JPH02269766A - Internal combustion engine part and auxiliary machinery part - Google Patents

Internal combustion engine part and auxiliary machinery part

Info

Publication number
JPH02269766A
JPH02269766A JP1090830A JP9083089A JPH02269766A JP H02269766 A JPH02269766 A JP H02269766A JP 1090830 A JP1090830 A JP 1090830A JP 9083089 A JP9083089 A JP 9083089A JP H02269766 A JPH02269766 A JP H02269766A
Authority
JP
Japan
Prior art keywords
resin
fiber
weight
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1090830A
Other languages
Japanese (ja)
Other versions
JP2667247B2 (en
Inventor
Takatoshi Sagawa
佐川 孝俊
Yoshihisa Goto
善久 後藤
Toshihiko Tsutsumi
堤 敏彦
Toshiaki Takahashi
敏明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Mitsui Toatsu Chemicals Inc
Original Assignee
Nissan Motor Co Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Mitsui Toatsu Chemicals Inc filed Critical Nissan Motor Co Ltd
Priority to JP1090830A priority Critical patent/JP2667247B2/en
Priority to EP90106734A priority patent/EP0392408B1/en
Priority to DE69032302T priority patent/DE69032302T2/en
Priority to KR1019900005064A priority patent/KR930010236B1/en
Publication of JPH02269766A publication Critical patent/JPH02269766A/en
Priority to US07/948,413 priority patent/US5223556A/en
Application granted granted Critical
Publication of JP2667247B2 publication Critical patent/JP2667247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prepare an internal combustion engine part and an auxiliary machinery part which are light and excellent in durability with little degradation in strengths and rigidity even at a high temp. by molding said parts from a fiber reinforced resin obtd. by mixing a resin compsn. comprising an arom. polyetherketone and a polyetherimide with a specific carbon fiber in a specified ratio. CONSTITUTION:An internal combustion engine part and an auxiliary machinery part are molded from a fiber-reinforced resin obtd. by mixing 75-55wt.% resin compsn. comprising 95-60wt.% arom. polyetherketone having the repeating units of formula I and 5-40wt.% polyetherimide having the repeating units of formula II with 25-45wt.% carbon fiber which has been thermally treated at 300-400 deg.C after having been covered with an arom. polysulfone resin.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、繊維強化樹脂製内燃機関部品並びに補機部
品、特に遠心圧縮機に用いられるインペラや動力伝達用
歯車等に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to internal combustion engine parts and auxiliary parts made of fiber-reinforced resin, particularly impellers, power transmission gears, etc. used in centrifugal compressors.

〔従来の技術] 従来の繊維強化樹脂製インペラとしては、例えば特公昭
52−48684号、特開昭57−135132号、特
開昭57−119105号、特開昭59−18296号
、特開昭61−283797号公報に記載されているも
のがあるが、これらのインペラを構成する樹脂材料は、
炭素繊維を樹脂の補強材として用いることを特徴として
いる。特に、特開昭57−119105号公報には、耐
熱性のある熱可塑性樹脂又は、熱硬化性樹脂をマトリク
ス樹脂として用いた炭素繊維強化樹脂が、インペラに用
いられることが記載されている。
[Prior Art] Conventional fiber-reinforced resin impellers include, for example, Japanese Patent Publication Nos. 52-48684, 135132/1982, 119105/1980, 18296/1980, and There are impellers described in Japanese Patent No. 61-283797, but the resin materials that make up these impellers are
It is characterized by using carbon fiber as a reinforcing material for the resin. In particular, JP-A-57-119105 describes that a carbon fiber reinforced resin using a heat-resistant thermoplastic resin or a thermosetting resin as a matrix resin is used for an impeller.

[発明が解決しようとする課題] しかしながら、遠心圧縮機インペラの使用条件は一50
℃から200℃(常用使用時最高温度として165℃)
最大回転数が13X 10’ rpmになり、しかも最
大回転時に発生する応力は現行品(アルミニウム合金製
、外径的60mm)で約20kg/mm”、翼の付は根
部で約10kg7/+++m”にもなる。これを比重の
小さい繊維強化樹脂を用いることにより1回転時の最大
応力を約坏程度に低下させることが出来る。このように
、現行の使用条件から、耐熱性、強度(引張り、曲げ、
圧縮)1弾性率(引張り、曲げ)、耐久疲労性(引張り
、曲げ)、クリープ特性(引張り、圧縮)等を加味して
材料を選定すると、特開昭57−119105号公報に
開示される熱可塑性樹脂又は熱硬化性樹脂か、そのまま
インペラに使用出来るわけではない。
[Problem to be solved by the invention] However, the operating conditions of a centrifugal compressor impeller are
℃ to 200℃ (maximum temperature during regular use is 165℃)
The maximum rotation speed is 13X 10' rpm, and the stress generated at maximum rotation is approximately 20 kg/mm" for the current product (made of aluminum alloy, outer diameter 60 mm), and the blade attachment is approximately 10 kg 7/+++ m" at the root. It will also happen. By using a fiber-reinforced resin with a low specific gravity, the maximum stress during one rotation can be reduced to about 100 lbs. In this way, from the current usage conditions, heat resistance, strength (tensile, bending,
When materials are selected taking into account factors such as elastic modulus (tensile, bending), durability and fatigue properties (tension, bending), creep properties (tension, compression), etc., the thermal resistance disclosed in JP-A-57-119105 Plastic resins or thermosetting resins cannot be used as is for impellers.

これらの条件を満足する繊維強化樹脂組成物としては、
ポリエーテルスルホン(PES)、ポリエーテルイミド
(PEI)、ポリエーテルエーテルケトン(PEEK)
、ポリエーテルケトン(PEK)、ポリエーテルケトン
ケトン(PEKK)、ポリケトンサルファイド(PKS
)、ポリアリルエーテルケトン(PAEに)、芳香族ポ
リアミド(PA)、ポリアミドイミド(PAI)、ポリ
イミド(PI)等の耐熱性樹脂と、炭素繊維、ガラス繊
維、ウィスカ等とを複合化した組成物が考えられる。
Fiber-reinforced resin compositions that satisfy these conditions include:
Polyethersulfone (PES), polyetherimide (PEI), polyetheretherketone (PEEK)
, polyetherketone (PEK), polyetherketoneketone (PEKK), polyketone sulfide (PKS)
), polyallyletherketone (PAE), aromatic polyamide (PA), polyamideimide (PAI), polyimide (PI), and other heat-resistant resins, and carbon fibers, glass fibers, whiskers, etc., are combined into composite compositions. is possible.

しかし、上述した樹脂は溶融温度が高−いので、成形時
の樹脂溶融温度を350℃から430℃とかなり高温に
して成形する必要がある。また、現在市販されている樹
脂強化用炭素繊維は、その収束剤として熱可塑性樹脂用
としてのポリアミド系樹脂(分解温度280”C) 、
熱硬化性樹脂用としてのエポキシ系樹脂(分解温度30
0℃)が主として用いられており、前述の成形時の樹脂
溶融温度(350℃から430℃)ではそれら収束剤が
分解しやすく、炭素繊維とマトリクス樹脂との濡れ不足
による界面強度の低下が起こり、また強度のバラツキも
生じやすく、繊維強化樹脂製遠心圧縮機のインペラ用材
料として用いる場合には、炭素繊維での補強効果が有効
に生かされず強度が低いという問題点があった。さらに
、炭素繊維とマトリクス樹脂との濡れ性を最大限に引き
出した場合の組み合わせによるマトリクス樹脂では、ガ
ラス転移温度が低く、常用使用時最高温度の165℃で
の使用では剛性不足であるという問題点もあった。
However, since the above-mentioned resin has a high melting temperature, it is necessary to mold the resin at a considerably high melting temperature of 350°C to 430°C. In addition, currently commercially available carbon fibers for resin reinforcement use polyamide resins (decomposition temperature 280"C) for thermoplastic resins as binding agents,
Epoxy resin for thermosetting resin (decomposition temperature 30
At the resin melting temperature (350°C to 430°C) mentioned above during molding, these binding agents are likely to decompose, resulting in a decrease in interfacial strength due to insufficient wetting between the carbon fiber and matrix resin. Moreover, variations in strength tend to occur, and when used as an impeller material for a centrifugal compressor made of fiber-reinforced resin, there is a problem in that the reinforcing effect of carbon fibers is not effectively utilized and the strength is low. Furthermore, matrix resins created by maximizing the wettability of carbon fibers and matrix resins have a low glass transition temperature and lack of rigidity when used at the maximum temperature of 165°C during normal use. There was also.

本発明の目的は、耐熱性が高く、高温領域においても、
強度、剛性の低下の少ない繊維強化樹脂製内燃機関部品
並びに補機部品を提供することにある。
The purpose of the present invention is to have high heat resistance, even in high temperature areas.
An object of the present invention is to provide internal combustion engine parts and auxiliary machine parts made of fiber-reinforced resin with little reduction in strength and rigidity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは前記目的を達成するために種々検討した結
果、特定の繊維補強樹脂を用いることによって、優れた
内燃機関部品並びに補助部品が得られることを見出し、
本発明を完成するにいたった。
As a result of various studies to achieve the above object, the present inventors discovered that excellent internal combustion engine parts and auxiliary parts can be obtained by using a specific fiber-reinforced resin,
This led to the completion of the present invention.

すなわち本発明は、繊維強化樹脂からなる内燃機関部品
並びに補機部品において、該繊維強化樹脂が、 (a)下記(1)式で表される繰り返し単位を有する芳
香族ポリエーテルケトン95〜60重量%と、下記(2
)式で表される繰り返し単位を有するポリエーテルイミ
ド5〜40重1%とからなる樹脂組成物の75〜55重
量%と、 (bl芳香族ポリスルホン樹脂で表面を被覆した後、3
00〜400℃で加熱された炭素繊維の25〜45重量
%とからなる芳香族ポリエーテルケトン系樹脂組成物で
あることを特徴とする内燃機関部品並びに補機部品であ
る。
That is, the present invention provides internal combustion engine parts and auxiliary parts made of fiber-reinforced resin, in which the fiber-reinforced resin contains (a) 95 to 60% by weight of an aromatic polyether ketone having a repeating unit represented by the following formula (1). % and the following (2
75 to 55% by weight of a resin composition consisting of 5 to 40% by weight of polyetherimide having repeating units represented by the formula (3)
The present invention is an internal combustion engine part and an auxiliary machine part characterized by being an aromatic polyetherketone resin composition comprising 25 to 45% by weight of carbon fiber heated at 00 to 400°C.

一般にマトリクス樹脂としては、ポリエーテルスルホン
(PES)、ポリエーテルイミド(PEI)、ポリエー
テルエーテルケトン(PEEK)、ポリエーテルケトン
(PEK)、ポリエーテルケトンケトン(PEKK)、
ポリケドンサルファイド(PKS)、ポリアリルエーテ
ルケトン(PAEK)、芳香族ポリアミド(PA) 、
ポリアミドイミド(PA I ) 、ポリイミド(PI
)等が用いられる。しかしながら、成形がしやすく、し
かも耐熱強度が高いものとして有効なのは本発明に用い
るようなポリエーテルケトンとポリエーテルイミドから
なる所謂ポリマーアロイ樹脂である。
Generally, matrix resins include polyethersulfone (PES), polyetherimide (PEI), polyetheretherketone (PEEK), polyetherketone (PEK), polyetherketoneketone (PEKK),
Polykedone sulfide (PKS), polyallyletherketone (PAEK), aromatic polyamide (PA),
Polyamideimide (PAI), polyimide (PI
) etc. are used. However, the so-called polymer alloy resin made of polyetherketone and polyetherimide used in the present invention is effective as it is easy to mold and has high heat resistance strength.

マトリクス樹脂として用いるポリマーアロイ樹脂を構成
するポリエーテルケトンは、下記−数式%式% 本発明においては、^STMDI238に準じ、380
℃、2.l6kg荷重条件下で測定したメルトフローイ
ンデックスが5〜50g/l0m1n 、望ましくはI
O〜25g/IO+ninの範囲内のボッエーテルケト
ンが好ましく用いられる。
The polyether ketone constituting the polymer alloy resin used as the matrix resin is as follows - Formula % Formula % In the present invention, 380
°C, 2. The melt flow index measured under l6kg load condition is 5 to 50 g/l0m1n, preferably I
Botetherketone within the range of O to 25 g/IO+nin is preferably used.

市販されているものとして、英国インペリアル・ケミカ
ル・インタ゛ストリーズ社の「ピクトレックス ポリニ
ーデルケトンIIEK 22叶(商標)」があげられる
A commercially available product is "Pictrex Polynyderketone IIEK 22 (trademark)" manufactured by Imperial Chemical Industries Ltd. in the UK.

本発明において用いられるポリエーテルイミドは下記式
(2)で表される構造を有する。市販されているものと
しては、米国ゼネラル・エレクトリック社製の商品名「
ウルテム」が広く知られており、例えば特開昭58−8
26号公報に記載された方法によって容易に製造するこ
とができる。
The polyetherimide used in the present invention has a structure represented by the following formula (2). Commercially available products include the product name "
"Ultem" is widely known, for example, published in Japanese Patent Application Publication No. 58-8
It can be easily produced by the method described in Japanese Patent No. 26.

本発明においては、320℃、2.16kg荷重条件下
で測定したメルトフローインデックスが0.3〜5g/
l0m1n 、望ましくは0.5〜3 g/l0nin
の範囲のポリエーテルイミドが好ましく用いられる。
In the present invention, the melt flow index measured at 320°C and a load of 2.16 kg is 0.3 to 5 g/
l0m1n, preferably 0.5-3 g/l0nin
Polyetherimides in the range of are preferably used.

芳香族ポリエーテルケトンとポリエーテルイミドの配合
割合は、芳香族ポリエーテルケトン95〜70重量%、
ポリニーテルゴミ65〜30重看%が適当である。芳香
族ポリエーテルケトンが95重量%を越え、ポリエーテ
ルイミドが5重量%未満の場合には目的とする樹脂組成
物の高温での機械強度の向上効果が不十分であり、また
芳香族ポリエーテルケトンが70重量%未満、ポリエー
テルイミドが30重量%を越えた場合には得られる樹脂
組成物は、芳香族ポリエーテルケトンが有している優れ
た化学的特性を失ってくる。
The blending ratio of aromatic polyetherketone and polyetherimide is 95 to 70% by weight of aromatic polyetherketone,
A suitable amount is 65 to 30% polyester waste. If the amount of aromatic polyetherketone exceeds 95% by weight and the amount of polyetherimide is less than 5% by weight, the desired effect of improving the mechanical strength of the resin composition at high temperatures will be insufficient; When the ketone content is less than 70% by weight and the polyetherimide content exceeds 30% by weight, the resulting resin composition loses the excellent chemical properties possessed by aromatic polyetherketones.

本発明において、収束剤として炭素繊維の表面を被覆す
るのに用いられる芳香族ポリスルホン樹脂は、アリーレ
ン結合、エーテル結合及びスルホン結合を結合単位とす
る線状重合体であり、例えば、次式のような繰り返し単
位からなるものが知られている。このうち特に式(3)
の樹脂が好ましい。
In the present invention, the aromatic polysulfone resin used as a sizing agent to coat the surface of carbon fibers is a linear polymer having arylene bonds, ether bonds, and sulfone bonds as bonding units, for example, as shown in the following formula. It is known to consist of repeating units. Among these, especially formula (3)
The following resins are preferred.

+31−+O−@−3O□()士 H3 (り) 斗0つ一5Oべ)0号−〇(神− +71  十〇舎SO□−く8間(÷ fllll  −f−0つ−SO□(バ)SO□()0
()トf?l −+0−C)SO□−000℃■1□−
@+これらの芳香族ポリスルホン樹脂は、例えば特公昭
40−10067号公報、特公昭42−7799号公報
、及び特公昭41−617号公報等に記載された方法に
よって製造することができ、少なくともこれらの一種ま
たは二種以上の混合物が用いられる。市販されているも
のとしては5式(3)で示される代表例として、英国イ
ンペリアル・ケミカル・インダストリーズ社の[ピクト
レックス ポリエーテルスルホン(商標)」、住人化学
■の「スミブロイS(商標)」、また、三井東圧化学−
の[ポリエーテルスルフォン(PES)Jが挙げられ、
式(2)で示される代表例として、米国アモコ・ケミカ
ル社の「ニーデル・ポリスルホン(商標)」等がある。
+31-+O-@-3O□()ushi H3 (ri) 斗0tsu15Obe)0-0-〇(God- +71 Ju0sha SO□-ku8men(÷ fllll -f-0tsu-SO□ (b)SO□()0
() f? l -+0-C)SO□-000℃■1□-
@+ These aromatic polysulfone resins can be produced, for example, by the methods described in Japanese Patent Publication No. 10067/1980, Japanese Patent Publication No. 7799/1982, and Japanese Patent Publication No. 617/1989, etc., and at least these One or a mixture of two or more of these can be used. Typical examples of commercially available products shown by Formula 5 (3) include "Pictrex Polyethersulfone (trademark)" by Imperial Chemical Industries Ltd. in the United Kingdom, "Sumibroi S (trademark)" by Susumu Kagaku ■, Also, Mitsui Toatsu Chemical
[Polyether sulfone (PES) J is mentioned,
A typical example represented by formula (2) is "Needel Polysulfone (trademark)" manufactured by Amoco Chemical Company, USA.

また本発明で使用される炭素繊維はアクリル系、レーヨ
ン系、リグニン系、ピッチ系等が挙げられ、いずれも使
用される1本発明では繊維強度の最も高いアクリル系が
最も好ましく使用される。炭素繊維の形態は、チョップ
トストランド。
Further, the carbon fibers used in the present invention include acrylic, rayon, lignin, and pitch type carbon fibers, and although any of them can be used, in the present invention, acrylic fibers, which have the highest fiber strength, are most preferably used. The form of carbon fiber is chopped strand.

ロービング、織物等いずれでも良い、望ましいのは、ポ
リアクリロニトリルフィラメント、レーヨンフィラメン
トあるいは石油ピッチを焼成して得られたものであり、
特にアクリロニトリルフィラメントからのものが好適で
ある。これらの炭素繊維は予めその表面をオゾン又は電
解酸化等で酸化処理しておくと更に好ましい。これら炭
素繊維への芳香族ポリスルホン樹脂への被覆方法として
は、芳香族ポリスルホン樹脂をジクロルメタン。
It may be roving, woven fabric, etc., but preferred is one obtained by firing polyacrylonitrile filament, rayon filament, or petroleum pitch.
Particularly suitable are those made from acrylonitrile filaments. It is more preferable that the surface of these carbon fibers is previously oxidized by ozone or electrolytic oxidation. As a method for coating these carbon fibers with aromatic polysulfone resin, aromatic polysulfone resin is coated with dichloromethane.

クロロホルム、1.2ジクロルエタン、1.1.l、2
.2−テトラクロルエタン、ジメチルスルホオキシド、
ノルマルメチルベンクン、メチルエチルケトン、1.1
.2−トリクロルエタンなどの溶剤に溶解した溶液に、
炭素繊維を浸し、その後乾燥し溶剤を除去して、芳香族
ポリスルホン樹脂を被覆した炭素繊維を得る。
Chloroform, 1.2 dichloroethane, 1.1. l, 2
.. 2-tetrachloroethane, dimethyl sulfoxide,
Normal methyl benkune, methyl ethyl ketone, 1.1
.. In a solution dissolved in a solvent such as 2-trichloroethane,
Carbon fibers are soaked and then dried to remove the solvent to obtain carbon fibers coated with aromatic polysulfone resin.

通常、炭素繊維に対する芳香族ポリスルホン樹脂の被覆
量は炭素繊維100重量部に対し0.1〜10重量部が
良<、0.1重量部以下では本発明の効果はえられず、
また10重量部以上被覆させても、機械強度の向上は期
待できず意味がない。
Usually, the coating amount of the aromatic polysulfone resin on the carbon fiber is preferably 0.1 to 10 parts by weight per 100 parts by weight of the carbon fiber, and the effect of the present invention cannot be obtained if it is less than 0.1 part by weight.
Further, even if 10 parts by weight or more is coated, no improvement in mechanical strength can be expected and it is meaningless.

以上のようにして芳香族ポリスルホン樹脂を被覆した炭
素繊維の熱処理は、空気中300〜400℃、特に好ま
しくは340〜380℃の温度下に曝すことにより行わ
れる。加熱処理時間は3〜20時間、特に好ましくは5
〜15時間である。
The carbon fiber coated with the aromatic polysulfone resin as described above is heat-treated by exposing it in air to a temperature of 300 to 400°C, particularly preferably 340 to 380°C. The heat treatment time is 3 to 20 hours, particularly preferably 5 hours.
~15 hours.

このようにして得られる芳香族ポリスルホン樹脂を被覆
した炭素繊維と芳香族ポリエーテルケトンとポリエーテ
ルイミドの樹脂組成物との混合には種々の手法が採用で
きる。例えば被覆、加熱処理した炭素繊維を3〜6mm
長さに切断し、これと芳香族ポリエーテルケトンとポリ
エーテルイミドの樹脂組成物を個々別々に溶融押出機に
供給して混合することもできるし、あらかじめヘンシェ
ルミキサー、スーパーミキサー、リボンブレンダーなど
の混合機で予備ブレンドした後、溶融押出機に供給する
こともできる。更に被覆、加熱処理した炭素繊維ロービ
ングを直接溶融押出機に供給し、芳香族ポリエーテルケ
トンとポリエーテルイミドの樹脂組成物と混合すること
もできる。すなわち、炭素繊維、ポリエーテルケトン、
ポリエーテルイミドの3成分は最終的に本発明の組成比
になるのであればその混合順序、混合方法に制限は無い
Various methods can be adopted for mixing the carbon fiber coated with the aromatic polysulfone resin thus obtained and the resin composition of aromatic polyetherketone and polyetherimide. For example, 3 to 6 mm of coated and heat-treated carbon fiber
It is also possible to cut it into lengths and feed it and the resin composition of aromatic polyetherketone and polyetherimide individually into a melt extruder for mixing. It can also be preblended in a mixer and then fed to a melt extruder. Furthermore, the coated and heat-treated carbon fiber roving can be directly fed to a melt extruder and mixed with a resin composition of aromatic polyetherketone and polyetherimide. i.e. carbon fiber, polyetherketone,
There are no restrictions on the mixing order or mixing method of the three components of polyetherimide, as long as they finally have the composition ratio of the present invention.

本発明において芳香族ポリスルホン樹脂を被覆した炭素
繊維と芳香族ポリエーテルケトンとポリエーテルイミド
の樹脂組成物との配合割合は、炭素繊維25〜45重量
%、芳香族ポリエーテルケトンとポリエーテルイミドの
混合物75〜55重量%である。炭素繊維の量が25重
量%未溝の場合には、得られる樹脂組成物の機械強度が
低く好ましくない。また炭素繊維を45重量%越えて配
合した場合には、得られた樹脂組成物の均一な溶融混合
か難しくなり、溶融流動性も著しく低下して射出成形な
どの加工性を損なう結果となる。樹脂組成物には、必要
に応じ、タルク、炭酸力ルシュウム、マイカ、ガラスピ
ーズ等の充填材、ガラス繊維、チタン酸カリ繊維、アラ
ミド繊維、セラミック質繊維等の繊維状補強材、安定剤
、着色剤を樹脂組成物の品質、性能を損なわない範囲で
混和してもよい。
In the present invention, the blending ratio of carbon fiber coated with aromatic polysulfone resin, aromatic polyetherketone, and polyetherimide resin composition is 25 to 45% by weight of carbon fiber, aromatic polyetherketone, and polyetherimide. The mixture is 75-55% by weight. If the amount of carbon fibers is 25% by weight without grooves, the resulting resin composition will have low mechanical strength, which is not preferable. If more than 45% by weight of carbon fiber is blended, it will be difficult to uniformly melt and mix the resulting resin composition, and the melt fluidity will also drop significantly, impairing processability in injection molding and the like. The resin composition may contain fillers such as talc, lucium carbonate, mica, and glass peas, fibrous reinforcing materials such as glass fiber, potassium titanate fiber, aramid fiber, and ceramic fiber, stabilizers, and coloring. Agents may be mixed within the range that does not impair the quality and performance of the resin composition.

炭素繊維強化ポリエーテルケトンとポリエーテルイミド
のポリマーアロイ樹脂組成物は、通常取り扱いやすいベ
レット状の成形材料として射出成形工程に供されるが、
例えばこれらは公知の一軸、または二軸の押出し機を用
いてポリエーテルケトン樹脂とポリエーテルイミド樹脂
と炭素繊維とを配合し、シリンダ温度360℃〜420
℃、好ましくは370℃〜390℃で押出し機のスクリ
ューでの圧縮比を2〜3にして押出し賦形することによ
り得られる。射出成形は通常の射出成形機を用い、シリ
ンダ温度360℃〜420℃、好ましくは380℃〜4
00℃で、金型温度は150℃〜230℃、好ましくは
180℃〜200℃で行なうことができ、複雑な形状の
炭素繊維強化樹脂製遠心圧縮機のインペラや、動力伝達
用歯車等を容易に得ることが出来る。
A polymer alloy resin composition of carbon fiber-reinforced polyetherketone and polyetherimide is usually subjected to an injection molding process as a pellet-shaped molding material that is easy to handle.
For example, these are made by blending polyetherketone resin, polyetherimide resin, and carbon fiber using a known single-screw or twin-screw extruder, and at a cylinder temperature of 360°C to 420°C.
It is obtained by extrusion shaping at a temperature of 370°C to 390°C, preferably 370°C to 390°C, with a compression ratio of 2 to 3 in the screw of an extruder. Injection molding is carried out using a normal injection molding machine, with a cylinder temperature of 360°C to 420°C, preferably 380°C to 420°C.
00℃, the mold temperature is 150℃ to 230℃, preferably 180℃ to 200℃, and it is easy to manufacture complex-shaped carbon fiber reinforced resin centrifugal compressor impellers, power transmission gears, etc. can be obtained.

以下、この発明のインペラを図面に基づいて説明する。Hereinafter, the impeller of the present invention will be explained based on the drawings.

第1図は、この発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

まず構成を説明すると、図示するように遠心圧縮機のイ
ンペラは複雑な形状をしており、しかも精密な寸法精度
を必要とする。このインペラ1は、第2図に示すように
スリーブ2とワッシャ3とにより挟まれ、ナツト4でシ
ャフト部5に固定されている。
First, to explain the configuration, as shown in the figure, the impeller of a centrifugal compressor has a complicated shape and requires precise dimensional accuracy. The impeller 1 is sandwiched between a sleeve 2 and a washer 3, as shown in FIG. 2, and is fixed to a shaft portion 5 with a nut 4.

この発明のインペラは前記樹脂組成物を用い、押出し成
形や、射出成形等の良く知られている方法で製造するこ
とが出来る。例えば、第3図に示す金型を用いてインペ
ラを成形することができる。即ち、インペラ形状を彫り
込んだ組み立て成金型6と組み合わせた下金型lOにピ
ン7を取り付け、しかる後、上金型8を密着固定し、六
方向からゲート9を通して成形材料を射出、あるいは押
し出しインペラ形状部(キャビティ部) 11に充填し
成形する。
The impeller of the present invention can be manufactured using the resin composition by a well-known method such as extrusion molding or injection molding. For example, an impeller can be molded using the mold shown in FIG. That is, the pin 7 is attached to the lower mold lO combined with the assembled mold 6 in which the impeller shape is engraved, and then the upper mold 8 is tightly fixed, and the molding material is injected or extruded from six directions through the gate 9 to form the impeller. The shaped portion (cavity portion) 11 is filled and molded.

(繊維強化樹脂製造例) 製造例1 電解酸化により表面処理を施したポリアクリロニトリル
系炭素繊維(東邦レーヨン■製、HTAタイプ)を芳香
族ポリスルホン樹脂で表面を被覆した後、6mm長さに
切断してチョツプド炭素繊維とし、空気雰囲気の熱処理
炉中で370℃で10時間熱処理を行なった。
(Fiber-reinforced resin production example) Production example 1 After coating the surface of polyacrylonitrile carbon fiber (manufactured by Toho Rayon ■, HTA type) that had been surface-treated by electrolytic oxidation with aromatic polysulfone resin, it was cut into 6 mm lengths. The resulting fibers were chopped into chopped carbon fibers, and heat treated at 370° C. for 10 hours in a heat treatment furnace in an air atmosphere.

次に、マトリクス樹脂としてのポリエーテルケトン樹脂
(三井東圧化学■製PEK)と、ポリエーテルイミド樹
脂(GE社製PEI)とのポリマーアロイ樹脂の配合比
率を第1表に示し、それぞれの配合比率でのマトリクス
樹脂と上記で処理した炭素繊維とを炭素繊維の含有率を
30重量%になる様に配合した。このものをL/D=2
3、圧縮比3の65φ−軸ベント式押出し機を用い、シ
リンダ温度380℃、スクリュー回転数45rpmで押
し出しストランドを切断しベレット状の成形材料を得た
。このものを150℃で5時間熱風乾燥した後、H精樹
脂工業■製80TON(型締圧)射出成形機を用い、シ
リンダ温度380℃、金型温度180℃で厚み3mmの
JIS 1号ダンベル試験片を成形し、その後、230
℃13時間加熱処理を施し室温下と、高温下(165℃
)で引張試験(^STM D−638) 、曲げ試に示
す。ポリエーテルケトンとポリエーテルイミドとの配合
比率と引張強度、曲げ弾性率との間の相関をみると、最
適な領域はマトリクス樹脂合計量に対するポリエーテル
ケトン樹脂の配合比率が70〜95重量%が特に好まし
い。
Next, Table 1 shows the blending ratio of the polymer alloy resin of polyetherketone resin (PEK manufactured by Mitsui Toatsu Chemical Co., Ltd.) and polyetherimide resin (PEI manufactured by GE) as the matrix resin, and The matrix resin and the carbon fiber treated above were blended in such a manner that the carbon fiber content was 30% by weight. This thing L/D=2
3. Using a 65φ shaft vent type extruder with a compression ratio of 3, the extruded strand was cut at a cylinder temperature of 380° C. and a screw rotation speed of 45 rpm to obtain a pellet-shaped molding material. After drying this product with hot air at 150°C for 5 hours, using an 80TON (mold clamping pressure) injection molding machine manufactured by H Seishin Kogyo ■, JIS No. 1 dumbbell test with a cylinder temperature of 380°C and a mold temperature of 180°C with a thickness of 3 mm. Shape the pieces, then 230
Heat treated for 13 hours at room temperature and at high temperature (165℃)
) shown in the tensile test (^STM D-638) and bending test. Looking at the correlation between the blending ratio of polyetherketone and polyetherimide, tensile strength, and flexural modulus, the optimum range is when the blending ratio of polyetherketone resin is 70 to 95% by weight relative to the total amount of matrix resin. Particularly preferred.

製造例2 電解酸化により表面処理を施したポリアクリロニトリル
系炭素繊維(東邦レーヨン■製、HTAタイプ)を芳香
族ポリスルホン樹脂で表面を被覆した後、61nff+
長さに切断してチョツプド炭素繊維とし、空気雰囲気の
熱処理炉中で370℃で10時間熱処理を行なった。
Production Example 2 After coating the surface of polyacrylonitrile carbon fiber (manufactured by Toho Rayon ■, HTA type) with surface treatment by electrolytic oxidation with aromatic polysulfone resin, 61nff+
The fibers were cut into lengths to obtain chopped carbon fibers, and heat treated at 370° C. for 10 hours in a heat treatment furnace in an air atmosphere.

次に、マトリクス樹脂としてポリエーテルケトン樹脂(
三井東圧化学■製PEに)とポリエーテルイミド樹脂(
GE社製PEI)の配合比率を80/20としたポリマ
ーアロイ樹脂と上記で処理した炭素繊維とを実施例1に
記載した様な混線条件で混練し、炭素繊維の含有率が2
0.30.40.50重量%となるように配合して、ベ
レット状の樹脂組成物を調整した。この樹脂組成物を用
い、 1.80℃で3時間熱風乾燥した後、日精樹脂工
業■製80TON (型締圧)射出成形機を用い、シリ
ンダ温度390℃、金型温度190℃で厚み3+nmの
JIS 1号ダンベル試験片を成形し、その後、230
℃で3時間〜45重量%の領域に有る。
Next, polyetherketone resin (
PE manufactured by Mitsui Toatsu Chemical Co., Ltd.) and polyetherimide resin (
A polymer alloy resin with a blending ratio of 80/20 (PEI manufactured by GE) and the carbon fibers treated above were kneaded under the mixing conditions as described in Example 1, and the carbon fiber content was 2.
A pellet-shaped resin composition was prepared by blending the resin compositions in amounts of 0.30, 40.50% by weight. This resin composition was dried with hot air at 1.80°C for 3 hours, and then molded to a thickness of 3+ nm using an 80TON (mold clamping pressure) injection molding machine manufactured by Nissei Jushi Kogyo ■ at a cylinder temperature of 390°C and a mold temperature of 190°C. A JIS No. 1 dumbbell test piece was formed, and then 230
℃ for 3 hours to 45% by weight.

実施例1〜3 第2表に示す組成を有する繊維強化樹脂ベレットを府記
製造例1に従い作製し、そわを用いて。
Examples 1 to 3 Fiber-reinforced resin pellets having the compositions shown in Table 2 were produced according to Fuji Production Example 1, and were made using a stiffener.

シリンダ温度390℃、金型温度180℃、射出圧力2
100kg/cm2の成形条件で第3図に示す様な構造
の金型に射出し、インペラ形状物を得た。得られた形状
物を230℃で3時間の加熱処理の後、パリ取り、バラ
ンスチエツクなどの機械加工を行ない、第2図に示す様
な構造でシャフトに固定し、空気加熱装置付きく温度範
囲0〜600℃)の高速回転強度試験機(回転数O〜2
5X 10’ rpm )にセットし、回転数が13X
 10’ rpmの場合のインペラ圧縮空気出口温度を
165℃になる様に調節しながら連続耐久試験を行なっ
た。得られた結果を第2表に示す。連続耐久200時間
に耐えるものを良好(Oマーク)と判定した。
Cylinder temperature 390℃, mold temperature 180℃, injection pressure 2
The product was injected into a mold having a structure as shown in FIG. 3 under molding conditions of 100 kg/cm2 to obtain an impeller-shaped product. After heat treatment of the obtained shape at 230℃ for 3 hours, mechanical processing such as deburring and balance check is performed, and it is fixed to the shaft with the structure shown in Fig. 2, and the temperature range with the air heating device is adjusted. 0~600℃) high speed rotational strength tester (rotation speed 0~2
5X 10' rpm) and the rotation speed is 13X.
A continuous durability test was conducted while adjusting the impeller compressed air outlet temperature to 165°C at 10' rpm. The results obtained are shown in Table 2. Those that withstood 200 hours of continuous durability were judged to be good (O mark).

実施例4 第2表に示す組成(炭素繊維40wt%)を有する繊維
強化樹脂ベレットを前記製造例1に従い作製し、それを
用いて、金型温度200℃にする以外は実施例1〜3と
同様にしてインペラ形状物を作製し、試験を行なった。
Example 4 A fiber-reinforced resin pellet having the composition shown in Table 2 (carbon fiber 40 wt%) was produced according to Production Example 1, and the same procedure as that of Examples 1 to 3 was performed except that the mold temperature was 200°C. An impeller-shaped article was produced in the same manner and tested.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

比較例1〜3 第2表に示す組成を有する繊維強化樹脂ベレットを用い
た以外は、実施例1〜3と同様にしてインペラ形状物を
作製し、試験を行なった。得られた結果を第2表に示す
Comparative Examples 1 to 3 Impeller-shaped articles were produced and tested in the same manner as Examples 1 to 3, except that fiber-reinforced resin pellets having the compositions shown in Table 2 were used. The results obtained are shown in Table 2.

比較例4および5 第2表に示す組成(炭素繊維20wt%、50wt%)
を有する繊維強化樹脂ベレットを用いた以外は実施例4
と同様にしてインペラ形状物を作製し、試験を行なった
。得られた結果を第2表に示す。
Comparative Examples 4 and 5 Composition shown in Table 2 (carbon fiber 20wt%, 50wt%)
Example 4 except that a fiber-reinforced resin pellet having
An impeller-shaped article was prepared in the same manner as above and tested. The results obtained are shown in Table 2.

第2表の結果より、実施例において成形したインペラは
、比較例のものに比べて耐熱強度並びに耐クリープ特性
に優れていることが分かる。
From the results in Table 2, it can be seen that the impellers molded in the Examples are superior in heat resistance strength and creep resistance compared to those in the Comparative Examples.

第1表 樹 と 物 註) 炭素繊維含有率は30重量%一定。Table 1 tree and thing Note) Carbon fiber content is constant at 30% by weight.

(発明の効果〕 以−F説明してきた様に、本発明の部品は、使用する繊
維強化樹脂における炭素繊維とマトリクス樹脂との濡れ
性が向上し強度の向上がはからむ、しかもガラス転移温
度の向上もはかられるので、耐熱性が高く、 165℃
以上の高温領域においても強度、剛性の低下が少ないた
め高速連続耐久で破損しないという効果が得られる。又
、各実施例は、それぞれ上記共通の効果に加えて、更に
以下のような効果がある。インペラの軽量化により、エ
ンジン負荷変動に対する追従性が改善される。
(Effects of the Invention) As explained above, the parts of the present invention improve the wettability of the carbon fibers and matrix resin in the fiber-reinforced resin used, which improves the strength, and also improves the glass transition temperature. It also has high heat resistance, up to 165℃.
Even in the above high temperature range, there is little decrease in strength and rigidity, so it is possible to achieve the effect of not breaking during high-speed continuous durability. In addition to the above-mentioned common effects, each of the embodiments also has the following effects. Reducing the weight of the impeller improves its ability to follow engine load fluctuations.

また、製品表面の精度がアルミ合金製のものに比へて極
めて向上するために、高速回転時の吸入空気の翼表面か
らの剥離現象を低減することができ、吸入圧縮効率が向
上する。
In addition, since the precision of the product surface is significantly improved compared to those made of aluminum alloy, it is possible to reduce the phenomenon of separation of intake air from the blade surface during high-speed rotation, and improve intake compression efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のm個インベラの斜視図、第2図はシ
ャフト部へ取り付けたインペラの断面図、 第3図はインペラ成形用金型の断面図、(L:L)、 
(い 第5゛図1F鴫造例2における評価結果を示す図である
。 1・・・インペラ     2・・・スリーブ3・・・
ワッシャ     4・・・ナツト5・・・シャフト 
    6・・・組立て成金型7・・・ビン     
  8・・・上金型9・・・ゲート      10−
・・下金型+1・・・インペラ形状部(キャビティ)A
・・・成形材料入口 特許出願人  三井東圧化学株式会社 日産自動車株式会社
Fig. 1 is a perspective view of the m-piece inflator of the present invention, Fig. 2 is a cross-sectional view of the impeller attached to the shaft portion, Fig. 3 is a cross-sectional view of the impeller mold, (L:L),
(Fig. 5 is a diagram showing the evaluation results in Example 2 of 1F construction. 1... Impeller 2... Sleeve 3...
Washer 4...Nut 5...Shaft
6...Assembling mold 7...Bin
8... Upper mold 9... Gate 10-
...Lower mold +1...Impeller shape part (cavity) A
...Molding material inlet patent applicant Mitsui Toatsu Chemical Co., Ltd. Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】 繊維強化樹脂からなる内燃機関部品並びに補機部品にお
いて、該繊維強化樹脂が、 (a)下記(1)式で表される繰り返し単位を有する芳
香族ポリエーテルケトン95〜60重量%と、下記(2
)式で表される繰り返し単位を有するポリエーテルイミ
ド5〜40重量%とからなる樹脂組成物の75〜55重
量%と、 (1)▲数式、化学式、表等があります▼ (2)▲数式、化学式、表等があります▼ (b)芳香族ポリスルホン樹脂で表面を被覆した後、3
00〜400℃で加熱された炭素繊維の25〜45重量
%とからなる芳香族ポリエーテルケトン系樹脂組成物で
あることを特徴とする内燃機関部品並びに補機部品。
[Scope of Claims] Internal combustion engine parts and auxiliary parts made of fiber-reinforced resin, wherein the fiber-reinforced resin is (a) an aromatic polyether ketone 95-60 having a repeating unit represented by the following formula (1). Weight% and the following (2
) 75 to 55% by weight of a resin composition consisting of 5 to 40% by weight of polyetherimide having a repeating unit represented by the formula (1) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (2) ▲ Mathematical formula , chemical formulas, tables, etc. ▼ (b) After coating the surface with aromatic polysulfone resin, 3
Internal combustion engine parts and auxiliary equipment parts, characterized in that they are aromatic polyetherketone resin compositions comprising 25 to 45% by weight of carbon fibers heated at 00 to 400°C.
JP1090830A 1989-04-12 1989-04-12 Internal combustion engine parts and accessory parts Expired - Lifetime JP2667247B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1090830A JP2667247B2 (en) 1989-04-12 1989-04-12 Internal combustion engine parts and accessory parts
EP90106734A EP0392408B1 (en) 1989-04-12 1990-04-08 Aromatic polyetherketone resin compositions
DE69032302T DE69032302T2 (en) 1989-04-12 1990-04-08 Compositions based on aromatic polyether ketones
KR1019900005064A KR930010236B1 (en) 1989-04-12 1990-04-12 Aromatic polyether keton resin composition
US07/948,413 US5223556A (en) 1989-04-12 1992-09-22 Aromatic polyetherketone resin compositions containing polyetherimide, polysulfone-coated carbon fibers and mechanical component formed therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090830A JP2667247B2 (en) 1989-04-12 1989-04-12 Internal combustion engine parts and accessory parts

Publications (2)

Publication Number Publication Date
JPH02269766A true JPH02269766A (en) 1990-11-05
JP2667247B2 JP2667247B2 (en) 1997-10-27

Family

ID=14009505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090830A Expired - Lifetime JP2667247B2 (en) 1989-04-12 1989-04-12 Internal combustion engine parts and accessory parts

Country Status (1)

Country Link
JP (1) JP2667247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218209A1 (en) 2019-04-26 2020-10-29 ユニチカ株式会社 Polyamide resin composition and molded article obtained by molding same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184254A (en) * 1983-04-04 1984-10-19 Toray Ind Inc Polyaryl ketone resin composition
JPS61225247A (en) * 1985-03-27 1986-10-07 アモコ、コ−ポレ−ション Abrasion resistant poly(aryl ether ketone)/polyimide mixture
JPS6424856A (en) * 1987-07-20 1989-01-26 Mitsui Toatsu Chemicals Aromatic polysulfone resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184254A (en) * 1983-04-04 1984-10-19 Toray Ind Inc Polyaryl ketone resin composition
JPS61225247A (en) * 1985-03-27 1986-10-07 アモコ、コ−ポレ−ション Abrasion resistant poly(aryl ether ketone)/polyimide mixture
JPS6424856A (en) * 1987-07-20 1989-01-26 Mitsui Toatsu Chemicals Aromatic polysulfone resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218209A1 (en) 2019-04-26 2020-10-29 ユニチカ株式会社 Polyamide resin composition and molded article obtained by molding same

Also Published As

Publication number Publication date
JP2667247B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US5817418A (en) Resin composition
CN1014608B (en) Polyphenylene sulfide composition and method of producing same
CN108485252B (en) Warping deformation resistant reinforced nylon 6 material and preparation method thereof
EP0714940A1 (en) Long-fiber-reinforced columnar body comprising long-fiber-reinforced crystalline propylene resin composition and propeller-shaped fan made therefrom
CN101245185A (en) Continuous fiber reinforcing polyamide/vinyl cyanide-butadiene-vinyl benzene composite material and method for manufacturing same
EP3401355A1 (en) Polyamide material
JP2009024057A (en) Composite fiber-reinforced thermoplastic resin pellet, and molded product
US5223556A (en) Aromatic polyetherketone resin compositions containing polyetherimide, polysulfone-coated carbon fibers and mechanical component formed therefrom
EP0392408B1 (en) Aromatic polyetherketone resin compositions
KR930005401B1 (en) Carbon fiber reinforced polyimide resin composition
JPH02269766A (en) Internal combustion engine part and auxiliary machinery part
JP2603321B2 (en) Heat resistant resin composition and internal combustion engine parts using the same
DE60317221T2 (en) AROMATIC POLYCONDENSATE COMPOSITIONS WITH IMPROVED STRENGTH PROPERTIES
JPH0642302A (en) Fiber reinforced resin-made impeller
JP2667544B2 (en) Internal combustion engine parts
KR930010237B1 (en) Aromatic polyether keton resin composition
JP2005298663A (en) Automobile interior part made of resin
JP2624554B2 (en) Internal combustion engine parts
JPH10279777A (en) Flaky phenolic resin molding material containing carbon fiber and its production
JPH068317Y2 (en) Impeller
JPH0753862A (en) Glass fiber-reinforced polyamide resin composition
JP2564559B2 (en) Aromatic polysulfone resin composition
KR101664371B1 (en) Polyamide based polymer compositions having high flowability and mechanical strength and polyamide based composite comprising the same
JPS63278825A (en) Resin composition for impeller
JP2667246B2 (en) Aromatic polyetherketone resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

EXPY Cancellation because of completion of term