JPH02270841A - Production of 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivative - Google Patents

Production of 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivative

Info

Publication number
JPH02270841A
JPH02270841A JP1090636A JP9063689A JPH02270841A JP H02270841 A JPH02270841 A JP H02270841A JP 1090636 A JP1090636 A JP 1090636A JP 9063689 A JP9063689 A JP 9063689A JP H02270841 A JPH02270841 A JP H02270841A
Authority
JP
Japan
Prior art keywords
group
acid derivative
difluoro
derivative
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1090636A
Other languages
Japanese (ja)
Inventor
Yasushi Matsumura
靖 松村
Arata Yasuda
新 安田
Keiichi Uchida
内田 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1090636A priority Critical patent/JPH02270841A/en
Publication of JPH02270841A publication Critical patent/JPH02270841A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To stereospecifically and effectively produce the anti-type compound useful as a medicine or agricultural chemical or as an intermediate thereof by reacting a difluorohaloacetic acid derivative with an alpha,beta-dihydroxyaldehyde derivative in the presence of a metal reagent. CONSTITUTION:A difluorohalo (preferably bromo or iodo) acetic acid derivative is reacted with a compound of formula I (R<1> is H or a hydrocarbon group capable of containing a specific group inert to the reaction; R<2> and R<3> are H or a protecting group for an OH group, respectively, or R<2> and R<3> together forms a protecting group for two OH groups) in the presence of a metal reagent, preferably a combination of a 0 valent metal (especially zinc) and an organic silicon compound or further a Lewis acid to selectively readily and stereospecifically provide the objective anti-type compound of formula II (R<4> is H or a protecting group for an OH group; R<5> is ester residue or H) useful as an intermediate for various nucleotides having antitumor activity and antiviral activity in a good yield.

Description

【発明の詳細な説明】 本発明は、2.2−ジフルオロ−3,4,5−トリヒド
ロキシカルボン酸誘導体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivatives.

従来、anti型の2,2−ジフルオロ−3,4,5−
ヒドロキシカルボン酸誘導体の選択的な製造法は知られ
ていない。
Conventionally, anti-2,2-difluoro-3,4,5-
There is no known method for selectively producing hydroxycarboxylic acid derivatives.

anti型の2.2−ジフルオロ−3,4,5−トリヒ
ドロキシカルボン酸誘導体は、最近、抗腫瘍活性や抗ウ
ィルス活性が注目されている、 2.2−ジフルオロ−
2−デオキシピラノース誘導体や2.2−ジフルオロ−
2−デオキシフラノース誘導体など各種ヌクレオシドの
重要な中間体である( rTetrahedron L
ett、J 29巻、3219頁、1986年参照)。
Anti-type 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivatives have recently attracted attention for their antitumor and antiviral activities.
2-deoxypyranose derivatives and 2,2-difluoro-
It is an important intermediate for various nucleosides such as 2-deoxyfuranose derivatives (rTetrahedron L
ett, J 29, 3219, 1986).

anti型の立体化学に関しては、S、 Masamu
neらrAngew、Chem、Int、Ed、Eng
l、J  19巻、557頁1980年やS、 Mas
amuneらrJ、Am、chem、soc、 J 1
04巻、5521頁、1982年に定義されている。
Regarding the anti-stereochemistry, S, Masamu
ne et rAngew, Chem, Int, Ed, Eng
l, J vol. 19, p. 557 1980 and S. Mas.
amune et al rJ, Am, chem, soc, J 1
04, page 5521, 1982.

2.2−ジフルオロ−3,4,5−トリヒドロキシカル
ボン酸の構成単位である2、2−ジフルオロ−3−ヒド
ロキシカルボン酸誘導体の一般的な合成としては、ブロ
モジフルオロ酢酸誘導体とカルボニル化合物を亜鉛粉末
の存在下反応させる方法(rTetrahedron 
Lett、J 25巻、2301頁、1984年)、ジ
フルオロヨード酢酸誘導体とカルボニル化合物を金属反
応剤の存在下で反応させる方法(特願昭63−2185
00)、クロロジフルオロ酢酸誘導体とカルボニル化合
物を亜鉛粉末の存在下反応させる方法(rTetrah
edronLett、J 29巻、2943頁、198
8年)がある。しかしながらこれらの方法を2,2−ジ
フルオロ−3,4,5−トリヒドロキシカルボン酸誘導
体の製造に応用しようとすると、収率や選択率が低く、
目的物を得るためには、非常に繁雑な異性体の分離精製
操作が不可決であるという難点があった。そこでant
i型の2.2−ジフルオロ−3,4,5−トリヒドロキ
シカルボン酸誘導体の選択的、効率的製法の開発が強く
望まれていた。
A general synthesis of 2,2-difluoro-3-hydroxycarboxylic acid derivatives, which are the constituent units of 2-difluoro-3,4,5-trihydroxycarboxylic acid, involves combining a bromodifluoroacetic acid derivative and a carbonyl compound with zinc. A method of reacting in the presence of powder (rTetrahedron
Lett, J Vol. 25, p. 2301, 1984), a method of reacting a difluoroiodoacetic acid derivative with a carbonyl compound in the presence of a metal reactant (Japanese Patent Application No. 63-2185
00), a method of reacting a chlorodifluoroacetic acid derivative and a carbonyl compound in the presence of zinc powder (rTetrah
edronLett, J vol. 29, p. 2943, 198
8 years). However, when these methods are applied to the production of 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivatives, the yield and selectivity are low;
In order to obtain the desired product, a very complicated separation and purification operation of isomers is required. So ant
There has been a strong desire to develop a selective and efficient method for producing i-type 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivatives.

本発明は従来の前述の欠点を解消しようとするものであ
る。即ち、クロロトリフルオロエチレンやテトラフルオ
ロエチレンより得られるジフルオロハロ酢酸誘導体を出
発物質とし、選択的、効率的にanti型の2,2−ジ
フルオロ−3,4,5−)−リヒドロキシカルポン酸誘
導体を合成する新規な製造方法を提供するものである。
The present invention seeks to overcome the aforementioned drawbacks of the prior art. That is, using a difluorohaloacetic acid derivative obtained from chlorotrifluoroethylene or tetrafluoroethylene as a starting material, anti-2,2-difluoro-3,4,5-)-lihydroxycarboxylic acid can be selectively and efficiently produced. The present invention provides a novel manufacturing method for synthesizing derivatives.

本発明は、α、β−ジヒドロキシアルデヒド誘導体と前
述のジフルオロハロ酢酸誘導体からReformats
ky型反応を行なわせて2,2−ジフルオロ−3,4,
5−トリヒドロキシカルボン酸誘導体をジアステレオ選
択的に製造する方法に関するものであり、即ち、ジフル
オロハロ酢酸誘導体と下記式[1]で表されるa、β−
ジヒドロキシアルデヒド誘導体を金属反応剤の存在下で
反応を行なわせ、下記式[II ]で表されるanti
型の2.2−ジフルオロ−3,4,5−トリヒドロキシ
カルボン酸の誘導体に変換せしめることを特徴とする2
、2−ジフルオロ−3,4,5−トリヒドロキシカルボ
ン酸誘導体の製造方法である。
The present invention provides Reformats from α,β-dihydroxyaldehyde derivatives and the above-mentioned difluorohaloacetic acid derivatives.
ky-type reaction to produce 2,2-difluoro-3,4,
The present invention relates to a method for diastereoselectively producing a 5-trihydroxycarboxylic acid derivative, that is, a difluorohaloacetic acid derivative and a,β- represented by the following formula [1].
A dihydroxyaldehyde derivative is reacted in the presence of a metal reactant to form an anti
2, characterized in that it is converted into a derivative of 2,2-difluoro-3,4,5-trihydroxycarboxylic acid of type 2.
, a method for producing a 2-difluoro-3,4,5-trihydroxycarboxylic acid derivative.

R1は水素原子、炭化水素基または反応に不活性な特性
基を含む炭化水素基、R1,R1はそれぞれ水素原子ま
たは水酸基の保護基、または共同して2つの水酸基を保
護する1つの保護基を表す。
R1 is a hydrogen atom, a hydrocarbon group, or a hydrocarbon group containing a characteristic group inert to the reaction, R1 and R1 are each a hydrogen atom or a protecting group for a hydroxyl group, or one protecting group that jointly protects two hydroxyl groups. represent.

R’、R2,R”は上記に同じ。R゛は水素原子または
水酸基の保護基、R5はエステル残基または水素原子を
それぞれ表す。
R', R2, and R'' are the same as above. R' represents a hydrogen atom or a hydroxyl group-protecting group, and R5 represents an ester residue or a hydrogen atom, respectively.

本発明におけるジフルオロハロ酢酸誘導体としては、ブ
ロモジフルオロ酢酸誘導体、ジフルオロヨード酢酸誘導
体が適当であり、特にそのエステル体が適当である。エ
ステル残基としては、例えばアルキル基、アルケニル基
、アリール基、アルアルキル基及び本発明におりる反応
に対して不活性な′置換基を有するそれらの基、が適当
である。通常、炭素数1〜10のアルキル基やベンジル
基などが採用される。アルキル基としては直鎖状アルキ
ル永はもちろん、分岐アルキル基であってもよいが、特
にメチル基、エチル基等の炭素数1〜4の低級アルキル
基が好ましい。
As the difluorohaloacetic acid derivative in the present invention, bromodifluoroacetic acid derivatives and difluoroiodoacetic acid derivatives are suitable, and esters thereof are particularly suitable. Suitable ester residues are, for example, alkyl groups, alkenyl groups, aryl groups, aralkyl groups and those groups which have a 'substituent which is inert to the reaction according to the invention. Usually, an alkyl group having 1 to 10 carbon atoms or a benzyl group is employed. The alkyl group may be a linear alkyl group or a branched alkyl group, but lower alkyl groups having 1 to 4 carbon atoms such as a methyl group and an ethyl group are particularly preferred.

本発明においては下記式[丁1で表される、α、β−ジ
ヒドロキシアルデヒド誘導体が用いられる。
In the present invention, an α,β-dihydroxyaldehyde derivative represented by the following formula [1] is used.

R1は水素原子、炭化水素基または反応に不活性な特性
基を含む炭化水素基をそれぞれ表し、特性基としては保
護されてもよい水酸基、エステル基、ハロゲン原子、ス
ルフィド基、保護されたアミノ基等がある。特にR1と
して水素原子、メチル基あるいは保護されてもよいヒド
ロキシメチル基などが好ましい。R”、R”は水素原子
または水酸基の保護基をそれぞれ表す。水酸基の保護基
としては、メチル基、ベンジル基、アリル基などの炭化
水素基、トリアルキルシリル基、アシル基などが用いら
れるが、特にR2゜R3が共同して2つの水酸基を保護
する環状のヒドロキシ保護基を形成していることが好ま
しい。具体的にはイソプロピリデンアセクール、シクロ
へキシリデンアセクール、メチレンアセタール、ベンジ
リデンアセクール、エチリデンアセタールなどが用いら
れる。
R1 represents a hydrogen atom, a hydrocarbon group, or a hydrocarbon group containing a characteristic group inert to the reaction, and the characteristic groups include a hydroxyl group that may be protected, an ester group, a halogen atom, a sulfide group, and a protected amino group. etc. In particular, R1 is preferably a hydrogen atom, a methyl group, or a hydroxymethyl group which may be protected. R'' and R'' represent a hydrogen atom or a hydroxyl group-protecting group, respectively. Hydrocarbon groups such as methyl, benzyl, and allyl groups, trialkylsilyl groups, and acyl groups are used as protecting groups for hydroxyl groups, but in particular, cyclic groups in which R2゜R3 jointly protect two hydroxyl groups are used. Preferably, a hydroxy protecting group is formed. Specifically, isopropylidene acecul, cyclohexylidene acecul, methylene acetal, benzylidene acecul, ethylidene acetal, etc. are used.

本発明における金属反応剤としては、0価金属と有機ケ
イ素化合物の組合せあるいは0価金属と有機ケイ素化合
物とルイス酸の組合せが用いられる。0価金属としては
亜鉛、銅、スズ、鉛、マグネシウム、アルカリ金属等が
挙げられるが、特に亜鉛の使用が好ましい。0価金属の
形態としては、通常粉末が用いられる。有機ケイ素化合
物としては、同一もしくは異なる3個のアルキル基と1
個のハロゲン原子とからなるトリアルキルシリルハライ
ドが用いられる。具体的には、トリエチルシリルクロリ
ド、トリメチルシリルクロリド、t−ブチルジメチルシ
リルクロリド、エチルジメチルシリルクロリド等が挙げ
られる。
As the metal reactant in the present invention, a combination of a zero-valent metal and an organosilicon compound or a combination of a zero-valent metal, an organosilicon compound, and a Lewis acid is used. Examples of zero-valent metals include zinc, copper, tin, lead, magnesium, alkali metals, etc., and use of zinc is particularly preferred. As the form of the zero-valent metal, powder is usually used. As an organosilicon compound, three same or different alkyl groups and one
A trialkylsilyl halide consisting of halogen atoms is used. Specific examples include triethylsilyl chloride, trimethylsilyl chloride, t-butyldimethylsilyl chloride, and ethyldimethylsilyl chloride.

ジフルオロハロ酢酸誘導体に対して亜鉛粉末及びトリア
ルキルシリルハライドを作用させると下記式[[II]
に示すようなシリルケテンアセクールが生成し、これが
α、β−ジヒドロキシアルデヒド誘導体に対して付加す
るものと考えられる。
When zinc powder and trialkylsilyl halide are applied to a difluorohaloacetic acid derivative, the following formula [[II]
It is thought that silylketene acecure as shown in Figure 1 is generated and added to the α,β-dihydroxyaldehyde derivative.

CF2= C(OR) (O3iR’a)     ・
・・ [It13但し、Rはジフルオロハロ酢酸誘導体
のエステル残基、R′はシリル原子の3個のアルキル置
換基を表す。
CF2= C(OR) (O3iR'a) ・
... [It13 However, R represents an ester residue of a difluorohaloacetic acid derivative, and R' represents three alkyl substituents on a silyl atom.

Reformatsky型反応において、上記式[]に
示すようなシリルケテンアセクールを用いると温和な条
件下高い収率で付加反応が進行することはすでに出願さ
れている(特願昭63−213500)。
It has already been reported (Japanese Patent Application No. 63-213500) that in the Reformatsky type reaction, when silylketene acecool as shown in the above formula [] is used, the addition reaction proceeds in a high yield under mild conditions.

本発明において、ジフルオロハロ酢酸より[111]を
経由してα、β−ジヒドロキシアルデヒドに付加反応す
ることがanti体の2.2−ジフルオロ−3,4,5
−トリヒドロキシカルボン酸誘導体を効率よく合成する
こ゛とに有効であり、さらにLewis酸を添加するこ
とによってanti選択性が向上することを見出した。
In the present invention, the addition reaction of difluorohaloacetic acid to α,β-dihydroxyaldehyde via [111] is the anti-2,2-difluoro-3,4,5
It has been found that this method is effective for efficiently synthesizing -trihydroxycarboxylic acid derivatives, and that anti-selectivity is improved by adding Lewis acid.

ルイス酸としては4、典型金属や遷移金属の塩が用いら
れる。ルイス酸については成書(野崎−ら「有機合成の
新反応剤」化学同人、野崎−ら「オルガノメタリックス
」化学同人や山本嘉則、成田吉徳「有機金属化学」丸善
)などに引用されている化合物が用いられるが、これら
に限定されるものではない。具体的にはB、Al。
As the Lewis acid, salts of 4, typical metals and transition metals are used. Lewis acids are cited in books such as Nozaki et al. ``New Reactants for Organic Synthesis'' by Kagaku Doujin, Nozaki et al. ``Organometallics'' by Kagaku Doujin, Yoshinori Yamamoto, Yoshinori Narita ``Organometallic Chemistry'' by Maruzen), etc. compounds may be used, but are not limited to these. Specifically, B, Al.

Mg、Si、Sn、Ti、Zrなどの金属塩が用いられ
、特にチタン化合物が好ましく、チタノセンジクロリド
、四塩化チタンなどが好ましい。本発明の方法において
は、3位水酸基がトリアルキルシリル化された2、2−
ジフルオロ−3,4,5−トリヒドロキシカルボン酸誘
導体が主生成物として得られる。例えば、アルデヒドと
して2.3−0−インプロピリデン−D−グリセルアル
デヒド(式[IVl中、 R’=H,R’=H,R8=
H)や2.3−0−シクロへキシリデン−D−グリセル
アルデヒド(式[IV ]中、 R’、R7=−(CH
2)、−1R8=H)を用いた場合いずれのアルデヒド
からも有用なanti体が高選択的に得られる。ご(少
量syn体が副生ずる場合には、適当な誘導体に変換し
た後再結晶などの操作で容易に純粋なanti体を得る
ことができる。これらの化合物は2.2−ジフルオロ−
2−デオキシピラノース誘導体や2,2−ジフルオロフ
ラノース誘導体の有用な前駆体である。2.2−ジフル
オロ−2−デオキシピラノース誘導体や、 2.2−ジ
フルオロ−2−デオキシフラノース誘導体は抗腫瘍活性
や抗ウィルス活性が注目される各種ヌクレオシド誘導体
の重要な中間体である。
Metal salts such as Mg, Si, Sn, Ti, and Zr are used, and titanium compounds are particularly preferred, with titanocene dichloride, titanium tetrachloride, and the like being preferred. In the method of the present invention, 2,2-
A difluoro-3,4,5-trihydroxycarboxylic acid derivative is obtained as the main product. For example, as an aldehyde, 2.3-0-inpropylidene-D-glyceraldehyde (in the formula [IVl, R'=H, R'=H, R8=
H) or 2.3-0-cyclohexylidene-D-glyceraldehyde (in formula [IV], R', R7=-(CH
2), -1R8=H), useful anti-isomers can be obtained with high selectivity from any aldehyde. (If a small amount of the syn form is produced as a by-product, the pure anti form can be easily obtained by converting it into an appropriate derivative and then recrystallizing it. These compounds are 2,2-difluoro-
It is a useful precursor for 2-deoxypyranose derivatives and 2,2-difluorofuranose derivatives. 2.2-difluoro-2-deoxypyranose derivatives and 2.2-difluoro-2-deoxyfuranose derivatives are important intermediates for various nucleoside derivatives that are attracting attention for their antitumor and antiviral activities.

ジフルオロハロ酢酸誘導体1当量に対するカルボニル化
合物の使用量は、特に限定されるものではないが、約0
.01〜1当量が適当である。
The amount of carbonyl compound used per equivalent of difluorohaloacetic acid derivative is not particularly limited, but is about 0.
.. 01 to 1 equivalent is suitable.

特に好ましくは、約0.1〜0.5当量が好ましい。金
属反応剤の使用量については、0価金属については、ジ
フルオロハロ酢酸誘導体1当量に対して約1〜10当量
が適当であり、特に1〜3当量が好ましい。有機ケイ素
化合物については、ジフルオロハロ酢酸化合物1当量に
対して約1〜10当量が適当であり、特に1〜15当量
が好ましい。ルイス酸についてはジフルオロハロ酢酸誘
導体1当量に対して約0.01〜1当量が適当であり、
特に約0.1〜0.6当量が好ましい。反応は無溶媒で
行なうこともできるが、溶媒を用いることが好ましい。
Particularly preferred is about 0.1 to 0.5 equivalents. Regarding the amount of the metal reactant used, the amount of the zero-valent metal to be used is approximately 1 to 10 equivalents, particularly preferably 1 to 3 equivalents, per equivalent of the difluorohaloacetic acid derivative. The organosilicon compound is suitably used in an amount of about 1 to 10 equivalents, particularly preferably 1 to 15 equivalents, per equivalent of the difluorohaloacetic acid compound. For Lewis acids, it is appropriate to use about 0.01 to 1 equivalent per equivalent of difluorohaloacetic acid derivative,
Particularly preferred is about 0.1 to 0.6 equivalents. Although the reaction can be carried out without a solvent, it is preferable to use a solvent.

溶媒としては、原料や生成物を溶解しかつ非反応性の溶
媒が適当であり、アセトニトリル、テトラヒドロフラン
、ジエチルエーテル、 1.4−ジオキサン、ジメトキ
シエタン、ジメチルホルムアミド、ジメチルスルホキシ
ド、ヘキサメチルホスホルアミド、ベンゼン等が使用さ
れるが、特にアセトニトリルまたはテトラヒドロフラン
が好ましい。
Suitable solvents are those that dissolve the raw materials and products and are non-reactive, such as acetonitrile, tetrahydrofuran, diethyl ether, 1,4-dioxane, dimethoxyethane, dimethylformamide, dimethylsulfoxide, hexamethylphosphoramide, Benzene and the like are used, with acetonitrile or tetrahydrofuran being particularly preferred.

反応は一100〜60°Cで行なうことが好ましく、通
常−40℃〜室温が採用される。
The reaction is preferably carried out at -100°C to 60°C, and usually -40°C to room temperature.

本発明は、(1)反応が容易で収率、選択性が高い、(
2)種々のα、β−ジヒドロキシアルデヒド誘導体を使
用できるので多くの2.2−ジフルオロ−3,4,5−
トリヒドロキシカルボン酸誘導体を製造することが可能
である、(3)極めて立体特異的な反応であるので立体
特異性が要求されることの多い医農薬やその中間体など
として有用な2.2−ジフルオロ−3,4,5−1−リ
ヒドロキレカルボン酸誘導体が得られるなどの特徴を有
する。
The present invention provides (1) easy reaction, high yield, and high selectivity;
2) Since various α,β-dihydroxyaldehyde derivatives can be used, many 2,2-difluoro-3,4,5-
It is possible to produce trihydroxycarboxylic acid derivatives. (3) It is a very stereospecific reaction, so it is useful as medicines and agrochemicals that often require stereospecificity, and their intermediates. 2.2- It has the characteristics that a difluoro-3,4,5-1-lihydrokylecarboxylic acid derivative can be obtained.

以下、本発明を実施例により具体的に説明するが、本発
明はこれら実施例に限定されるものではなく、特にα、
β−ジヒドロキシアルデヒド誘導体としては実施例以外
の種々の化合物を採用しつるものである。
Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples, and in particular α,
As the β-dihydroxyaldehyde derivative, various compounds other than the examples may be used.

実施例1 (3R,4R)−2,2−ジフルオロ−4,5−〇−イ
ソプロピリデンー3−トリエチルシロキシペンタン酸メ
チル アルゴン雰囲気下、亜鉛末(H+7mg、 2.4mm
ol)のアセトニトリル(1,5m1)懸濁液に水冷下
ジフルオロヨード酢酸メチル(472mg、 2.Om
mol)のアセトニトリル(1,5m1)溶液をゆっく
り滴下した。同温度で10分間撹拌した後、トリエチル
シリルクロリド(0,37m1.2.2mmol)を加
えて5分間撹拌した後、−40°Cに冷却した。2.3
−0−イソプロピリデン−D−グリセルアルデヒド(1
30mg、 1.Ommol)のアセトニトリル(1,
ml)溶液を加え、引き続き、チタノセンジクロリド(
274mg、 1.1mmol)を加えた。−40℃で
1.5時間撹拌した後徐々に室温まで昇温し、12時間
撹拌した。反応混合物をエーテル(10ml)で希釈し
、2.5%重そう水溶液(10ml)を加えて撹拌した
後、沈殿物をセライト濾過し、濾液をエーテルで抽出し
た。エーテル抽出液を食塩水で洗浄、乾燥(硫酸マグネ
シウム)、減圧下濃縮し、残渣をシリカゲルクロマトグ
ラフィー(ヘキサン−酢酸エチル100:1)で精製し
目的物330mg(収率84%、無色油状物質)を得た
Example 1 Methyl (3R,4R)-2,2-difluoro-4,5-〇-isopropylidene-3-triethylsiloxypentanoate In an argon atmosphere, zinc powder (H+7 mg, 2.4 mm)
Methyl difluoroiodoacetate (472 mg, 2.0 m
mol) in acetonitrile (1.5 ml) was slowly added dropwise. After stirring at the same temperature for 10 minutes, triethylsilyl chloride (0.37ml, 1.2.2 mmol) was added, stirred for 5 minutes, and then cooled to -40°C. 2.3
-0-isopropylidene-D-glyceraldehyde (1
30mg, 1. Ommol) of acetonitrile (1,
ml) solution followed by titanocene dichloride (
274 mg, 1.1 mmol) was added. After stirring at -40°C for 1.5 hours, the temperature was gradually raised to room temperature and stirred for 12 hours. The reaction mixture was diluted with ether (10 ml), 2.5% aqueous sodium chloride solution (10 ml) was added, and the mixture was stirred. The precipitate was filtered through Celite, and the filtrate was extracted with ether. The ether extract was washed with brine, dried (magnesium sulfate), and concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane-ethyl acetate 100:1) to obtain 330 mg of the desired product (yield 84%, colorless oil). I got it.

IR(CHCIs)cm−’ : 1775.1765
’H−NMR(CDC1,) δ: 0.62−0.7
0 (6H,m)、0.92−1.00(9H,m)、
1.31(3H,s)、1.38(3H,s)、3.8
5(3H,s)、3.93(IH,dd、J=5.2.
8.6Hz)、4.04(LH,ddd、Jl、5.5
.2.8Hz)、4.17−4.27(2H,m) 1QF−NMR(CDCII、 CFCl、基準):1
13ppm(dd、 Jr−p=261Hz、 J、、
、=7.5Hz)、122ppm(dd、 Jr−p”
261Hz、 J++−r16.2H2)実施例2 (3R,4R)−および(3S、4.R)−2,2−ジ
フルオロ−〇−シクロへキシリデン−3−トリエチルシ
ロキシペンタン酸二チルアルゴン雰囲気下亜鉛末(1,
57g、 24mmol)のアセトニトリル(30ml
)懸濁液にブロモジフルオロ酢酸エチル(2,56m1
.20mmol)を室温で滴下した。室温で10分間撹
拌した後水冷下、トリエチルシリルクロリド(3,69
m1.22mmol)を滴下し、5分間撹拌した後、−
40℃に冷却した後、 2,3−0−シクロへキシリデ
ン−D−グリセルアルデヒド(1,70g、 10mm
ol)のアセトニトリル(10ml)溶液を加え、引き
続き、チタノセンジクロリド(0,25g、 1.Om
mol)を加えた。−40℃で2時間撹拌した後、徐々
に室温まで昇温し、12時間撹拌した。先と同様な後処
理後、anti体とsys体の10=1混合物を2.9
4g(収率72%、無色油状物質)得た。
IR(CHCIs)cm-': 1775.1765
'H-NMR (CDC1,) δ: 0.62-0.7
0 (6H, m), 0.92-1.00 (9H, m),
1.31 (3H, s), 1.38 (3H, s), 3.8
5 (3H, s), 3.93 (IH, dd, J=5.2.
8.6Hz), 4.04 (LH, ddd, Jl, 5.5
.. 2.8Hz), 4.17-4.27 (2H, m) 1QF-NMR (CDCII, CFCl, standard): 1
13ppm (dd, Jr-p=261Hz, J...
, =7.5Hz), 122ppm (dd, Jr-p"
261Hz, J++-r16.2H2) Example 2 (3R,4R)- and (3S,4.R)-2,2-difluoro-〇-cyclohexylidene-3-triethylsiloxypentanoate dithyl zinc powder under argon atmosphere (1,
57 g, 24 mmol) of acetonitrile (30 ml
) Ethyl bromodifluoroacetate (2,56 ml
.. 20 mmol) was added dropwise at room temperature. After stirring at room temperature for 10 minutes, triethylsilyl chloride (3,69
After dropping ml (1.22 mmol) and stirring for 5 minutes, -
After cooling to 40 °C, 2,3-0-cyclohexylidene-D-glyceraldehyde (1,70 g, 10 mm
ol) in acetonitrile (10 ml) was added, followed by titanocene dichloride (0.25 g, 1.0 ml).
mol) was added. After stirring at -40°C for 2 hours, the temperature was gradually raised to room temperature and stirred for 12 hours. After the same post-processing as before, the 10=1 mixture of anti and sys forms was reduced to 2.9
4 g (yield 72%, colorless oil) was obtained.

’H−NMR(CDC1m)δ: 0.64−0.70
(6H,m)、0、92−1.00 (9H,m)、1
.36 (3H,t、 J=7.1Hz)、1.30−
1.60(IOH,m)、 3.90(IH,dd、J=5.5.8.41(Z)、
4、01−4.04 (11(、m)、4.19−4.
35(41(、m)”F−NMR(CDC1,、CFC
l、基準):  D anti体ニー113ppm(dd、 Jr−r”26
0H2,J、I−r”7.5Hz)−122ppm(d
d、JF−r=260Hz、Jo−r:15.81(z
)sys体ニー110ppm(dd、 Jr−p=26
0H2,Jo−r=7.9H2)−119ppm(dd
、Jr−y=260Hz、JH−F=11.9Hz)実
施例7 (3R,4R)−および(3S、4R)−2,2−ジフ
ルオロ−4,5−0−シクロへキシリデン−3−トリメ
チルシロキシペンタン酸エチル 先と同様な操作で、ブロモジフルオロ酢酸エチル(0,
256m1.2.Ommol)、亜鉛末(157mg、
 2.4mmol)、 トリメチルシリルクロリド(0
,279m1゜2、2mmol)をアセトニトリル(3
ml)中反応させた後、 2.3−0−シクロへキシリ
デン−D−グリセルアルデヒド(170mg、 1.O
mmol)、チタノセンジクロリド(25mg、 O,
1mmol)を−40°Cで加えて、−40℃で1.5
時間撹拌した後、徐々に室温まで昇温し終夜撹拌した。
'H-NMR (CDC1m) δ: 0.64-0.70
(6H, m), 0, 92-1.00 (9H, m), 1
.. 36 (3H, t, J=7.1Hz), 1.30-
1.60 (IOH, m), 3.90 (IH, dd, J=5.5.8.41 (Z),
4, 01-4.04 (11(, m), 4.19-4.
35(41(,m)”F-NMR(CDC1,,CFC
l, standard): D anti body knee 113 ppm (dd, Jr-r”26
0H2,J,I-r”7.5Hz)-122ppm(d
d, JF-r=260Hz, Jo-r:15.81(z
) sys body knee 110 ppm (dd, Jr-p=26
0H2, Jo-r=7.9H2)-119ppm(dd
, Jr-y=260Hz, JH-F=11.9Hz) Example 7 (3R,4R)- and (3S,4R)-2,2-difluoro-4,5-0-cyclohexylidene-3-trimethyl Ethyl siloxypentanoate In the same manner as above, ethyl bromodifluoroacetate (0,
256m1.2. Ommol), zinc powder (157mg,
2.4 mmol), trimethylsilyl chloride (0
, 279 m1゜2, 2 mmol) in acetonitrile (3
2.3-0-cyclohexylidene-D-glyceraldehyde (170 mg, 1.O
mmol), titanocene dichloride (25 mg, O,
1 mmol) was added at -40°C, and 1.5 mmol was added at -40°C.
After stirring for an hour, the temperature was gradually raised to room temperature and stirred overnight.

先と同様な後処理後、anti体とsys体の9=1混
合物を178mg’(収率49%、無色油状物質)得た
After the same post-treatment as before, 178 mg' (49% yield, colorless oil) of a 9=1 mixture of anti and sys forms was obtained.

’H−NMR(CDCl2)  δ : 1.33−1
.59(IOH,m)、1、36 (3H,t、 J=
7.3Hz)、3.82(IH,dd、J:5.9. 
8.4Hz)、4、0’O−4,02(1)1. m)
、4.21 − 4.33(4H,m)”F−NMR(
CDC1,、CFCl、基準):anti体ニー115
ppm(dd、Jr−r=260Hz、JM−r=9.
9Hz)−120ppm(dd、Jr−p=260Hz
、J++−p=14.9Hz)sys体ニー111pp
m(dd、 Jy−r=260Hz、 、L+−yニア
、 2Hz)7121ppm(dd、JF−F”260
H2,JM−r=14.3Hz)実施例3〜6.8 前記実施例と同様の方法により、金属反応剤の種類や溶
媒を変えて目的物の合成を行った。
'H-NMR (CDCl2) δ: 1.33-1
.. 59 (IOH, m), 1, 36 (3H, t, J=
7.3Hz), 3.82 (IH, dd, J: 5.9.
8.4Hz), 4,0'O-4,02(1)1. m)
, 4.21 - 4.33 (4H, m)"F-NMR (
CDC1, CFCl, standard): anti body knee 115
ppm (dd, Jr-r=260Hz, JM-r=9.
9Hz)-120ppm(dd, Jr-p=260Hz
, J++-p=14.9Hz) sys body knee 111pp
m(dd, Jy-r=260Hz, L+-y near, 2Hz) 7121ppm(dd, JF-F"260
H2, JM-r=14.3 Hz) Examples 3 to 6.8 The desired products were synthesized by the same method as in the above example, changing the type of metal reactant and the solvent.

その結果を実施例1,2.7とともに下記表−1に示す
。なお、表−1中、C1)2TIC12はチタノセンジ
クロリドを示す。
The results are shown in Table 1 below along with Examples 1 and 2.7. In addition, in Table 1, C1)2TIC12 represents titanocene dichloride.

Claims (5)

【特許請求の範囲】[Claims] (1)ジフルオロハロ酢酸誘導体と下記式[ I ]で表
されるα,β−ジヒドロキシアルデヒド誘導体を金属反
応剤の存在下で反応を行なわせ、下記式[II]で表され
るアンタイ(anti)型の2,2−ジフルオロ−3,
4,5−トリヒドロキシカルボン酸の誘導体に変換せし
めることを特徴とする2,2−ジフルオロ−3,4,5
−トリヒドロキシカルボン酸誘導体の製造法。 ▲数式、化学式、表等があります▼・・・[ I ] R^1は水素原子、炭化水素基または反応に不活性な特
性基を含む炭化水素基、R^2、R^3はそれぞれ水素
原子あるいは水酸基の保護基、または共同して2つの水
酸基を保護する1つの保護基を表わす。 ▲数式、化学式、表等があります▼・・・[II] R^1、R^2、R^3は上記に同じ。R^4は素原子
または水酸基の保護基、R^5はエステル残基または水
素原子をそれぞれ表す。
(1) A difluorohaloacetic acid derivative and an α,β-dihydroxyaldehyde derivative represented by the following formula [I] are reacted in the presence of a metal reactant to form an anti-aldehyde derivative represented by the following formula [II]. 2,2-difluoro-3,
2,2-difluoro-3,4,5, characterized in that it is converted into a derivative of 4,5-trihydroxycarboxylic acid.
- A method for producing a trihydroxycarboxylic acid derivative. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[I] R^1 is a hydrogen atom, a hydrocarbon group, or a hydrocarbon group containing a characteristic group inert to the reaction, R^2 and R^3 are each hydrogen Represents a protecting group for an atom or a hydroxyl group, or one protecting group that jointly protects two hydroxyl groups. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[II] R^1, R^2, R^3 are the same as above. R^4 represents an elementary atom or a protecting group for a hydroxyl group, and R^5 represents an ester residue or a hydrogen atom, respectively.
(2)ジフルオロハロ酢酸誘導体がブロモジフルオロ酢
酸誘導体あるいはジフルオロヨード酢酸誘導体である、
請求項第1項記載の製造 法。
(2) the difluorohaloacetic acid derivative is a bromodifluoroacetic acid derivative or a difluoroiodoacetic acid derivative,
The manufacturing method according to claim 1.
(3)金属反応剤が0価金属と有機ケイ素化合物の組合
せ、あるいは0価金属と有機ケイ素化合物とルイス酸の
組合せである、請求項第1項記載の製造法。
(3) The production method according to claim 1, wherein the metal reactant is a combination of a zero-valent metal and an organosilicon compound, or a combination of a zero-valent metal, an organosilicon compound, and a Lewis acid.
(4)0価金属が亜鉛である、請求項第3項記載の製造
法。
(4) The manufacturing method according to claim 3, wherein the zero-valent metal is zinc.
(5)有機ケイ素化合物がトリアルキルシリルハライド
である、請求項第3項記載の製造 法。
(5) The production method according to claim 3, wherein the organosilicon compound is a trialkylsilyl halide.
JP1090636A 1989-04-12 1989-04-12 Production of 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivative Pending JPH02270841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090636A JPH02270841A (en) 1989-04-12 1989-04-12 Production of 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090636A JPH02270841A (en) 1989-04-12 1989-04-12 Production of 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivative

Publications (1)

Publication Number Publication Date
JPH02270841A true JPH02270841A (en) 1990-11-05

Family

ID=14003984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090636A Pending JPH02270841A (en) 1989-04-12 1989-04-12 Production of 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivative

Country Status (1)

Country Link
JP (1) JPH02270841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655454A1 (en) * 1993-11-30 1995-05-31 Eli Lilly And Company Process for preparing 2,2-difluoroketene silyl acetals and a,a-difluoro-b-silyloxy-1,3-dioxolane-4-propanoic acid esters
US5428176A (en) * 1994-04-14 1995-06-27 Eli Lilly And Company Process for preparing 2,2-difluoroketene silyl O,S-acetals and α,α-difluoro-β-silyloxy-1,3-dioxolane-4-propanoic acid O,S-esters
WO2010049947A3 (en) * 2008-10-28 2011-04-14 Accrete Pharmaceutical Private Limited Preparation of gemcitabine and intermediates thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655454A1 (en) * 1993-11-30 1995-05-31 Eli Lilly And Company Process for preparing 2,2-difluoroketene silyl acetals and a,a-difluoro-b-silyloxy-1,3-dioxolane-4-propanoic acid esters
US5618951A (en) * 1993-11-30 1997-04-08 Eli Lilly And Company Process for preparing 2,2-difluoroketene silyl acetals and α, α-βsilyloxy-1,3-dioxolane-4-propanoic acid esters
US5428176A (en) * 1994-04-14 1995-06-27 Eli Lilly And Company Process for preparing 2,2-difluoroketene silyl O,S-acetals and α,α-difluoro-β-silyloxy-1,3-dioxolane-4-propanoic acid O,S-esters
WO2010049947A3 (en) * 2008-10-28 2011-04-14 Accrete Pharmaceutical Private Limited Preparation of gemcitabine and intermediates thereof

Similar Documents

Publication Publication Date Title
EP3483161B1 (en) Intermediates used to make entecavir
US5334740A (en) Cyclohexanetriol derivatives
JP5150501B2 (en) Method for synthesizing HMG-CoA reductase inhibitor
JP3042073B2 (en) Nucleoside derivative and method for producing the same
DE68924205T2 (en) 5-Oxygenated HMG-Co-A reductase inhibitors.
US5049681A (en) Optically active allyl alcohol and process for producing leucotriene B.sub.4
JPH02270841A (en) Production of 2,2-difluoro-3,4,5-trihydroxycarboxylic acid derivative
CA2006468A1 (en) Naphthalene derivatives
US5516903A (en) Process for preparing [IR-(1α,2β-3α)]-2-amino-9-[2,3-bis(hydroxymethyl)cyclobutyl]-1,9-dihydro-6H-purin-6-one
EP0103436A2 (en) Process for preparing 5-perfluoroalkyl-5,6-dihydrouracil derivatives and compounds for use therein
WO2014094511A1 (en) Intermediates for synthesizing treprostinil and preparation method thereof as well as the preparation method of treprostinil thereby
RU2012555C1 (en) Method of synthesis of optically active cyclobutanone and derivatives of cyclobutanone
JPH051000A (en) Cyclohexyl butyric acid derivative and its production
JP2867847B2 (en) Method for producing 5-methylene-1,3-dioxolan-4-ones
JPH083143A (en) Production of 6-aralkyl substituted pyrimidine derivative
JP2001114767A (en) Production of pyrimidine compound and production of its intermediate
JPS61205273A (en) Novel glycerol derivative
JP3565587B2 (en) Novel synthesis of 15-hydroxymilbemycin derivatives
JPH0267250A (en) Production of 2,2-difluoro-3-hydroxycarboxylic acid derivative
JP2662607B2 (en) Bicyclo [8.3.0] trideca-9,13-diene-2,7-diyne derivative
JP3403761B2 (en) 3,5-Dihydroxy-1-octen-7-ynes and method for producing the same
Czech et al. Synthesis of benzo‐13‐crown‐4 derivatives
JPH06256379A (en) Spiro type pyrimidine cyclonucleoside and its production
JP4710698B2 (en) Process for producing β-diketone compound having silyl ether group
JP3655939B2 (en) Novel process for the preparation of 13-alkyl milbemycin intermediates