結ダイヤモンドのように溶媒として
の鉄族金属を含有しないため耐熱性に優れており、また
非鉄金属の切削加工においても優れた性能を示すもので
ある。
In addition, in recent years, special public
No. 27753 and Japanese Patent Publication No. 59-27754, research on the vapor phase diamond synthesis method is being enthusiastically carried out. This polycrystalline diamond is a sintered diamond produced under ultra-high pressure. As it does not contain iron group metals as solvents, it has excellent heat resistance, and also shows excellent performance in cutting non-ferrous metals.

光31」1魁しλうとも4課1 従来超高圧焼結技術を用いて製造した焼結ダイヤモンド
を切削工具の刃先材料として使用する場合、焼結ダイヤ
モンド面をラッピングにより平滑にした後超硬合金やf
Il製の合金に鑞付けし逃げ面となる焼結ダイヤモンド
と超硬合金母材をダイヤモンド砥石により加工して刃付
けを行うとともに寸法精度を出している。この場合焼結
ダイヤモンドはダイヤモンド砥石との共削りにより削り
出されるため、能率が悪く、加工コストが高い問題があ
った。また、従来の焼結ダイヤモンドは0.5m■以上
の焼結ダイヤモンドに超硬合金が接合しであるため、小
径のエンドミルやリーマ等の回転工具を製造するのが困
難であった。さらに前述したように、焼結ダイヤモンド
はこの強度を向1−させるために接合されであるが、切
削工具として用いた場合仕上加工が多く、切れ味を増す
ため刃先のくさび角を小さ(すると、断続切削では刃先
のみがチンピングし、超硬合金の接合による強度向上が
認められた。
Hikari 31" 1 Kaishi λ Utomo 4 Section 1 When using sintered diamond manufactured using conventional ultra-high pressure sintering technology as the cutting edge material of a cutting tool, the surface of the sintered diamond is smoothed by lapping and then cemented carbide is used. Yaf
The sintered diamond and cemented carbide base material that form the flanks of the Il alloy are brazed and machined using a diamond grindstone to sharpen the blade and provide dimensional accuracy. In this case, since the sintered diamond is cut by co-cutting with a diamond grindstone, there are problems with low efficiency and high processing costs. Furthermore, since conventional sintered diamond is made by bonding cemented carbide to sintered diamond of 0.5 m or more, it is difficult to manufacture small-diameter rotary tools such as end mills and reamers. Furthermore, as mentioned above, sintered diamond is bonded to improve its strength, but when used as a cutting tool, it often requires finishing, and the wedge angle of the cutting edge is reduced to increase sharpness (this results in intermittent During cutting, only the cutting edge chimed, indicating that the strength was improved by joining the cemented carbide.

課 を ゛するための手段 本発明者等は上記焼結ダイヤモンド工具の欠点を改質す
るため鋭、α研究を重ねた。その結果厚さ 0.2−膳
以下0.05膳1以上の焼結ダイヤモンドを超硬合金あ
るいは鋼の合金に接合すれば、ダイヤモンド砥石による
逃げ面加工時に焼結ダイヤモンドの面積が減るため、加
工時間の短縮が可能になるとともに、小径のエンドミル
やリーマ等の回転工具も作成することができ、さらに工
具刃先は強度の高い超硬合金や鋼の合金に近いため刃先
の補強が1分可能であることを見い出した。
Means for solving the problem The inventors of the present invention have conducted extensive research in order to improve the above-mentioned drawbacks of the sintered diamond tool. As a result, if a sintered diamond with a thickness of 0.2 - 0.05 - 1 or more is bonded to a cemented carbide or steel alloy, the area of the sintered diamond will be reduced when machining the flank surface with a diamond grindstone. In addition to saving time, it is also possible to create small-diameter rotary tools such as end mills and reamers, and since the tool edge is similar to high-strength cemented carbide or steel alloy, the edge can be reinforced in one minute. I discovered something.

すなわら、本発明は厚さ0.2■以下0.05mm以ト
、好ましくはO,15m5以下0.08璽−以上の多結
晶ダイヤモンドが、超硬合金又は鋼に接合されたことを
特徴とする切削用多結晶ダイヤモンド層只を提供する。
That is, the present invention is characterized in that polycrystalline diamond with a thickness of 0.2 mm or less and 0.05 mm or more, preferably 15 m5 or less and 0.08 mm or more, is bonded to cemented carbide or steel. A polycrystalline diamond layer for cutting is provided.

本発明の多結晶ダイヤモンド切削用工具は一般に次のよ
うにして製造する。先ず多結晶ダイヤモンドを超高圧高
温下で焼結して製造するか、マイクロ波CVD法やフィ
ラメント法等の気相合成法により製造する。すなわち、
超高圧焼結法の場合は、先ず放電加工等により0.05
〜0.21働の厚さの板を切出した後接合される面にス
パンタリングやイオンブレーティング法によりTiとN
i等の鉄族金属をコーティングした後ロー付により合金
に接合する。また刃先材料として気相合成ダイヤモンド
膜を使用する場合は、Si、M。
The polycrystalline diamond cutting tool of the present invention is generally manufactured as follows. First, it is manufactured by sintering polycrystalline diamond under ultra-high pressure and high temperature, or by a vapor phase synthesis method such as a microwave CVD method or a filament method. That is,
In the case of the ultra-high pressure sintering method, first 0.05
After cutting a plate with a thickness of ~0.21 mm, Ti and N are applied to the surfaces to be joined by sputtering or ion blating.
After coating with iron group metal such as i, it is joined to the alloy by brazing. In addition, when using a vapor-phase synthetic diamond film as the cutting edge material, Si, M.

等の)lF、板上に成長したダイヤモンド膜を酸処理で
基板を溶解し、その後接合される面に上記と同様の方法
でTiと鉄族金属をコーティングして合金にロー付けす
る。焼結ダイヤモンドはロー付けが不可能であるため台
金へ鑞付けする場合は接合しようとする焼結ダイヤモン
ド面にTiあるいはTiの化合物のF4膜を付着させた
後鉄族金属薄膜を形成させTiの酸化を防止すれば鑞付
けすることが可能となるわけである。
etc.), the diamond film grown on the plate is dissolved by acid treatment, and then the surfaces to be joined are coated with Ti and iron group metals in the same manner as above and brazed to the alloy. Sintered diamond cannot be brazed, so when brazing it to a base metal, an F4 film of Ti or a Ti compound is attached to the surface of the sintered diamond to be joined, and then an iron group metal thin film is formed. If oxidation of the material is prevented, brazing becomes possible.

本発明の工具として最も特徴を生かすことができるのは
、第一は工具の切れ味が要求されるもので、この場合、
工具刃先のくさび角は40゜〜75°のものが良好な性
能を示す、くさび角が45°未満では刃先強度が不足し
て刃先が欠損し、75°を超すと切れ味が低下して好ま
しくない。
The characteristics of the tool of the present invention can be most utilized in the first case where the sharpness of the tool is required, and in this case,
A wedge angle of 40° to 75° for the tool cutting edge shows good performance. If the wedge angle is less than 45°, the strength of the cutting edge is insufficient and the cutting edge will break, and if it exceeds 75°, the cutting quality will deteriorate, which is undesirable. .

第二の工具としては前述の如く、小径のエンドミル、リ
ーフ等の回転工具で、通常の焼結ダイヤモンドで径が6
1111以下では作成が困難な工具である。特に本発明
の工具は多結晶ダイヤモンドが薄いため、複数の切刃を
有する小径の回転工具の製造が容易である。本発明の多
結晶ダイヤモンド工具において、刃先となる多結晶ダイ
ヤモンドの厚さは0.2〜0.05m−である、一般に
多結晶ダイヤモンド膜貝で非鉄金属等を切削加工する場
合、14番逃げ面摩耗幅が0.05m5程度で切れ味が
悪くなり寿命となるため、多結晶ダイヤモンドの厚さは
最低0.05量園あれば良い、この厚さが0.05−m
未満では、’IN寿命が短くなり満足される性能は示さ
ない、多結晶ダイヤモンドの厚さが0.2mmを超える
と、刃付は加工に時間を要し、また刃先の補強が不十分
となり、さらには小径の回転工具の製造が困難となり好
ましくない。
As mentioned above, the second tool is a rotary tool such as a small-diameter end mill or leaf, and the diameter is 6 mm using ordinary sintered diamond.
If the diameter is less than 1111, it is difficult to create a tool. In particular, since the tool of the present invention is made of thin polycrystalline diamond, it is easy to manufacture a small-diameter rotary tool having multiple cutting edges. In the polycrystalline diamond tool of the present invention, the thickness of the polycrystalline diamond serving as the cutting edge is 0.2 to 0.05 m.Generally, when cutting non-ferrous metals etc. with a polycrystalline diamond film shell, the number 14 flank When the wear width is about 0.05 m5, the cutting quality becomes poor and the life of the diamond is reached, so the thickness of the polycrystalline diamond should be at least 0.05 m.
If the thickness of the polycrystalline diamond exceeds 0.2 mm, it will take time to process the cutting edge, and the reinforcement of the cutting edge will be insufficient. Furthermore, it becomes difficult to manufacture small-diameter rotary tools, which is undesirable.

第1図は上記第一の工具に相当する工具の例を示し、気
相合成ダイヤモンド膜11.14をロー材12により超
硬合金台金13.15にロー付してなるリーマである。
FIG. 1 shows an example of a tool corresponding to the first tool, which is a reamer formed by brazing a vapor-phase synthetic diamond film 11.14 to a cemented carbide base metal 13.15 with a brazing material 12.

αは工具刃先のくさび角を示す。α indicates the wedge angle of the tool cutting edge.

第2図は上記第二の工具に相当する例で、焼結ダイヤモ
ンド膜1.2.3をロー材5,6により超硬合金台金4
に接合したエンドミルである。
Figure 2 shows an example corresponding to the second tool described above, in which the sintered diamond film 1.2.3 is applied to the cemented carbide base 4 by brazing materials 5 and 6.
This is an end mill joined to.

第3図は従来の焼結ダイヤモンドエンドミルの例を示す
、7は焼結ダイヤモンド、8は超硬合金母材、9はロー
材、11は超硬合金台金である。
FIG. 3 shows an example of a conventional sintered diamond end mill, in which 7 is sintered diamond, 8 is a cemented carbide base material, 9 is a brazing material, and 11 is a cemented carbide base metal.

作−mm 本発明工具は特に非鉄金属の切削加工用工具として適し
ている。特に工具刃先のくさび角が40°〜75°の切
削用多結晶ダイヤモンド工具は切れ味が良く、被削材の
変形がほとんど生じることなく加工可能であるのでAl
合金等の薄肉部品の加工等に優れた性能を発揮する。ま
た多結晶ダイヤモンドは非鉄金属との耐溶着性に優れて
いるため、良好な被削面を得ることができる。
The tool of the present invention is particularly suitable as a tool for cutting non-ferrous metals. In particular, polycrystalline diamond cutting tools with a cutting edge wedge angle of 40° to 75° have good sharpness and can be machined with almost no deformation of the workpiece.
Demonstrates excellent performance in machining thin-walled parts such as alloys. In addition, polycrystalline diamond has excellent adhesion resistance with non-ferrous metals, so it is possible to obtain a good machined surface.

また、本発明の小径回転工具を用いて非鉄金属を切削加
工した場合従来のハイスや超硬合金のエンドミルでは耐
摩耗性が悪く、溶着が生じるのに対し、本発明工具は溶
着がなく長寿命で、安定して良好な加工面を得ることが
できる。
Additionally, when cutting non-ferrous metals using the small-diameter rotary tool of the present invention, conventional high-speed steel or cemented carbide end mills have poor wear resistance and welding, whereas the tool of the present invention has no welding and has a long service life. Therefore, a stable and good machined surface can be obtained.

実tS例1 超高圧高温装置を用いて焼結した粒度5μ−の焼結ダイ
ヤモンドをワイヤー放電加工を用いて切断し、1.6*
m X 4 msの直角3角形で厚さが0.12m5の
F4 kを作製し、この両面をラッピングした。これら
の薄板の一面にスバタリング法によりTiを0.58m
付着させた後、Niを3μl付着させ、第2図のような
超硬合金台金に銀ロー材を用いてロー付けし、ダイヤモ
ンド砥石により、逃げ面より刃先を研摩し2枚歯からな
る直径3s■のエンドミルを製造した。比較のため同じ
焼結ダイヤモンドでこの厚さが0.7騰■で上記焼結ダ
イヤモンドと同形状のものが厚さIs−の超硬合金台金
に接合されたものの上面をラフピング加工し、第3図の
ような超硬合金台金に銀ロー材けした後、ダイヤモンド
砥石により逃げ面より刃付けし直径8諺−の1枚刃のエ
イドミルを製造した0本発明品は比較材に比べ1八。の
時間で刃付は加工が可能であった。
Actual tS Example 1 A sintered diamond with a grain size of 5 μ-, which was sintered using an ultra-high pressure and high temperature device, was cut using wire electrical discharge machining to obtain a 1.6*
An F4 k with a right triangle shape of m x 4 ms and a thickness of 0.12 m5 was prepared, and both sides of the F4 k were wrapped. 0.58 m of Ti was deposited on one side of these thin plates using the sputtering method.
After adhering, 3μl of Ni was deposited and brazed to the cemented carbide base metal as shown in Fig. 2 using silver brazing material, and the cutting edge was ground from the flank surface with a diamond grindstone to obtain a diameter of two teeth. A 3s ■ end mill was manufactured. For comparison, the same sintered diamond with a thickness of 0.7 mm and the same shape as the sintered diamond described above was joined to a cemented carbide base metal with a thickness of Is-, and the top surface was rough-finned. After silver brazing on a cemented carbide base metal as shown in Figure 3, a diamond grindstone was used to sharpen the flank from the flank to produce a single-flute aid mill with a diameter of 8 mm. Eight. It was possible to process the blade in a time of .

これらの焼結ダイヤモンド膜其と直径3■の超硬エンド
ミルにより^!−12r、、si合金の端面を切削速度
50m 7分、送り0.03mm/刃、直方向の切込み
0.2mm軸方向の切込み3■■で2時間加工した後、
逃げ面摩耗幅を測定した。その結果、本発明品、比較焼
結ダイヤニ只、超硬エンドモルの逃げ面摩耗幅はそれぞ
れ0.015.0.017.0.15■騰であった。
With these sintered diamond films and a 3mm diameter carbide end mill! -12r, After machining the end face of the Si alloy for 2 hours at a cutting speed of 50 m for 7 minutes, a feed of 0.03 mm/tooth, a vertical cutting depth of 0.2 mm, and an axial cutting depth of 3.
The flank wear width was measured. As a result, the width of flank wear of the product of the present invention, the comparison sintered diamond core, and the carbide end mold increased by 0.015, 0.017, and 0.15, respectively.

実施例2 マイクロ波プラズマCvD法(No、1)及びフィラメ
ント法(No、2)によりSi基板上に粒度1OllI
lのダイヤモンドを0.130騰Iの厚さに合成した。
Example 2 Particle size 1OllI was deposited on a Si substrate by microwave plasma CvD method (No. 1) and filament method (No. 2).
1 of diamond was synthesized to a thickness of 0.130 mm.

次にこれらの合成膜を王水で酸処理してSi基板を取り
除き、合成ダイヤモンド膜のみとし、−辺が5−■の直
角2等辺三角形に切り出した後、成長上面にCVD法に
より、TiCO,8μ閣とスバタリング法によりNi−
Co 2μmを付着させ、第、1図のように超硬合金に
Niロー材を用いて接合し、刃先のくさび角を第1表の
ように加工した。比較のため、厚さ 0.5mlの焼結
ダイヤモンド(粒度10μ)  No、3が厚さ2ms
の超硬合金母材に接合した一辺が5−1の直角二等辺三
角形を超硬合金製の合金に銀ロー付けした第1表に示す
チップも試作した。
Next, these synthetic films were acid-treated with aqua regia to remove the Si substrate, leaving only the synthetic diamond film, and cut out into a right-angled isosceles triangle with - sides of 5 - ■.TiCO, Ni- by 8 μ cabinet and subverting method
2 μm of Co was deposited, and as shown in FIG. 1, it was joined to the cemented carbide using a Ni brazing material, and the wedge angle of the cutting edge was machined as shown in Table 1. For comparison, 0.5ml thick sintered diamond (particle size 10μ) No. 3 has a thickness of 2ms.
The chips shown in Table 1 were also prototyped, in which a right isosceles triangle with a side of 5-1 was bonded to a cemented carbide base material and silver brazed to a cemented carbide alloy.

これらの刃付けは逃げ面をダイヤモンド砥石で加工する
ことにより実施したが、厚膜が0.131曹の多結晶ダ
イヤモンド工具の加工時間は厚さ0.5−脂の焼結ダイ
ヤモンド工具の加工時間の1八〜−八であった。これら
の工具をすくい面が18°設定可能な410〇−謙のカ
ッターに1チップ取りつけ、切削速度500m 7分、
切込み0.5s+m、送り 0.1騰l/刃でAl18
ZSi合金を60分間切削加工した後、逃げ面摩耗幅お
よび被削面粗度を測定した。結果を第1表に示す。
These blades were sharpened by machining the flank face with a diamond grindstone, but the machining time for a polycrystalline diamond tool with a thick film of 0.131 carbonate was the same as the machining time for a sintered diamond tool with a thickness of 0.5-fat. It was 18 to -8. One tip of these tools was attached to a 4100-ken cutter with a rake face settable to 18 degrees, and the cutting speed was 500 m for 7 minutes.
Al18 with cutting depth 0.5s+m and feed rate 0.1 liter/blade
After cutting the ZSi alloy for 60 minutes, flank wear width and work surface roughness were measured. The results are shown in Table 1.

第  1 表 A   No、1   80°      4.5  
u m      0.031B   No、1   
75@      3.1  μm     0.02
5CNo、2   65”       3.0  #
@      0.028D   No、2   60
@      2.8  μII      O,02
6ENo、1  50°    2−5 tt−0,0
27D  No、2  40”     3.1 8重
   0.025F  No、1  35@15分加工
して欠#ICNo、3   80@      5.2
  μII      O,035II  No、3 
 75”     20分加工して欠損実施例3 実施例1で作製した焼結ダイヤモンドを0.5X 3 
X O,2■■にワイヤー放電加工機で切削して作製し
、E下面をラッピング加工した後、王水で酸処理し、 
Til#鳳、 Ni3II層をスバタリング法により付
着させた。この面を超硬合金の白金にパラジウムローに
より接合し、ダイヤモンド砥石により刃付けして、4枚
刃からなる直径31のリーマを作製した。この工具を用
いて、Al−18ZSiを切削速度80m/分、送り 
0.11/刃でリーマ加工した。比較のため超硬合金製
のり−マもテストしたが、本発明工具は比較材の30倍
の寿命を示した。
Table 1 A No. 1 80° 4.5
um 0.031B No, 1
75@3.1 μm 0.02
5CNo, 2 65” 3.0 #
@0.028D No, 2 60
@2.8 μII O,02
6ENo, 1 50° 2-5 tt-0,0
27D No, 2 40” 3.1 8-fold 0.025F No, 1 35 @ 15 minutes processing and missing #IC No., 3 80 @ 5.2
μII O, 035II No. 3
75" Defected after processing for 20 minutes Example 3 The sintered diamond produced in Example 1 was 0.5X 3
X O, 2 ■■ was made by cutting with a wire electrical discharge machine, the lower surface of E was lapped, and then acid treated with aqua regia.
The Til# and Ni3II layers were deposited by the sputtering method. This surface was bonded to a platinum cemented carbide with palladium brazing and sharpened with a diamond grindstone to produce a four-blade reamer with a diameter of 31 mm. Using this tool, cut Al-18ZSi at a speed of 80 m/min and feed.
Reamed with 0.11/blade. For comparison, cemented carbide glue was also tested, and the tool of the present invention had a lifespan 30 times longer than that of the comparative material.

」乳玖盈】 以上説明したように本発明の切削用多結晶ダイヤモンド
砥石は、非鉄金属の切削加工の分野で優れた性能を示す
とともに、刃付は加工が容易で工具としての寸法精度も
得やすいので、このような分野に利用すると効果的であ
る。
As explained above, the polycrystalline diamond cutting wheel of the present invention exhibits excellent performance in the field of cutting non-ferrous metals, and the blade is easy to process and provides dimensional accuracy as a tool. Since it is easy to use, it is effective when used in such fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(ハ)は本発明に係る切削用多結晶ダ
イヤモンド工具の実施態様であるチップを示す側面図お
よび正面図であり、第2図(a)及び(ロ)は本発明に
係る切削用多結晶ダイヤモンド工具の他の実施態様であ
るエンドミルを示す正面図および側面図であり、第3図
(a)及び(ロ)は従来の焼結ダイヤモンドエンドミル
の正面図および側面図である。 第1図 (b) /
FIGS. 1(a) and (c) are a side view and a front view showing a tip which is an embodiment of the polycrystalline diamond tool for cutting according to the present invention, and FIGS. 2(a) and (b) are FIG. 3 is a front view and a side view showing an end mill that is another embodiment of a polycrystalline diamond cutting tool according to the present invention, and FIGS. 3(a) and 3(b) are a front view and a side view of a conventional sintered diamond end mill. be. Figure 1 (b) /

Claims (6)

【特許請求の範囲】[Claims] (1)厚さ0.2mm以下0.05mm以上の多結晶ダ
イヤモンドが、超硬合金又は鋼に接合されたことを特徴
とする切削用多結晶ダイヤモンド工具。
(1) A polycrystalline diamond tool for cutting, characterized in that polycrystalline diamond with a thickness of 0.2 mm or less and 0.05 mm or more is bonded to cemented carbide or steel.
(2)多結晶ダイヤモンドが超高圧高温下で製造された
焼結ダイヤモンドであることを特徴とする特許請求の範
囲第1)項記載の切削用多結晶ダイヤモンド工具。
(2) The polycrystalline diamond cutting tool according to claim 1, wherein the polycrystalline diamond is sintered diamond produced under ultra-high pressure and high temperature.
(3)多結晶ダイヤモンドが気相合成法で製造された焼
結ダイヤモンドであることを特徴とする特許請求の範囲
第1)項記載の切削用多結晶ダイヤモンド工具。
(3) The polycrystalline diamond cutting tool according to claim 1, wherein the polycrystalline diamond is sintered diamond produced by a vapor phase synthesis method.
(4)超硬合金または鋼に接合された多結晶ダイヤモン
ド面にTiあるいはTi化合物と鉄族金属の薄膜を付着
させ、該面と超硬合金面を銀ロー、パラジウムローある
いはNi鋼材で超硬合金または鋼と接合されたことを特
徴とする特許請求の範囲第2)項または第3)項記載の
切削用多結晶ダイヤモンド工具。
(4) A thin film of Ti or a Ti compound and an iron group metal is attached to the polycrystalline diamond surface bonded to the cemented carbide or steel, and the surface and the cemented carbide surface are bonded with silver solder, palladium solder, or Ni steel material to harden the polycrystalline diamond. The polycrystalline diamond tool for cutting according to claim 2) or 3), characterized in that it is joined to an alloy or steel.
(5)工具刃先のくさび角が40°〜75°である特許
請求の範囲第4)項記載の切削用多結晶ダイヤモンド工
具。
(5) The polycrystalline diamond tool for cutting according to claim 4, wherein the wedge angle of the cutting edge of the tool is 40° to 75°.
(6)径が6mm未満の回転工具であることを特徴とす
る特許請求の範囲第4)項記載の切削用多結晶ダイヤモ
ンド工具。
(6) The polycrystalline diamond cutting tool according to claim 4, which is a rotating tool having a diameter of less than 6 mm.
JP1093224A 1989-04-14 1989-04-14 Polycrystalline diamond tools for cutting Expired - Lifetime JP2722649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093224A JP2722649B2 (en) 1989-04-14 1989-04-14 Polycrystalline diamond tools for cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093224A JP2722649B2 (en) 1989-04-14 1989-04-14 Polycrystalline diamond tools for cutting

Publications (2)

Publication Number Publication Date
JPH02274405A true JPH02274405A (en) 1990-11-08
JP2722649B2 JP2722649B2 (en) 1998-03-04

Family

ID=14076581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093224A Expired - Lifetime JP2722649B2 (en) 1989-04-14 1989-04-14 Polycrystalline diamond tools for cutting

Country Status (1)

Country Link
JP (1) JP2722649B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348819A (en) * 1991-05-27 1992-12-03 Goei Seisakusho:Kk Diamond cutter for sewing machine and manufacture thereof
US6155755A (en) * 1998-03-02 2000-12-05 Sumitomo Electric Industries, Ltd. Hard sintered body tool
US9194189B2 (en) 2011-09-19 2015-11-24 Baker Hughes Incorporated Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element
CN106194036A (en) * 2016-08-30 2016-12-07 桂林特邦新材料有限公司 Middle low temperature brazing diamond bit and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212126A (en) * 1975-07-16 1977-01-29 Hitachi Chem Co Ltd Process for preparation of methacrylic acid
JPS63138799U (en) * 1987-03-04 1988-09-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212126A (en) * 1975-07-16 1977-01-29 Hitachi Chem Co Ltd Process for preparation of methacrylic acid
JPS63138799U (en) * 1987-03-04 1988-09-13

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348819A (en) * 1991-05-27 1992-12-03 Goei Seisakusho:Kk Diamond cutter for sewing machine and manufacture thereof
US6155755A (en) * 1998-03-02 2000-12-05 Sumitomo Electric Industries, Ltd. Hard sintered body tool
US9194189B2 (en) 2011-09-19 2015-11-24 Baker Hughes Incorporated Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element
US9771497B2 (en) 2011-09-19 2017-09-26 Baker Hughes, A Ge Company, Llc Methods of forming earth-boring tools
CN106194036A (en) * 2016-08-30 2016-12-07 桂林特邦新材料有限公司 Middle low temperature brazing diamond bit and preparation method thereof

Also Published As

Publication number Publication date
JP2722649B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
JP3052977B2 (en) Cutting tool using diamond film
EP0365218B1 (en) A polycrystal diamond fluted tool and a process for the production of the same
JP3055803B2 (en) Twist drill and its manufacturing method
JPH11309609A (en) Polycrystalline diamond tool
JP2003526522A (en) Cutting insert having improved flank roughness and method of manufacturing the same
EP1016479A2 (en) Cutting tool
JPH0885012A (en) Manufacture of rotational cutting tool, super high pressure sintered body helical chip and tool thereof for the rotational cutting tool, and chip
JPH06297206A (en) Hard sintered tool and its manufacture
WO2021197215A1 (en) Blank body, and cutting tool having front cutter face made of helical superhard material
JP2867694B2 (en) Polycrystalline diamond cutting tool and its manufacturing method
JP2722649B2 (en) Polycrystalline diamond tools for cutting
JP4043145B2 (en) Surface-coated sintered alloy with excellent adhesion and process for producing the same
JP2003127019A (en) Endmill having single-crystal diamond provided at its top
JP4851029B2 (en) Super abrasive tool with sintered super abrasive tip
JPH0628805B2 (en) Insertion tool
JP2000043006A (en) Rotary cutting tool
JP2000212743A (en) Surface coated sintered alloy excellent in peeling resistance and its production
JP4608062B2 (en) Burnishing drill
KR20030051700A (en) Abrasive and wear resistant material
JP2829310B2 (en) Method for producing vapor phase synthetic diamond tool
JPH01212767A (en) Highly wear-resistant polycrystalline diamond tool and its production
JP2000117523A (en) Diamond coating end mill or drill and cutting method
JPH1148016A (en) Small-diameter drill
JP2001191212A (en) Rotary cutting multi-edged tool
JPH0760525A (en) Milling cutter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12