JPH02271879A - Fire judgement device - Google Patents
Fire judgement deviceInfo
- Publication number
- JPH02271879A JPH02271879A JP25394089A JP25394089A JPH02271879A JP H02271879 A JPH02271879 A JP H02271879A JP 25394089 A JP25394089 A JP 25394089A JP 25394089 A JP25394089 A JP 25394089A JP H02271879 A JPH02271879 A JP H02271879A
- Authority
- JP
- Japan
- Prior art keywords
- fire
- smoke
- amount
- sensor
- source information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000779 smoke Substances 0.000 claims abstract description 65
- 238000004364 calculation method Methods 0.000 claims abstract description 43
- 238000012544 monitoring process Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 abstract description 10
- 238000001514 detection method Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 5
- 238000013178 mathematical model Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000012886 linear function Methods 0.000 description 2
- 238000012887 quadratic function Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fire Alarms (AREA)
- Fire-Detection Mechanisms (AREA)
- Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、火災シミュレーションの数学モデルを導入し
て発熱量、発煙量、発生ガス量等の火災源情報を計算し
て火災を判断するようにした火災判断装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention introduces a mathematical model for fire simulation to calculate fire source information such as calorific value, smoke amount, and amount of gas generated to judge a fire. This invention relates to a fire detection device.
[従来技術]
従来の火災判断にあっては、センサにより検出された火
災に伴う二次的な温度、煙濃度、COガス濃度の時間的
な変化から火災を判断することを基本としている。最も
単純な方式としてセンサ検出値が設定閾値を越えた時に
火災と判断する。またセンサ検出値を微分して渇だ時間
変化率が所定値を越えた時に火災と判断する。更に現在
時点までのセンサ検出値の変化から一次関数近似又は二
次関数近似により将来の変化を予測して火災を判断する
方式も提案されている。[Prior Art] Conventional fire determination is based on the determination of fire based on temporal changes in secondary temperature, smoke concentration, and CO gas concentration accompanying a fire detected by a sensor. In the simplest method, a fire is determined when the sensor detection value exceeds a set threshold. Furthermore, when the sensor detection value is differentiated and the drying time change rate exceeds a predetermined value, it is determined that there is a fire. Furthermore, a method has been proposed in which future changes are predicted based on changes in sensor detection values up to the present time using linear function approximation or quadratic function approximation to determine a fire.
[発明が解決しようとする課題]
しかしながら、このような従来の火災判断は、火災によ
り二次的に生成される熱(温度)、煙、ガス等をセンサ
で捕えて火災を判断することを基本としている。しかし
火災の発生過程は多様であり、火災の拡大過程において
も燃焼物質と周囲環境条件などが複雑にかかわり合うの
で、二次的に生成される熱(温度)、煙、ガス等の性状
もまた多様に変化し、このような多様性をもつセンサ情
報から火災を正確且つ迅速に判定するには多くの困難が
伴い、本願発明者にあっても鋭意研究開発を押し進め、
より理想に近ずく努力を続けている。[Problem to be solved by the invention] However, such conventional fire detection is based on detecting heat (temperature), smoke, gas, etc. generated secondarily by a fire using sensors. It is said that However, the process of fire occurrence is diverse, and the combustion materials and surrounding environmental conditions interact in a complex manner during the fire expansion process, so the properties of the secondary generated heat (temperature), smoke, gas, etc. are also diverse. There are many difficulties in determining fire accurately and quickly from such diverse sensor information.
We continue to strive to get closer to our ideal.
本発明は、このような状況に鑑みてなされたもので、火
災により二次的に生成される熱、煙濃度、COガス濃度
等のセンサ情報から発熱量、発煙量、ガス発生量等の火
災発生源そのものの情報(−次的火災原情報)を火災シ
ミュレーションの数学モデルを導入して算出することで
火災を判断する全く新規な火災判断装置を提供すること
を目的とする。The present invention was made in view of the above situation, and it is possible to detect fires such as calorific value, smoke generation amount, gas generation amount, etc. from sensor information such as heat, smoke concentration, CO gas concentration, etc. generated secondarily due to fire. The purpose of this invention is to provide a completely new fire determination device that determines a fire by calculating information on the source itself (secondary fire source information) by introducing a mathematical model for fire simulation.
[課題を解決するための手段]
この目的を達成するため本発明にあっては、火災監視区
画に設置された温度、煙濃度、COガス濃度等の火災に
伴う物理的現象を検出するセンサと:該センサの検出情
報に基づいて火災源の発熱量、発煙量、発生ガス量等の
一次的な火災原情報を算出する火災源情報計算部と;該
火災源情報計算部で算出された火災原情報の変化量から
火災を判断する火災判断部と;を設けるようにしたもの
である。[Means for Solving the Problem] In order to achieve this object, the present invention includes a sensor that detects physical phenomena accompanying a fire, such as temperature, smoke concentration, and CO gas concentration, which is installed in a fire monitoring area. : A fire source information calculation unit that calculates primary fire source information such as the calorific value, smoke emission amount, and gas generation amount of the fire source based on the detection information of the sensor; and the fire source information calculated by the fire source information calculation unit. The system includes a fire determination section that determines a fire based on the amount of change in the original information.
[作用]
このような構成を備えた本発明の火災判断装置にあって
は、室内で生じた火災の性状を解析する火災シミュレー
ションの数学モデルの逆演算によリセンサで検出した温
度、煙濃度、COガス濃度から火災発生源そのものの発
熱量、発煙量、ガス発生量を算出し、これら火災発生源
の一次的情報の変化量から火災を判断することができる
。[Function] In the fire judgment device of the present invention having such a configuration, the temperature, smoke concentration, and The calorific value, smoke amount, and gas generation amount of the fire source itself can be calculated from the CO gas concentration, and a fire can be determined from the amount of change in the primary information of the fire source.
このような火災源の一次的情報、即ち、発熱量、発煙量
、ガス発生量は燃焼物質、周囲環境条件に影響されるこ
となく本来は一義的に決まるものであり、火災原情報の
算出精度を向上することで火災判断の信頼性を大幅に向
上することができる。The primary information on the source of a fire, i.e., the amount of heat generated, the amount of smoke generated, and the amount of gas generated, are originally uniquely determined without being affected by the combustion materials or surrounding environmental conditions, and the accuracy of calculating the fire source information depends on the accuracy. By improving this, the reliability of fire judgment can be greatly improved.
[実施例]
第1図は本発明の一実施例を示した実施例構成図である
。[Embodiment] FIG. 1 is a block diagram showing an embodiment of the present invention.
第1図において、10は湯度センサ、12は煙濃度セン
サ、14はCOガス濃度センサであり、各センサは火災
監視区画の天井面に設置され、温度θ、煙濃度Cs及び
COガス濃度Gをアナログ的に検出して検出信号を出力
する。温度センサ10、煙濃度センサ12及びCOガス
濃度センサ14の検出出力はサンプリング回路部16に
信号線接続され、サンプリング回路部16で所定周期毎
にサンプリングされた後、ADコンバータによりデジタ
ル信号に変換されて出力される。In FIG. 1, 10 is a hot water temperature sensor, 12 is a smoke concentration sensor, and 14 is a CO gas concentration sensor. Each sensor is installed on the ceiling surface of the fire monitoring area, and has temperature θ, smoke concentration Cs, and CO gas concentration G. is detected in an analog manner and a detection signal is output. The detection outputs of the temperature sensor 10, smoke concentration sensor 12, and CO gas concentration sensor 14 are connected to a sampling circuit 16 by signal lines, sampled at predetermined intervals by the sampling circuit 16, and then converted into digital signals by an AD converter. is output.
この実施例において1つの火災監視区画には、温度セン
サ10、煙濃度センサ12及びCOガス濃度センサ14
を1つずつ設置しているが、必要に応じて同一種類のセ
ンサを複数設置するようにしても良い。また、各センサ
とサンプリング回路部16との間の信号伝送方式はアナ
ログ信号をそのまま送る直結方式以外に、サンプリング
回路部16側からセンサ側をポーリングして検出信号を
送出させるポーリング方式等、速算の信号伝送方式を適
用することができる。In this embodiment, one fire monitoring section includes a temperature sensor 10, a smoke concentration sensor 12, and a CO gas concentration sensor 14.
Although one sensor is installed at a time, multiple sensors of the same type may be installed if necessary. In addition, as for the signal transmission method between each sensor and the sampling circuit section 16, in addition to the direct connection method that sends the analog signal as it is, there is also a polling method that polls the sensor side from the sampling circuit section 16 side and sends out a detection signal, etc. A signal transmission method can be applied.
サンプリング回路部16に続いては火災源情報計算部1
8が設けられる。火災源情報計算部18には火災シミュ
レーションの計算モデルが予め設定されており、この計
算モデルの逆演算の実行により温度θ、煙濃度Cs及び
COガス濃度Gから火災源の発熱量、発煙量及びガス発
生量を計算する。Following the sampling circuit section 16 is the fire source information calculation section 1
8 is provided. A calculation model for fire simulation is preset in the fire source information calculation unit 18, and by executing the inverse calculation of this calculation model, the calorific value, smoke emission amount, and Calculate the amount of gas generated.
火災源情報計算部18に対しては、火災シミュレーショ
ンの計算モデルを実行するための各種の初期値が初期値
設定部20から与えられており、センサ設置場所となる
火災警戒区画の条件に従った初期値設定を受けてセンサ
検出情報から−次的な火災原情報を計算するようになる
。The fire source information calculation unit 18 is given various initial values for executing the fire simulation calculation model from the initial value setting unit 20, and is set according to the conditions of the fire alert area where the sensor is installed. After receiving the initial value settings, the next fire origin information is calculated from the sensor detection information.
火災源情報計算部18で計算された火災原情報、即ち発
熱量、発煙量及びガス発生量は火災判断部22に与えら
れ、火災判断部22にあっては、各火災原情報の変化量
が予め設定した起動レベルを越えたときに火災と判断す
るか或いは起動レベル以上となったときにそれまでに得
られた火災原情報を使用して一次関数又は二次関数に従
った火災予測演算等を行なって火災を判断する。火災判
断部22で火災原情報に基づく火災判断結果が得られる
と警報表示部24に対し火災判断出力が与えられ、火災
警報表示が行なわれる。The fire source information calculated by the fire source information calculation section 18, that is, the calorific value, the smoke amount, and the gas generation amount, is given to the fire determining section 22, and the fire determining section 22 calculates the amount of change in each fire source information. A fire is determined to occur when a preset activation level is exceeded, or fire prediction calculations are performed according to a linear or quadratic function using the fire source information obtained up to that point when the activation level is exceeded. to determine if there is a fire. When the fire determination section 22 obtains a fire determination result based on the fire origin information, a fire determination output is given to the alarm display section 24, and a fire alarm is displayed.
次に、第1図の火災源情報計算部18で行なわれる火災
原情報の演算原理を詳細に説明する。Next, the principle of calculating fire source information performed by the fire source information calculation section 18 of FIG. 1 will be explained in detail.
現在、室内で生じた火災の性状を解析する数学的モデル
は大別してフィールドモデルとゾーンモデルに分類でき
る。これらの数学的モデルは火源の発熱量或いは発煙量
から室内の温度或いは煙濃度の流動を微分方程式の解か
ら求めるものである。Currently, mathematical models for analyzing the characteristics of indoor fires can be broadly classified into field models and zone models. These mathematical models calculate the flow of indoor temperature or smoke concentration from the calorific value or smoke amount of a fire source by solving differential equations.
ここで、フィールドモデルはあらゆる出入口、扉、窓が
閉じられている1つの室内閉空間を基準とし、室内を数
10cm単位以下で数百以上に分割し、各分割空間毎に
質量保存の方程式、運動量保存の方程式、エネルギー保
存の方程式、状態方程式、及び境界条件を適用して室内
の温度或いは煙濃度の流動を求めるものである。このフ
ィールドモデルの特徴としては細分化した室内の濃度に
ついて詳細な計算を行なうため、温度分布や煙濃度分布
等の火災時の現象を正確に把握することができる。しか
し、フィールドモデルにあっては、数百の分割空間の各
々に対して計算を行なうため演算時間が膨大となり、実
時間処理という面から問題があり、また演算パラメータ
の値を容易に変更できない不便さもある。Here, the field model is based on a single indoor closed space in which all entrances, doors, and windows are closed, and the room is divided into several hundred or more units of several tens of centimeters or less, and the mass conservation equation is calculated for each divided space. It calculates the flow of indoor temperature or smoke concentration by applying the momentum conservation equation, energy conservation equation, state equation, and boundary conditions. A feature of this field model is that it performs detailed calculations on the concentration in subdivided rooms, making it possible to accurately grasp phenomena during fires such as temperature distribution and smoke concentration distribution. However, with field models, calculations are performed for each of hundreds of divided spaces, which requires an enormous amount of calculation time, which poses problems in terms of real-time processing, and the inconvenience of not being able to easily change the values of calculation parameters. Yes, there is.
これに対しゾーンモデルの基本は1つの室内閉空間を基
準とし、室内閉空間を上下方向に数層、即ち2層以上に
分割して考えるものである。シンモデルの特徴は上層部
の平均温度、或いは平均の煙濃度を求めるもので、単純
なモデルであるため計算時間が少なくてすみ、パーソナ
ルコンピュタ等で実時間処理が可能である。また、部屋
の大きさ(天井面積と天井高さ)、周囲温度、熱損失率
或いは単位時間当りの発熱量等の要素が自由に設定変更
可能であり、また変換も容易であること及び境界層まで
の高さが求まること、室内の危険な層の大まかな状況が
把握できるなどの利点がある。しかし、ゾーンモデルは
、演算に差分法を用いていること、及び演算時間の向上
のために演算を使用する項数を打ち切っていることなど
により精度は余り良いとは言えない。On the other hand, the basis of the zone model is to consider one indoor closed space as a reference and to divide the indoor closed space into several layers in the vertical direction, that is, into two or more layers. The characteristic of the thin model is that it calculates the average temperature or average smoke density in the upper layer, and since it is a simple model, it requires less calculation time and can be processed in real time on a personal computer or the like. In addition, elements such as room size (ceiling area and ceiling height), ambient temperature, heat loss rate, or heat generation amount per unit time can be freely changed, and conversion is easy and boundary layer It has the advantage of being able to determine the height up to the point, and being able to get a rough idea of the dangerous layer inside the room. However, the accuracy of the zone model is not very good because it uses a difference method for calculations and the number of terms used in calculations is truncated to improve calculation time.
従って、本発明の火災源情報計算部18にあっては、詳
細且つ正確な演算を必要とする場合にはフィールドモデ
ルを使用し、実時間処理を必要とする場合にはゾーンモ
デルを使用すれば良い。Therefore, in the fire source information calculation unit 18 of the present invention, a field model is used when detailed and accurate calculation is required, and a zone model is used when real-time processing is required. good.
以下の実施例の説明にあっては、火災検出時に得られる
情報が室内に設置したセンサ出力からのみであることな
どの理由により初期火災を判断するためには多少精度は
悪くても実時間対応が可能なゾーンモデルを採用するも
のとする。In the explanation of the example below, we will use real-time support even if the accuracy is somewhat low to determine the initial stage of a fire due to the fact that the information obtained at the time of fire detection is only from the output of sensors installed indoors. A zone model that allows for
ゾーンモデルは、種々の方法で実用化を図っているが、
まだ確立した理論とはなっていない。そこで本発明にあ
っては、L、Y、 Coopc「氏によって解析され
、その理論を基にW、 D、 Walton氏が開発
した数学モデルのプログラムの1っである2層モデルの
A S E T (A vailable S al
eE Bets T ime、)−Bを適用し、センサ
検出データを基に逆演算を行なうことにより発熱量の変
化、発煙量の変化、更にはガス発生量の変化を算出し、
これらの算出結果を基に火災を判断する。The zone model has been put into practical use in various ways, but
It is not yet an established theory. Therefore, in the present invention, the two-layer model A S E T is one of the mathematical model programs analyzed by L. Y. Coopc and developed by W. D. Walton based on the theory. (A vailable S al
By applying eE Bets Time, )-B and performing inverse calculations based on sensor detection data, changes in calorific value, smoke generation amount, and further gas generation amount are calculated,
A fire is determined based on these calculation results.
第2図は本発明の火災源情報計算部18で算出される火
災シミュレーション計算モデルとしてのゾーンモデルの
概要を示す。FIG. 2 shows an outline of a zone model as a fire simulation calculation model calculated by the fire source information calculation unit 18 of the present invention.
第2図のゾーンモデルは2層ゾーンモデルであり、上層
部28の平均温度θh、或いは平均煙濃度Ca1lを求
める単純なモデルであるため次のような条件を設定して
いる。The zone model in FIG. 2 is a two-layer zone model, and since it is a simple model for determining the average temperature θh or average smoke concentration Ca1l of the upper layer 28, the following conditions are set.
室内において、床面からの僅かな漏れを除いてはあらゆ
る出入口、扉、窓が閉じられており、室内の圧力は一定
であるものとし、圧力の増加は床面からの洩れによって
ないものと仮定している。It is assumed that all entrances, doors, and windows in the room are closed except for slight leakage from the floor, the pressure in the room is constant, and the increase in pressure is not due to leakage from the floor. are doing.
火災は床面上に設定した火点において起こるものとし、
火点から生成された熱や暖かい煙は、浮力によって上昇
し、天井面に達する。このとき形成されるプルーム26
は、周囲の冷たい空気を巻き込みながら上昇する。天井
に到達した熱気流は拡散し、壁面に到達し、暖かい層即
ち上層部28を形成する。そして、下層部30の空気の
層との間に境界32を作る。火災の進展に伴う上層部2
8との境界32は時間と共に徐々に床面へと下降する。A fire shall occur at a fire point set on the floor.
The heat and warm smoke generated from the fire point rises due to buoyancy and reaches the ceiling surface. Plume 26 formed at this time
rises, drawing in the cold air around it. The hot airflow reaching the ceiling is diffused and reaches the walls, forming a warm layer or upper layer 28. Then, a boundary 32 is created between the lower layer 30 and the air layer. Upper management 2 as the fire progresses
The boundary 32 with 8 gradually descends to the floor surface with time.
このような2層ゾーンモデルにあっては暖かい上層部2
8、周囲温度となる下層部30内の温度、更には煙濃度
はそれぞれの層内で均一であり、層の間の熱交換等はプ
ルーム26を通して行なうものであると仮定している。In such a two-layer zone model, the warm upper layer 2
8. It is assumed that the temperature in the lower layer 30, which is the ambient temperature, as well as the smoke concentration are uniform within each layer, and that heat exchange between the layers is performed through the plume 26.
シミュレーションは予め分かっている燃焼材料の単位時
間当りの発熱量から、上層部28の温度θhや境界32
までの高さZを求める。The simulation is based on the calorific value per unit time of the combustion material, which is known in advance, and the temperature θh of the upper layer 28 and the boundary 32.
Find the height Z up to.
即ち、火点から上層部28の境界32までの高さZと、
上層部28の平均温度θh及び煙濃度Cshは次に示す
微分方程式を解くことにより与えられる。尚、微分方程
式と同時に初期値設定部20により設定される初期条件
を合わせて示す。更に、COガスのガス濃度Ghについ
ては、煙濃度Cshと同様の関係式を適用する。That is, the height Z from the fire point to the boundary 32 of the upper layer 28,
The average temperature θh and smoke concentration Csh of the upper layer 28 are given by solving the following differential equation. In addition, the initial conditions set by the initial value setting section 20 are also shown together with the differential equation. Furthermore, the same relational expression as for the smoke concentration Csh is applied to the gas concentration Gh of CO gas.
初期条件(を−〇)
Δ0f−d△Oo/d t 、ΔC5r−d△Cso/
dt(t−0)ΔQ:単位時間当りの発熱量、 △C3
:単位時間当りの発浬量ΔQO:初期の発熱量、 ΔC
SO:初期の発懲i S天井面積、H1天井高さ、 F
:火点の高さ、 CP:比熱、 LR1熱輻射率、LC
:熱損失率、 θ0:周囲温度、 9:重力加速度、
ρ:空気の密度このような2層ゾーンモデルにあっては
、温度変化或いは煙濃度の変化は単位時間当りの発熱量
の変化或いは単位時間当りの煙の発生量の変化として捕
えており、境界32の高さについては、単位時間当りの
発熱量の変化を単位面積当りの変化として捕えるもので
ある。更に前記微分方程式の解法には改良型オイラーの
方法によって演算を行なうことができる。Initial condition (-〇) Δ0f-d△Oo/d t , ΔC5r-d△Cso/
dt(t-0)ΔQ: Calorific value per unit time, ΔC3
: Production amount per unit time ΔQO: Initial calorific value, ΔC
SO: Initial punishment i S ceiling area, H1 ceiling height, F
: Height of fire point, CP: Specific heat, LR1 heat emissivity, LC
: heat loss rate, θ0: ambient temperature, 9: gravitational acceleration,
ρ: Density of air In such a two-layer zone model, changes in temperature or smoke density are captured as changes in calorific value per unit time or changes in the amount of smoke generated per unit time, and the boundary Regarding the height 32, the change in calorific value per unit time is captured as a change per unit area. Further, the differential equation can be solved by an improved Euler's method.
そして、本発明にあっては、温度センサ10.の検出温
度θ、及び煙濃度センサ12の煙濃度Csをそれぞれ2
層モデルにおける上層部28の平均温度θh及び平均煙
濃度Cxhとして取扱い、発熱量の変化及び発煙量の変
化を算出するようになる。In the present invention, the temperature sensor 10. The detected temperature θ and the smoke concentration Cs of the smoke concentration sensor 12 are each set to 2.
The average temperature θh and average smoke concentration Cxh of the upper layer 28 in the layer model are treated as the average temperature θh and the average smoke concentration Cxh, and changes in the amount of heat generated and changes in the amount of smoke generated are calculated.
次に、第3図のフローチャートを参照して第1図の実施
例の処理動作を説明する。Next, the processing operation of the embodiment shown in FIG. 1 will be explained with reference to the flowchart shown in FIG.
第3図において、装置を起動するとまずステップS1で
初期値設定部20により火災源情報計算部18に対し、
初期値設定が行なわれる。この初期値の設定は、前記2
層ゾーンモデルの微分方程式の初期条件の但し書きに示
したCI、 C2,ΔQf、ΔCsf、単位時間当り
の発熱量ΔQ1単位時間当りの発煙量ΔCsを除く他の
値のすべてとなる。In FIG. 3, when the device is started, first, in step S1, the initial value setting section 20 sets the fire source information calculation section 18 to
Initial value setting is performed. Setting this initial value is as described in 2.
All other values except CI, C2, ΔQf, ΔCsf, amount of heat generated per unit time ΔQ1 and amount of smoke generated per unit time ΔCs shown in the proviso to the initial conditions of the differential equation of the layer zone model.
ステップS1で初期値の設定が済むとステップS2に進
み、サンプリング回路部16において温度センサ10か
らの温度θ、煙濃度センサ12からの煙濃度C8及びC
Oガス濃度センサ14からのガス濃度Gのデータサンプ
リングが行なわれる。When the initial values are set in step S1, the process proceeds to step S2, where the sampling circuit unit 16 receives the temperature θ from the temperature sensor 10, and the smoke concentrations C8 and C from the smoke concentration sensor 12.
Data sampling of the gas concentration G from the O gas concentration sensor 14 is performed.
次にステップ83〜S6の処理により、まず発熱量の変
化ΔQを求める。即ち、ステップS3でΔGの初期設定
を行なってASET−Bの演算によりステップS4で平
均温度θh及び煙の層の高さzhを算出する。続いて、
ステップS5でASET−Bで算出された平均温度θh
と温度センサ10で検出された検出温度θとの差の絶対
値が所定値以下、例えば0.001以下になるまでステ
ップS3に戻って発熱量ΔQを徐々に増加し、ステップ
S5の条件が満足された時点でのΔGを発熱量の変化と
して、ステップS6で決定する。Next, through the processes of steps 83 to S6, the change ΔQ in the amount of heat generated is first determined. That is, in step S3, ΔG is initialized, and in step S4, the average temperature θh and the height zh of the smoke layer are calculated by calculating ASET-B. continue,
Average temperature θh calculated by ASET-B in step S5
The process returns to step S3 and gradually increases the calorific value ΔQ until the absolute value of the difference between the temperature and the detected temperature θ detected by the temperature sensor 10 becomes less than a predetermined value, for example, less than 0.001, and the condition of step S5 is satisfied. In step S6, ΔG at the time when the change in the amount of heat generated is determined as a change in the amount of heat generated.
次に、ステップS7に進んで発煙量ΔCs及びガス濃度
ΔGの設定を行ない、この時点ですでに求まった温度θ
hを使用し、ステップS8でASET−Bの演算により
煙濃度Csh及びガス濃度Ghを算出する。続いて、ス
テップS9でCsとCshとの差の絶対値及びGとGh
の差の絶対値が各々の所定値、例えば0゜001以下に
なるまで、ΔG及びΔCsをステップS7に戻って徐々
に増加し、ステップS9の条件が満足された時点でのΔ
Csを発煙量の変化として求め、またΔGを発生ガス量
の変化として求める(ステップ10)。Next, proceeding to step S7, the smoke generation amount ΔCs and the gas concentration ΔG are set, and the temperature θ that has already been determined at this point is
Using h, smoke concentration Csh and gas concentration Gh are calculated by the calculation of ASET-B in step S8. Subsequently, in step S9, the absolute value of the difference between Cs and Csh and the absolute value of the difference between G and Gh are determined.
Return to step S7 and gradually increase ΔG and ΔCs until the absolute value of the difference becomes less than a predetermined value, for example, 0°001, and when the condition of step S9 is satisfied, ΔG and ΔCs are
Cs is determined as a change in the amount of smoke generated, and ΔG is determined as a change in the amount of gas generated (step 10).
続いてステップSllに進み、ステップS6で求めた発
熱量の変化ΔQ及びステップSIOで求めた発煙量の変
化ΔCs及び発生ガス量の変化ΔGに対し、予め設定し
た火災判断の演算起動レベル以上か否かを判定する。ス
テップSllで演算起動レベル以上であればステップ8
12に進みそれまでに得られた発熱量601発煙量ΔC
s、及び発生ガス量ΔGを使用して予測演算を行なう。Next, the process proceeds to step Sll, where it is determined whether or not the change ΔQ in the calorific value obtained in step S6, the change ΔCs in the amount of smoke generated, and the change ΔG in the amount of generated gas obtained in step SIO are equal to or higher than a preset fire judgment calculation activation level. Determine whether If step Sll is equal to or higher than the operation activation level, step 8
Proceed to step 12 Calorific value 601 Smoke amount ΔC obtained so far
A predictive calculation is performed using s and the generated gas amount ΔG.
予測演算としては例えばニュートンの後退補間公式を使
用して火災を判定するようになる。ステップS12にお
ける火災判定のための演算としては、予測演算以外に起
動レベル以上となったときの現在時点から所定サンプリ
ングポイント前までの一次差分及び又は二次差分の変化
を求めるようにしても良い。As a predictive calculation, for example, Newton's backward interpolation formula is used to determine a fire. As the calculation for fire determination in step S12, in addition to the prediction calculation, changes in the primary difference and/or secondary difference from the current time point when the activation level is exceeded to a predetermined sampling point before may be calculated.
第4図は天井面積28.81m2、天井面高さ2.5m
の部屋の中央で椅子(材料:布、ウレタンホーム、木材
等)を燃焼させたときの火災実験に対する本発明の火災
源情報計算部18による発熱量601発煙量ΔCs、及
びガス発生量ΔGの時間変化を温度θ、上層部境界高さ
L1煙濃度C81及びガス濃度Gと共に示したグラフで
ある。Figure 4 shows a ceiling area of 28.81m2 and a ceiling height of 2.5m.
Calorific value 601 Smoke amount ΔCs and gas generation amount ΔG time according to the fire source information calculation unit 18 of the present invention for a fire experiment when a chair (material: cloth, urethane foam, wood, etc.) was burned in the center of a room. It is a graph showing changes in temperature θ, upper boundary height L1, smoke concentration C81, and gas concentration G.
また第5図は厨房の調理の例として、第4図の場合と同
じ部屋で魚9匹を順次焼いた非火災実験に本発明を適用
したときのグラフである。Further, FIG. 5 is a graph when the present invention is applied to a non-fire experiment in which nine fish were successively grilled in the same room as in FIG. 4, as an example of cooking in a kitchen.
火災である第4図と非火災である第5図の結果を対比し
て明らかなように、火災時にあっては第4図(a)に示
す発熱量ΔQの変化は火災の進展に伴って温度θが急激
に立ち上がった時点で大きなピークを示している。これ
に対して第5図(a)の非火災時の発熱量ΔQにあって
は、火災時のようなピークは全く見られない。従って、
第4図(a)の温度θと発熱量ΔQが共に直線的に立ち
上がる相関関係を持って火災と判断することができる。As is clear from comparing the results in Figure 4 for fire and Figure 5 for non-fire, the change in calorific value ΔQ shown in Figure 4 (a) during a fire changes as the fire progresses. A large peak is shown when the temperature θ suddenly rises. On the other hand, in the calorific value ΔQ during non-fire conditions shown in FIG. 5(a), no peaks like those observed during fire conditions are observed. Therefore,
A fire can be determined based on the correlation between the temperature θ and the calorific value ΔQ shown in FIG. 4(a), which both rise linearly.
更に第4図の火災時にあっては、同図(a)に示す発熱
量ΔQに対し、同図(b)に示す発煙量ΔCs及び同図
(C)に示すガス発生量ΔGとの間において変化量がピ
ーク的に上昇する相関関係を持ち、このような発熱量6
01発煙量ΔCs及びガス発生量ΔGの3種の相関を見
ることで、より正確な火災判断ができる。Furthermore, in the event of a fire in Figure 4, the difference between the calorific value ΔQ shown in Figure 4 (a), the smoke generation amount ΔCs shown in Figure 4 (b), and the gas generation amount ΔG shown in Figure 4 (C) is There is a correlation in which the amount of change increases at a peak, and such calorific value 6
01 By looking at the correlation between the three types of smoke generation amount ΔCs and gas generation amount ΔG, a more accurate fire judgment can be made.
これに対し第5図に示した非火災時にあっては、発熱量
ΔQに対し発煙量ΔCsとガス発生量ΔGが相関関係が
無く、これによって非火災であることを確実に判定でき
る。また、非火災時の発煙量ΔCs及びガス発生量ΔG
にあっては、第4図の火災時と変化パターンは相似する
が、変化量そのものが小さいことで非火災と火災を区別
することが可能である。On the other hand, when there is no fire as shown in FIG. 5, there is no correlation between the amount of smoke generation ΔCs and the amount of gas generation ΔG with respect to the amount of heat generation ΔQ, and from this it is possible to reliably determine that there is no fire. In addition, the amount of smoke generated ΔCs and the amount of gas generated ΔG when there is no fire
In the case of fire, the change pattern is similar to that during fire in Fig. 4, but the amount of change itself is small, so it is possible to distinguish between non-fire and fire.
第6図は本発明において、部屋の大きさを変えた場合の
温度θに対する発熱量ΔQの時間変化を示した実験結果
であり、部屋の大きさが異なるにもかかわらず、算出さ
れた発熱量ΔQの変化はよく一致しており、本発明によ
れば、部屋の大きさによらず、同一火災であれば同じ発
熱量ΔQの変化が得られることが確認された。この点は
発煙量ΔCs及びガス発生量ΔGについても同様である
。Figure 6 shows the experimental results of the present invention showing the time change of the calorific value ΔQ with respect to the temperature θ when the room size is changed. The changes in ΔQ were in good agreement, and it was confirmed that according to the present invention, the same change in calorific value ΔQ can be obtained for the same fire regardless of the size of the room. The same applies to the amount of smoke generation ΔCs and the amount of gas generation ΔG.
次に、第1図に示した火災判断部22の具体的実施例を
説明する。Next, a specific example of the fire determining section 22 shown in FIG. 1 will be described.
この火災判断部22の実施例にあっては、火災源情報計
算部18から得られた発熱量601発煙量ΔCs、及び
ガス発生量ΔGの内の2つ量を用いた相関演算により火
災を判断することを特徴とする。In this embodiment of the fire determination unit 22, a fire is determined by a correlation calculation using two of the calorific value 601 smoke generation amount ΔCs and the gas generation amount ΔG obtained from the fire source information calculation unit 18. It is characterized by
まず相関係数Rが次式で定義される。First, the correlation coefficient R is defined by the following equation.
R=Sx7/F−一薯ゴ (1)ここ
でSIL Sr、Srのそれぞれは次式で表わ但し、
X、Y:ΔQ、ΔCs、 ΔGの何れかの値X、Y:平
均値
n=m2−ml
次に(1)式で算出される相関係数Rに、相関計算に使
用した2つの量で決まる合成ベクトルの絶対値ID+を
乗じて重み付けを行ない、重み付けされた相関係数Ro
を求める。R=Sx7/F-Ichigo (1) Here, each of SIL Sr and Sr is expressed by the following formula, however,
X, Y: any value of ΔQ, ΔCs, ΔG Weighting is performed by multiplying the determined composite vector by the absolute value ID+, and the weighted correlation coefficient Ro
seek.
即ち、重み付けに使用する合成ベクトルの絶対値りは、
次式で求められる。In other words, the absolute value of the composite vector used for weighting is
It is determined by the following formula.
DI=lUi+Vjl (3)但し、
U、V;ΔQ1ΔCs、ΔGの何れか2つを選び、各々
に対してそれぞ
れ独立にスケール変換した値
i、j+各次元の単位ベクトル
従って、重み付けされた相関係数R9は、相関係数R及
び合成ベクトルDが時間によって変化するので、時間の
関数として次式で表わされる。DI=lUi+Vjl (3) However,
U, V; ΔQ1 ΔCs, ΔG are selected and scaled independently for each value i, j + unit vector of each dimension. Therefore, the weighted correlation coefficient R9 is the correlation coefficient R and Since the composite vector D changes with time, it is expressed as a function of time by the following equation.
R,(t) =R(t) X I D (t) l
(4)このため、ある時点で算出された相関値R
は、その時の2つの検出量U、 Vの合成ベクトルの
絶対値IDIに依存して重み付けされ、U、 Vが大き
い程 、より大きくなるように相関値が重み付けされた
相関値R8が求められる。R, (t) = R(t) X I D (t) l
(4) For this reason, the correlation value R calculated at a certain point in time
is weighted depending on the absolute value IDI of the composite vector of the two detection quantities U and V at that time, and the correlation value R8 is obtained by weighting the correlation value so that it becomes larger as U and V become larger.
第7図(a)は第4図(a)(b)に示した火災時の発
熱量ΔQと発煙量ΔCsを使用して前記(1)〜(4)
式により求めた重み付は相関値RDの時間変化を示し、
相関値R8は大きなピーク変化を示しており、閾値R5
を越えた時に火災と判断することができる。Figure 7 (a) shows the above (1) to (4) using the heat generation amount ΔQ and smoke generation amount ΔCs during a fire shown in Figure 4 (a) and (b).
The weighting obtained by the formula indicates the time change of the correlation value RD,
Correlation value R8 shows a large peak change, and threshold value R5
It can be determined that there is a fire when the
また第7図(b)は同図(a)に示した相関値RDを微
分したデータであり、この微分データからも火災と判断
できる顕著な変化がでている。Further, FIG. 7(b) is data obtained by differentiating the correlation value RD shown in FIG. 7(a), and this differential data also shows a remarkable change that can be determined to be a fire.
第8図(a)は第5図(a)(b)に示した非火災時の
発熱量ΔQと発煙量ΔCsについて前記(1)〜(4)
式に従って求めた相関係数R9を示したもので、この場
合の相関係数R8は閾値RLより低い値となっており、
非火災であることが判断できる。尚、第8図(b)は同
図(a)の微分した値を示している。Figure 8 (a) shows the heat generation amount ΔQ and smoke generation amount ΔCs in non-fire conditions shown in Figures 5 (a) and (b) above (1) to (4).
It shows the correlation coefficient R9 obtained according to the formula, and the correlation coefficient R8 in this case is a value lower than the threshold value RL,
It can be determined that there is no fire. Note that FIG. 8(b) shows the differentiated values of FIG. 8(a).
尚、上記の実施例にあっては、−次的な火災源情報とし
て発熱量601発煙量ΔCs及びCOガス発生量ΔGを
算出しているが、これ以外の一次的な火災原情報として
火災の炎によりイオンが発生することから、火災監視区
画にイオンセンサを設置し、イオンセンサの検出情報か
ら同様にして火災源からのイオン発生量を一次源火災情
報として算出して火災判断を行なうようにしても良い。In the above embodiment, the calorific value 601, the amount of smoke generated ΔCs, and the amount of CO gas generated ΔG are calculated as secondary fire source information, but other primary fire source information includes the fire Since ions are generated by flames, an ion sensor is installed in the fire monitoring area, and the amount of ions generated from the fire source is calculated as primary source fire information from the detection information of the ion sensor to make a fire judgment. It's okay.
[発明の効果]
以上説明してきたように本発明によれば、室内で生じた
火災の性状を解析する火災シミュレーションの数学モデ
ルの逆演算によりセンサで検出した温度、煙濃度、CO
ガス濃度等の火災に伴う二次的な現象から火災発生源そ
のものの発熱量、発煙量、ガス発生量を算出し、これら
火災発生源の一次的情報の変化量から火災を判断するこ
とができるため、燃焼物質、周囲環境条件に影響される
ことなく、非火災を火災と判断してしまう誤判断を最小
限に抑え、火災判断の信頼性を大幅に向上することが期
待できる。[Effects of the Invention] As explained above, according to the present invention, the temperature, smoke concentration, and CO
It is possible to calculate the amount of heat generated, the amount of smoke, and the amount of gas generated from the fire source itself from secondary phenomena accompanying a fire, such as gas concentration, and to judge a fire based on the amount of change in the primary information of the fire source. Therefore, it is expected that the reliability of fire judgments will be greatly improved by minimizing erroneous judgments in which non-fires are judged as fires, without being affected by combustible substances or surrounding environmental conditions.
第1図は本発明の実施例構成図;
第2図は本発明で用いる2層ゾーンモデルの説明図;
第3図は本発明の動作処理を示したフローチャート;
第4図は火災実験時の本発明による火災原情報の時間変
化の結果を示した説明図;
第5図は非火災実験時の本発明による火災原情報の時間
変化を示した説明図;
第6図は部屋の大きさを変えた時の本発明による発熱量
の時間変化を示した説明図である。
第7図は第4図の火災実験で得られた発熱量と発煙量か
ら求められた相関係数及びその微分値の時間変化を示し
た説明図;
第8図は第5図の非火災実験で得られた発熱量と発煙量
から求められた相関係数及びその微分値の時間変化を示
した説明図である。
10 :
12 =
14 =
16 =
18 :
20 :
24 :
温度センサ
煙濃度センサ
COガス濃度センサ
サンプリング回路部
火災源情報計算部
初期値設定部
火災判定部
警報表示部Fig. 1 is a configuration diagram of an embodiment of the present invention; Fig. 2 is an explanatory diagram of a two-layer zone model used in the present invention; Fig. 3 is a flowchart showing the operation processing of the present invention; Fig. 4 is a diagram during a fire experiment. An explanatory diagram showing the change in fire source information over time according to the present invention; Figure 5 is an explanatory diagram showing the time change in fire source information according to the present invention during a non-fire experiment; It is an explanatory view showing a time change of heat generation amount by the present invention when changing. Figure 7 is an explanatory diagram showing the temporal changes in the correlation coefficient and its differential value obtained from the calorific value and smoke amount obtained in the fire experiment in Figure 4; Figure 8 is the non-fire experiment in Figure 5. It is an explanatory diagram showing a time change of a correlation coefficient calculated from calorific value and smoke generation amount obtained in , and its differential value. 10: 12 = 14 = 16 = 18: 20: 24: Temperature sensor Smoke concentration sensor CO gas concentration sensor Sampling circuit section Fire source information calculation section Initial value setting section Fire judgment section Alarm display section
Claims (1)
濃度等の火災に伴う物理的現象を検出するセンサと; 該センサの検出情報に基づいて火災源の発熱量、発煙量
、発生ガス量等の一次的な火災源情報を算出する火災源
情報計算部と; 該火災源情報計算部で算出された火災源情報の変化量か
ら火災を判断する火災判断部と; を備えたことを特徴とする火災判断装置。[Claims] 1. A sensor installed in a fire monitoring area to detect physical phenomena associated with fire, such as temperature, smoke concentration, and CO gas concentration; a fire source information calculation unit that calculates primary fire source information such as the amount of smoke emitted and the amount of gas generated; a fire determination unit that determines a fire from the amount of change in the fire source information calculated by the fire source information calculation unit; A fire determination device characterized by comprising;
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1253940A JP2758671B2 (en) | 1989-01-20 | 1989-09-29 | Fire judgment device |
AU49487/90A AU4948790A (en) | 1989-01-20 | 1990-01-19 | Fire alarm |
PCT/JP1990/000062 WO1990008370A1 (en) | 1989-01-20 | 1990-01-19 | Fire alarm |
AT900290A AT401585B (en) | 1989-01-20 | 1990-01-19 | METHOD FOR TRIGGERING A FIRE ALARM |
DE19904090053 DE4090053T1 (en) | 1989-01-20 | 1990-01-19 | FIRE DETECTING SYSTEM |
FI904612A FI103368B1 (en) | 1989-01-20 | 1990-09-19 | Smoke alarms |
GB9020423A GB2237132B (en) | 1989-01-20 | 1990-09-19 | Fire alarm |
AU38642/93A AU3864293A (en) | 1989-01-20 | 1993-05-17 | Fire alarm |
AU30530/95A AU3053095A (en) | 1989-01-20 | 1995-09-08 | Fire alarm |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-11574 | 1989-01-20 | ||
JP1157489 | 1989-01-20 | ||
JP1253940A JP2758671B2 (en) | 1989-01-20 | 1989-09-29 | Fire judgment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02271879A true JPH02271879A (en) | 1990-11-06 |
JP2758671B2 JP2758671B2 (en) | 1998-05-28 |
Family
ID=26347021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1253940A Expired - Lifetime JP2758671B2 (en) | 1989-01-20 | 1989-09-29 | Fire judgment device |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP2758671B2 (en) |
AT (1) | AT401585B (en) |
AU (3) | AU4948790A (en) |
FI (1) | FI103368B1 (en) |
GB (1) | GB2237132B (en) |
WO (1) | WO1990008370A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006275627A (en) * | 2005-03-28 | 2006-10-12 | Foundation For The Promotion Of Industrial Science | Evaporation amount measurement method and measurement instrument for semi-volatile organic compound (svoc) |
CN102708646A (en) * | 2012-06-01 | 2012-10-03 | 湖南省电力公司科学研究院 | Satellite-monitoring-based fire alarming method for mountain power transmission line |
CN102750799A (en) * | 2012-06-18 | 2012-10-24 | 中国南方电网有限责任公司超高压输电公司 | Ion spatial electric current density-based direct current transmission line mountain fire monitoring device |
CN103106764A (en) * | 2013-01-11 | 2013-05-15 | 广西电网公司电力科学研究院 | Electric transmission line corridor fire condition detection system based on satellite remote sensing |
CN106408836A (en) * | 2016-10-21 | 2017-02-15 | 上海斐讯数据通信技术有限公司 | Forest fire alarm terminal and system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2889382B2 (en) * | 1991-01-18 | 1999-05-10 | ホーチキ株式会社 | Fire alarm |
JP3213661B2 (en) * | 1993-11-25 | 2001-10-02 | 能美防災株式会社 | Fire detector |
JP3274929B2 (en) * | 1994-03-30 | 2002-04-15 | 能美防災株式会社 | Initial fire detection device |
JP2006104833A (en) * | 2004-10-07 | 2006-04-20 | Kikusui Chemical Industries Co Ltd | Fireproof coated steel structure |
WO2007051240A1 (en) * | 2005-11-02 | 2007-05-10 | Dale Robert Scott | Automated fire extinguishing system |
CN104021642A (en) * | 2014-06-25 | 2014-09-03 | 李柱勇 | Resistance type fire alarm |
CN106297140A (en) * | 2016-08-17 | 2017-01-04 | 贵州信通达智能工程股份有限公司 | Fire prevention early warning intelligent monitor system |
CN112002095A (en) * | 2020-07-14 | 2020-11-27 | 中国人民解放军63653部队 | Fire early warning method in mine tunnel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50106082A (en) * | 1973-07-25 | 1975-08-21 | ||
JPS59112390A (en) * | 1982-12-18 | 1984-06-28 | シャープ株式会社 | Fire alarm |
JPS6095696A (en) * | 1983-10-28 | 1985-05-29 | 住友電気工業株式会社 | Fire alarm |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5323999B2 (en) * | 1972-01-24 | 1978-07-18 | ||
JPS5727109Y2 (en) * | 1974-07-20 | 1982-06-12 | ||
DE2818211A1 (en) * | 1977-09-19 | 1979-03-22 | Fega Werk Ag Schlieren | Fire alarm evaluation device - has computer providing all information concerning nature of fire and alarm transmission to fire station |
US4254414A (en) * | 1979-03-22 | 1981-03-03 | The United States Of America As Represented By The Secretary Of The Navy | Processor-aided fire detector |
DE3123451A1 (en) * | 1981-06-12 | 1982-12-30 | Siemens AG, 1000 Berlin und 8000 München | METHOD AND ARRANGEMENT FOR DETECTING FAULTS IN DANGEROUS, IN PARTICULAR FIRE DETECTING PLANTS |
DE3127324A1 (en) * | 1981-07-10 | 1983-01-27 | Siemens AG, 1000 Berlin und 8000 München | METHOD AND ARRANGEMENT FOR INCREASING THE SENSITIVITY AND EMERGENCY SAFETY IN A DANGER, IN PARTICULAR FIRE DETECTING SYSTEM |
DE3405857A1 (en) * | 1983-02-24 | 1984-08-30 | Hochiki K.K., Tokio/Tokyo | FIRE ALARM SYSTEM |
JPS6149297A (en) * | 1984-08-17 | 1986-03-11 | ホーチキ株式会社 | Fire alarm |
JPS61237197A (en) * | 1985-04-12 | 1986-10-22 | ホーチキ株式会社 | Fire alarm |
JPS62269293A (en) * | 1986-05-19 | 1987-11-21 | 石井 弘允 | Fire alarm |
JPS63211496A (en) * | 1987-02-27 | 1988-09-02 | ホーチキ株式会社 | Fire detector apparatus |
US4749985A (en) * | 1987-04-13 | 1988-06-07 | United States Of America As Represented By The United States Department Of Energy | Functional relationship-based alarm processing |
JP3237244B2 (en) * | 1992-10-31 | 2001-12-10 | ソニー株式会社 | Calculation method of short-term forecast coefficient |
-
1989
- 1989-09-29 JP JP1253940A patent/JP2758671B2/en not_active Expired - Lifetime
-
1990
- 1990-01-19 AU AU49487/90A patent/AU4948790A/en not_active Abandoned
- 1990-01-19 AT AT900290A patent/AT401585B/en not_active IP Right Cessation
- 1990-01-19 WO PCT/JP1990/000062 patent/WO1990008370A1/en active IP Right Grant
- 1990-09-19 FI FI904612A patent/FI103368B1/en not_active IP Right Cessation
- 1990-09-19 GB GB9020423A patent/GB2237132B/en not_active Expired - Fee Related
-
1993
- 1993-05-17 AU AU38642/93A patent/AU3864293A/en not_active Abandoned
-
1995
- 1995-09-08 AU AU30530/95A patent/AU3053095A/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50106082A (en) * | 1973-07-25 | 1975-08-21 | ||
JPS59112390A (en) * | 1982-12-18 | 1984-06-28 | シャープ株式会社 | Fire alarm |
JPS6095696A (en) * | 1983-10-28 | 1985-05-29 | 住友電気工業株式会社 | Fire alarm |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006275627A (en) * | 2005-03-28 | 2006-10-12 | Foundation For The Promotion Of Industrial Science | Evaporation amount measurement method and measurement instrument for semi-volatile organic compound (svoc) |
CN102708646A (en) * | 2012-06-01 | 2012-10-03 | 湖南省电力公司科学研究院 | Satellite-monitoring-based fire alarming method for mountain power transmission line |
CN102750799A (en) * | 2012-06-18 | 2012-10-24 | 中国南方电网有限责任公司超高压输电公司 | Ion spatial electric current density-based direct current transmission line mountain fire monitoring device |
CN103106764A (en) * | 2013-01-11 | 2013-05-15 | 广西电网公司电力科学研究院 | Electric transmission line corridor fire condition detection system based on satellite remote sensing |
CN106408836A (en) * | 2016-10-21 | 2017-02-15 | 上海斐讯数据通信技术有限公司 | Forest fire alarm terminal and system |
Also Published As
Publication number | Publication date |
---|---|
AU3864293A (en) | 1993-07-29 |
AU3053095A (en) | 1995-11-09 |
GB2237132A (en) | 1991-04-24 |
AU4948790A (en) | 1990-08-13 |
FI103368B (en) | 1999-06-15 |
JP2758671B2 (en) | 1998-05-28 |
ATA900290A (en) | 1996-02-15 |
FI103368B1 (en) | 1999-06-15 |
GB2237132B (en) | 1993-01-06 |
AT401585B (en) | 1996-10-25 |
WO1990008370A1 (en) | 1990-07-26 |
GB9020423D0 (en) | 1990-11-14 |
FI904612A0 (en) | 1990-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02271879A (en) | Fire judgement device | |
Gutiérrez-Montes et al. | Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium | |
Ríos-Moreno et al. | Modelling temperature in intelligent buildings by means of autoregressive models | |
Wu et al. | An intelligent tunnel firefighting system and small-scale demonstration | |
Sherman | Infiltration-pressurization correlation: Simplified physical modeling | |
Gao et al. | Fire spill plume from a compartment with dual symmetric openings under cross wind | |
Yoon et al. | Stack-driven infiltration and heating load differences by floor in high-rise residential buildings | |
Wang et al. | Early stage of elevated fires in an aircraft cargo compartment: a full scale experimental investigation | |
Hayati et al. | Evaluation of the LBL and AIM-2 air infiltration models on large single zones: Three historical churches | |
Freire et al. | On the improvement of natural ventilation models | |
Asimakopoulou et al. | Characteristics of externally venting flames and their effect on the façade: a detailed experimental study | |
CN108520313A (en) | A kind of draft type computing platform computational methods | |
Yu et al. | Research on multi-detector real-time fire alarm technology based on signal similarity | |
Wang et al. | Experimental studies of the effect of burner location on the development of building fires | |
Shi et al. | Mechanical smoke exhaust for small retail shop fires | |
Bong | Limitations of zone models and cfd models for natural smoke filling in large spaces | |
KR102404588B1 (en) | Method for preventing Dew Condensation | |
Vettori | Effect of beamed, sloped, and sloped beamed ceilings on the activation time of a residential sprinkler | |
Chung et al. | A simplified model for smoke filling time calculation with sprinkler effects | |
JP2000291992A (en) | Energy evaluating device for building or heat storage tank | |
US12087152B1 (en) | Smart home hazard notification system | |
CN208236210U (en) | A kind of intelligent domestic draft type selection system | |
AU734148B2 (en) | Fire alarm | |
CN114519304B (en) | Multi-target fire scene temperature prediction method based on distributed optical fiber temperature measurement | |
Leitner et al. | Thermal environment assessment of gas stove surroundings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090313 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090313 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100313 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100313 Year of fee payment: 12 |