JPH0226953B2 - - Google Patents

Info

Publication number
JPH0226953B2
JPH0226953B2 JP55146256A JP14625680A JPH0226953B2 JP H0226953 B2 JPH0226953 B2 JP H0226953B2 JP 55146256 A JP55146256 A JP 55146256A JP 14625680 A JP14625680 A JP 14625680A JP H0226953 B2 JPH0226953 B2 JP H0226953B2
Authority
JP
Japan
Prior art keywords
waste liquid
molasses
steam
evaporator
ethyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55146256A
Other languages
Japanese (ja)
Other versions
JPS5771393A (en
Inventor
Minoru Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP55146256A priority Critical patent/JPS5771393A/en
Publication of JPS5771393A publication Critical patent/JPS5771393A/en
Publication of JPH0226953B2 publication Critical patent/JPH0226953B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明を糖蜜を原料とし発酵および蒸留を行う
エチルアルコールの製造方法に関する。 従来、この種の糖蜜からのエチルアルコール製
造工場で必要とされるエネルギは外部から得てい
た。その必要とされるエネルギとしては、モータ
駆動用の電気、殺菌用、醪蒸留用の熱エネルギが
あり、これらのエネルギは、ボイラーを設置して
生蒸気を利用することによつて、外部より電気を
購入する方法、ボイラーにより過熱蒸気を得てタ
ービンによる発電を行い、次いでタービンの排気
を各工程の熱エネルギ使用個所へ与える方法など
によつていた。 ちなみに、糖蜜を原料とする際には、95.7重量
%のエチルアルコールを1Kl得るのに、蒸気を
3.0トン、電気を450kWhrを必要としていた。そ
してこの数値は蒸留工程より生ずる廃液を蒸発し
て処理する場合には更に大きくなり、蒸気を6.0
トン、電気を600kwhrを必要とする。 本発明はかかる大きなエネルギを外部から得て
いる事情に対処するために、製造工程を見直し、
使用エネルギ量を製造プロセス系内から自給せん
として開発されたものである。この目的達成のた
めに、製造法を検討してみると、次の点におい
て、有効な知見が得られた。すなわち、原料を糖
蜜とする場合には、糖蜜中に含有される非発酵性
糖分は勿論のこと、溶解性有機物が発酵ずみの醪
の中に存在し、アルコールを蒸留して得られる廃
液中にこれらの成分が移行するものである。にも
かかわらず、従来この廃液は通常の廃液として排
液処理していたのに対し、これらの成分は発熱量
が高く燃料として十分利用できることを見出した
のである。 具体的には、適当に濃縮したアルコール廃液を
ボイラーで燃焼し、過熱蒸気を得て、これにより
タービンを用いて発電し、工場内で必要とされる
エネルギーを満し、また前記過熱蒸気により圧縮
機を駆動して蒸発缶(濃縮缶)の発生蒸気を機械
的に圧縮して廃液を濃縮するとともに、蒸留工程
で得られた廃液の一部を糖蜜希釈用に利用し、非
発酵性の固形分濃度を15〜22重量%、通常15〜20
重量%となし、廃液の蒸発量を減少させれば、製
造系内で必要とされるエネルギを製造系内から取
出すことができ、エネルギの自給ができることが
判明した。 ここでさらに本発明を完成させるに至つた考え
方を述べれば次の通りである。すなわち、アルコ
ール1Klを得るに必要な糖蜜量は、その含有糖度
によつても異なるが、通常3.2〜3.8トンで、これ
より得られる廃液を55〜60%に濃縮しさらにこれ
を燃焼して得られる高圧蒸気は3.07〜3.65トンで
ある。この蒸気のうち、1.5トンを用いてプロセ
スに必要な電力140〜150kwhrを発生させ、残り
の蒸気を蒸気タービン駆動による自己蒸気圧縮機
に供給して蒸発缶の蒸発熱源に用いれば、蒸発量
として4.5〜6.3トンが期待できる。通常のアルコ
ール廃液の蒸発量は約9.0トンであるから、蒸発
量が前記の蒸発量に合致するように、かつ発酵が
阻害されない範囲で、廃液を糖蜜の希釈用に利用
すれば、所期の蒸発量である4.5〜6.3トンの範囲
に適合できる。この廃液の再循環量は、排出され
る廃液の20〜50%でよい。一方、プロセスに必要
な蒸気は、粗留アルコール製造では、2.4トンKl
程度で足りる。したがつて、得られた廃液を適当
に再循環し、蒸発量を減少させることで、本発明
の目的を達成できる。 本発明は、次のような発酵工学的な知見にも基
いている。つまり、糖蜜中の非発酵性有機物およ
び無機物の発酵培地における濃度は、従来予想さ
れていた濃度より高い濃度範囲であつても、十分
馴育された酵母を用いれば、アルコールの生産性
が低下しないということである。たとえば、実験
例を示すと、1の発酵槽を用いて、全糖分53
%、発酵性糖分48%、非糖有機物15%、灰分8
%、その他1%のフイリツピン産の糖蜜を原料と
して、発酵性糖濃度18重量%、尿素1gr/、
酵母初期濃度4.0gr/、発酵温度30℃の条件
で、酵母サツカロミセス・セレビシエを用いて、
非発酵性有機物濃度と灰分の濃度とを変化させ
て、最終アルコール濃度が10容積%となる発酵時
間を求めた。その結果を次表に示す。
The present invention relates to a method for producing ethyl alcohol using molasses as a raw material and carrying out fermentation and distillation. Traditionally, the energy required for this type of molasses-based ethyl alcohol production plant has been obtained externally. The energy required includes electricity for driving the motor, heat energy for sterilization, and distillation of mortar.These energies can be obtained from outside by installing a boiler and using live steam. The conventional method was to purchase superheated steam using a boiler, generate electricity using a turbine, and then supply the exhaust gas from the turbine to the locations where heat energy was used in each process. By the way, when using molasses as a raw material, it takes steam to obtain 1 Kl of 95.7% by weight ethyl alcohol.
3.0 tons and required 450kWhr of electricity. And this number becomes even higher when waste liquid generated from the distillation process is treated by evaporation, and the steam is reduced to 6.0%.
ton, requires 600kwhr of electricity. In order to deal with the situation where such large energy is obtained from outside, the present invention reviews the manufacturing process,
It was developed with the aim of self-sufficiency in the amount of energy used within the manufacturing process system. In order to achieve this objective, we investigated the manufacturing method and found the following useful findings. In other words, when the raw material is molasses, not only non-fermentable sugars contained in the molasses but also soluble organic substances are present in the fermented moromi, and the waste liquid obtained by distilling alcohol contains soluble organic substances. These components are what migrates. Despite this, while conventionally this waste liquid was treated as normal waste liquid, it was discovered that these components have a high calorific value and can be fully utilized as fuel. Specifically, appropriately concentrated alcohol waste liquid is burned in a boiler to obtain superheated steam, which is used to generate electricity using a turbine to meet the energy needs within the factory. In addition to mechanically compressing the steam generated in the evaporator (concentrator) and concentrating the waste liquid, a portion of the waste liquid obtained in the distillation process is used to dilute molasses and is converted into non-fermentable solids. Min concentration 15-22% by weight, usually 15-20
It has been found that if the amount of evaporation of the waste liquid is reduced by weight%, the energy required within the production system can be taken out from within the production system, and energy self-sufficiency can be achieved. The idea that led to the completion of the present invention will now be described as follows. In other words, the amount of molasses required to obtain 1Kl of alcohol varies depending on the sugar content, but is usually 3.2 to 3.8 tons, and the waste liquid obtained from this is concentrated to 55 to 60% and then combusted. The amount of high pressure steam produced is 3.07 to 3.65 tons. If 1.5 tons of this steam is used to generate 140 to 150 kwhr of electricity required for the process, and the remaining steam is supplied to a self-steam compressor driven by a steam turbine and used as the evaporation heat source for the evaporator, the amount of evaporation will be 4.5 to 6.3 tons can be expected. The amount of evaporation of normal alcohol waste liquid is approximately 9.0 tons, so if the waste liquid is used for diluting molasses so that the amount of evaporation matches the above-mentioned amount and fermentation is not inhibited, the desired amount can be achieved. It can be adapted to the evaporation amount range of 4.5 to 6.3 tons. The amount of recycled waste liquid may be 20-50% of the waste liquid discharged. On the other hand, the steam required for the process is 2.4 tons Kl for crude distillate alcohol production.
It's enough. Therefore, the object of the present invention can be achieved by appropriately recycling the obtained waste liquid and reducing the amount of evaporation. The present invention is also based on the following fermentation engineering knowledge. In other words, even if the concentration of non-fermentable organic and inorganic substances in molasses in the fermentation medium is higher than previously expected, alcohol productivity will not decrease if sufficiently acclimatized yeast is used. That's what it means. For example, to show an experimental example, using one fermenter, the total sugar content was 53
%, fermentable sugar 48%, non-sugar organic matter 15%, ash 8
%, other 1% filipina molasses as raw material, fermentable sugar concentration 18% by weight, urea 1g/,
Using the yeast Satucharomyces cerevisiae under the conditions of an initial yeast concentration of 4.0gr/ and a fermentation temperature of 30℃,
The fermentation time at which the final alcohol concentration reached 10% by volume was determined by varying the non-fermentable organic matter concentration and ash concentration. The results are shown in the table below.

【表】 以上の実験結果等により、非発酵性有機物濃度
と灰分濃度との和が180gr/程度までは殆ん
ど生産性が阻害されないことが判明した。 以下本発明の具体例を図面によつてその作用と
ともに説明すると、酸処理槽1に糖蜜2、希釈水
3および酸4が供給され、温度が昇温される。酸
処理液は、沈降機5に移され、スラツジ6が除去
される。その後上澄液が殺菌工程7に導かれ殺菌
処理される。この殺菌用の熱は、後述するタービ
ンの排気によつて与えられる。殺菌済の糖液は、
希釈工程8に供給され、後述する蒸留工程からの
廃液によつて希釈される。希釈糖液の一部は、主
発酵槽9へ導かれ、一部は酒母製造工程10を経
た後、経路11を介して主発酵槽9へ与えられ
る。主発酵槽9の次段には、酵母回収工程12が
設けられており、回収された酵母が返送路13を
介して主発酵槽9へ返送される構成となつてい
る。主発酵槽9では、酵母回収工程12において
分離され、洗浄された酵母、および酒母製造工程
10からの酒母を受けて、発酵が行なわれ、発酵
液が酵母回収工程12へ送給される。酵母回収工
程12からの上澄液は蒸留工程14へ導かれる。
蒸留工程14では、製品アルコール15が取出さ
れ、蒸留廃液の一部が、循環路16を介して希釈
工程8に希釈用に供せられるべく送給され、残部
が自己蒸気圧縮式蒸発缶17へ導かれる。蒸発缶
17で蒸発操作された後の濃縮液は、ボイラー1
8に供給され、燃焼され、その燃焼ガスにより過
熱蒸気を得る。ボイラー18の排ガスは、灰回収
機19に与えられ、灰20が回収された後、排ガ
ス21は大気へ放散される。 一方、ボイラー18で得た過熱蒸気は、管路2
2,23を介して蒸発缶17に付設された蒸気圧
縮機24および発電機付タービン25に与えられ
る。過熱蒸気によつて駆動される圧縮機24は、
蒸発缶17で発生する蒸気26を加圧し、加圧蒸
気27として蒸発缶17の加熱部へ送り加熱を行
う。28は蒸発缶17から排出されるドレンであ
る。発電機付タービン25は、ボイラー18から
の過熱蒸気を受けて発電を行い、電気29が主に
工場内の消費用として送られる構成となつてい
る。そしてタービン25の排気および圧縮機ター
ビン24の排気は、それぞれ管路30,31を介
し、さらに管路32を通して殺菌工程7へ殺菌用
熱源として、管路33を通して蒸留工程14へ蒸
留用熱源として与えられる。 かかる方法によると、前述のように、蒸留工程
14からの廃液には非発酵性糖分および溶解性有
機物が含まれており、かつこれら成分の発熱量が
高いからして、廃液を濃縮して燃焼させれば、十
分な量の過熱蒸気が得られる。そして、この過熱
蒸気は、蒸発濃縮操作手段として蒸気圧縮式蒸発
缶を用いると、その圧縮駆動用にそのまま適用で
き、蒸発用熱源を外部から得る必要がなくて省エ
ネルギを達成できる。また過熱蒸気を用いて発電
できるので、電力を自給できる。 さらに、本方法では、蒸留工程からの廃液の一
部を糖液の希釈用に用いている。したがつて、発
酵の阻害を防止しつつ、最適な蒸発量を得ること
ができる。 なお、上記例において、蒸気殺菌に代えて薬品
殺菌を行うことができる。また蒸留設備として二
重効用式のものを用いると、蒸留に用いられる蒸
気量を大巾に低減できる。 以上の通り、本発明によれば、外部からエネル
ギを得ることなく系内で自給可能となり、省エネ
ルギに寄与するところ大である。 次に実施例を示す。 実施例 本例は図面に示すプロセスと同様な日産100Kl
の無水アルコール製造プラントに適用した例であ
る。 使用原料としては、水分23%、全糖分53%、発
酵性糖分48%、非糖有機物15%、灰分8%(いず
れも重量%)の糖蜜を用いた。この原料糖蜜を、
15トン/hrの割合で与えられる上水によりBX40
に希釈し、硫酸を用いてPH3とし、混合機に入
れ、温度を100℃に保持し酸処理した後、沈降槽
で沈降物を除去し、清澄液を得て連続的に殺菌す
るとともに、蒸留工程よりの全固形物14.5重量%
の廃液を、15.7トン/hrの割合で、前述の前処理
済の液と混合して全糖分14.0重量%の醪を作つ
た。この醪は容積350Klの発酵槽に312トン供給
し、回収済の再循環酵母を菌体量として650Kg供
給し、一日四回、回分的に仕込みを行つた。発酵
時間は16時間で、最終アルコール濃度は9〜10容
積%で、残糖分は1.5〜2.5重量%であつた。 この発酵済の醪を、直径3.2mの第一塔、直径
4.7mの第二塔、各々の段数54段、第一塔のコン
デンサーを第二塔の加熱器とし、第一塔を常圧、
第二塔を真空で運転可能な二重効用式蒸留設備に
供給し、粗留アルコール(製品95.7重量%)を
4.35トン/hrの割合で得た。蒸留用に用いた蒸気
量は9.8トン/hrとした。一方、この蒸留設備か
らの廃液は45トン/hrで、全固形分濃度は14.4〜
14.6重量%であり、このうち15.7トン/hrを糖蜜
希釈用に用い、残りの廃液を伝熱面積2000m2の蒸
発缶に導き、圧力50Kg/cm2、温度350℃の蒸気に
よつて圧縮機を駆動して、蒸発缶において自己圧
縮方式により蒸発濃縮操作を行い、22.2トン/hr
を蒸発させ、全固形物濃度55重量%の濃縮液を得
た。この濃縮液は、伝熱面積850m2の過熱部、150
m2の蒸発部を有するボイラーに供給し、上部に設
けられた廃液バーナにより燃焼させ、50Kg/cm2
温度350℃の蒸気を15トン/hrの割合で得た。こ
の蒸気の一部は、前記の自己蒸気圧縮機へ7.34ト
ン/hrの割合で、他の一部を発電機付タービンに
5.7トン/hrの割合で供給した。各タービンの排
蒸気の圧力は7.0Kg/cm2であり、排蒸気をプロセ
ス用に3トン/hr、蒸留工程用に10トン/hrで使
用した。また発電機からは600kwhrの電気を得る
ことができ、工場で使用される電気量を満すこと
ができた。
[Table] From the above experimental results, etc., it has been found that productivity is hardly inhibited until the sum of non-fermentable organic matter concentration and ash concentration is about 180 gr/. Hereinafter, a specific example of the present invention will be explained with reference to the drawings, along with its operation. Molasses 2, dilution water 3, and acid 4 are supplied to an acid treatment tank 1, and the temperature is raised. The acid treatment liquid is transferred to the settler 5, and the sludge 6 is removed. Thereafter, the supernatant liquid is led to a sterilization step 7 and sterilized. This heat for sterilization is provided by the exhaust gas of the turbine, which will be described later. The sterilized sugar solution is
It is supplied to the dilution step 8 and diluted with waste liquid from the distillation step, which will be described later. A part of the diluted sugar solution is led to the main fermenter 9, and a part goes through the yeast mash manufacturing process 10 and then is given to the main fermenter 9 via a route 11. A yeast recovery step 12 is provided next to the main fermentation tank 9, and the recovered yeast is returned to the main fermentation tank 9 via a return path 13. The main fermentation tank 9 receives the yeast separated and washed in the yeast recovery step 12 and the mash from the yeast mash production step 10 to perform fermentation, and the fermentation liquid is sent to the yeast recovery step 12. The supernatant from the yeast recovery step 12 is led to a distillation step 14.
In the distillation step 14, product alcohol 15 is taken out, a part of the distillation waste liquid is sent to the dilution step 8 for dilution via the circulation path 16, and the remainder is sent to the self-vapor compression type evaporator 17. be guided. The concentrated liquid after being evaporated in the evaporator 17 is transferred to the boiler 1.
8 and is combusted, and superheated steam is obtained from the combustion gas. The exhaust gas from the boiler 18 is fed to an ash collector 19, and after the ash 20 is collected, the exhaust gas 21 is released into the atmosphere. On the other hand, the superheated steam obtained in the boiler 18 is transferred to the pipe 2
2 and 23 to a vapor compressor 24 attached to the evaporator 17 and a turbine with a generator 25. The compressor 24 driven by superheated steam is
Steam 26 generated in the evaporator 17 is pressurized and sent as pressurized steam 27 to the heating section of the evaporator 17 for heating. 28 is a drain discharged from the evaporator 17. The generator-equipped turbine 25 receives superheated steam from the boiler 18 to generate electricity, and the electricity 29 is mainly sent for consumption within the factory. The exhaust gas from the turbine 25 and the compressor turbine 24 are supplied to the sterilization process 7 through pipes 30 and 31 as a heat source for sterilization, and to the distillation process 14 through a pipe 33 as a heat source for distillation. It will be done. According to this method, as described above, the waste liquid from the distillation step 14 contains non-fermentable sugars and soluble organic substances, and since these components have a high calorific value, the waste liquid is concentrated and burned. A sufficient amount of superheated steam can be obtained. If a vapor compression type evaporator is used as the evaporation/concentration operation means, this superheated steam can be directly used for compression driving, and there is no need to obtain an external heat source for evaporation, thereby achieving energy savings. It can also generate electricity using superheated steam, making it self-sufficient in electricity. Furthermore, in this method, a part of the waste liquid from the distillation process is used for diluting the sugar solution. Therefore, an optimum amount of evaporation can be obtained while preventing inhibition of fermentation. In addition, in the above example, chemical sterilization can be performed instead of steam sterilization. Furthermore, if a dual-effect type distillation equipment is used, the amount of steam used for distillation can be significantly reduced. As described above, according to the present invention, the system can be self-sufficient without obtaining energy from the outside, which greatly contributes to energy saving. Next, examples will be shown. Example This example is a Nissan 100Kl similar to the process shown in the drawing.
This is an example of application to an absolute alcohol manufacturing plant. The raw material used was molasses with a moisture content of 23%, total sugar content of 53%, fermentable sugar content of 48%, non-sugar organic matter of 15%, and ash content of 8% (all percentages by weight). This raw molasses,
BX40 due to clean water provided at a rate of 15 tons/hr
diluted with sulfuric acid to pH 3, put in a mixer, maintained the temperature at 100℃ and treated with acid, then removed the sediment in a sedimentation tank to obtain a clear liquid, which was continuously sterilized and distilled. Total solids from process 14.5% by weight
The waste liquid was mixed with the pretreated liquid described above at a rate of 15.7 tons/hr to make moromi with a total sugar content of 14.0% by weight. 312 tons of this moromi was supplied to a fermenter with a capacity of 350Kl, and 650Kg of recovered recirculated yeast was supplied as bacterial cells, and the fermentation was carried out in batches four times a day. The fermentation time was 16 hours, the final alcohol concentration was 9-10% by volume, and the residual sugar content was 1.5-2.5% by weight. This fermented moromi is transferred to the first tower with a diameter of 3.2m.
4.7 m second column, each with 54 stages, the condenser of the first column is used as the heater of the second column, the first column is at normal pressure,
The second column is fed to a dual-effect distillation facility that can operate under vacuum, and crude alcohol (95.7% by weight of product) is produced.
It was obtained at a rate of 4.35 tons/hr. The amount of steam used for distillation was 9.8 tons/hr. On the other hand, the waste liquid from this distillation equipment is 45 tons/hr, and the total solids concentration is 14.4 ~
Of this, 15.7 tons/hr is used for diluting molasses, and the remaining waste liquid is led to an evaporator with a heat transfer area of 2000 m 2 , and is heated to a compressor using steam at a pressure of 50 Kg/cm 2 and a temperature of 350°C. The evaporator drives the evaporator to carry out evaporative concentration operation using the self-compression method, producing 22.2 tons/hr.
was evaporated to obtain a concentrate with a total solids concentration of 55% by weight. This concentrate has a superheating section with a heat transfer area of 850 m 2 , 150
50Kg/ cm2 ,
Steam at a temperature of 350°C was obtained at a rate of 15 tons/hr. Part of this steam is sent to the self-steam compressor at a rate of 7.34 tons/hr, and the other part is sent to a turbine with a generator.
It was supplied at a rate of 5.7 tons/hr. The exhaust steam pressure of each turbine was 7.0 Kg/cm 2 , and the exhaust steam was used at 3 tons/hr for the process and 10 tons/hr for the distillation step. In addition, we were able to obtain 600kwhr of electricity from the generator, which was enough to meet the amount of electricity used in the factory.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明法に係るフローシートである。 1……酸処理槽、2……糖蜜、3……希釈水、
4……酸、8……希釈工程、9……主発酵槽、1
0……酒母製造工程、12……酵母回収工程、1
4……蒸留工程、15……製品アルコール、16
……循環路、17……自己蒸気圧縮式蒸発缶、1
8……ボイラー、21……排ガス、24……蒸気
圧縮機、25……発電機付タービン、29……電
気。
The drawing is a flow sheet according to the method of the present invention. 1... Acid treatment tank, 2... Molasses, 3... Dilution water,
4...Acid, 8...Dilution step, 9...Main fermenter, 1
0... Sake mother production process, 12... Yeast recovery process, 1
4... Distillation process, 15... Product alcohol, 16
... Circulation path, 17 ... Self-vapor compression type evaporator, 1
8... Boiler, 21... Exhaust gas, 24... Steam compressor, 25... Turbine with generator, 29... Electricity.

Claims (1)

【特許請求の範囲】 1 糖蜜を原料とし発酵させ蒸留してエチルアル
コールを得る方法において、蒸留工程により排出
される廃液の一部を原料糖蜜の希釈に用い、残り
の廃液を蒸気圧縮式蒸発缶において濃縮し、この
濃縮による濃縮液を燃焼し高圧蒸気を得て、この
高圧蒸気を前記蒸発缶の蒸気圧縮駆動用に利用す
ることを特徴とするエチルアルコール製造方法。 2 廃液中の非発酵性可溶性固形物の濃度を22重
量%以下とする特許請求の範囲第1項記載のエチ
ルアルコール製造方法。 3 糖蜜を原料とし発酵させ蒸留してエチルアル
コールを得る方法において、蒸留塔より排出され
る廃液の一部を原料糖蜜の希釈に用い、残りの廃
液を濃縮した後、濃縮液を燃焼して高圧蒸気を得
て、この高圧蒸気により発電用タービンに供給し
て発電を行うことを特徴とするエチルアルコール
製造方法。
[Claims] 1. In a method for obtaining ethyl alcohol by fermenting and distilling molasses as a raw material, a part of the waste liquid discharged from the distillation process is used to dilute the raw molasses, and the remaining waste liquid is used in a vapor compression evaporator. A method for producing ethyl alcohol, which comprises: concentrating the concentrated liquid in the evaporator, combusting the concentrated liquid to obtain high-pressure vapor, and using the high-pressure vapor to drive vapor compression of the evaporator. 2. The method for producing ethyl alcohol according to claim 1, wherein the concentration of non-fermentable soluble solids in the waste liquid is 22% by weight or less. 3 In a method of fermenting and distilling molasses as a raw material to obtain ethyl alcohol, part of the waste liquid discharged from the distillation column is used to dilute the raw molasses, the remaining waste liquid is concentrated, and then the concentrated liquid is combusted to produce high pressure A method for producing ethyl alcohol characterized by obtaining steam and supplying this high-pressure steam to a power generation turbine to generate electricity.
JP55146256A 1980-10-21 1980-10-21 Preparation of ethyl alcohol Granted JPS5771393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55146256A JPS5771393A (en) 1980-10-21 1980-10-21 Preparation of ethyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55146256A JPS5771393A (en) 1980-10-21 1980-10-21 Preparation of ethyl alcohol

Publications (2)

Publication Number Publication Date
JPS5771393A JPS5771393A (en) 1982-05-04
JPH0226953B2 true JPH0226953B2 (en) 1990-06-13

Family

ID=15403619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55146256A Granted JPS5771393A (en) 1980-10-21 1980-10-21 Preparation of ethyl alcohol

Country Status (1)

Country Link
JP (1) JPS5771393A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184628A (en) * 1993-12-27 1995-07-25 Mitsui Eng & Shipbuild Co Ltd Treatment of fermentation waste liquid
JP4690959B2 (en) * 2005-07-25 2011-06-01 サントリーホールディングス株式会社 Method for producing fermented beverage using hydrolyzed yeast
US7610692B2 (en) * 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
JP2012055302A (en) * 2010-08-11 2012-03-22 Tsukishima Kikai Co Ltd Method for producing ethanol

Also Published As

Publication number Publication date
JPS5771393A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
JP4272345B2 (en) Methods for converting biomass into chemicals and fuels
US8399228B2 (en) Method for recovering energy from the organic fraction of solid urban waste and associated facility
Maiorella et al. Alcohol production and recovery
US10612047B2 (en) Biogas apparatus for integration with an ethanol production system
US9102951B2 (en) Process for recovering salt during a lignocellulosic conversion process
US4321328A (en) Process for making ethanol and fuel product
WO2006007406A2 (en) Methods and systems for biomass conversion to carboxylic acids and alcohols
CN103687954A (en) Method for reducing water usage in a cellulosic conversion process
CA1140873B (en) Production of volatile organic compound by continuous fermentation
EA014457B1 (en) Method for coproduction of bioethanol and energy from a starchy plant starting material
JP2004208667A (en) Method for producing ethanol by utilizing biomass resource
WO2019223710A1 (en) Method for producing fuel ethanol using elaeagnus angustifolia as raw material
CN206901972U (en) A kind of rubbish from cooking wastewater treatment production line
MX2011010806A (en) System for producing alcohol from sugar cane.
CN102220379B (en) Starchy raw material fermentation method for producing anhydrous ethanol without external fossil energy
US4357214A (en) Use of geothermal heat to recover alcohol and other valuable products
US20130283795A1 (en) Process for producing alcohol and other bioproducts from biomass extracts in a kraft pulp mill
JPH0226953B2 (en)
WO2010070716A1 (en) Method of producing ethanol and apparatus therefor
CN101941886B (en) Method for producing fermentation product
Patil Bioethanol: Technologies, Trends, and Prospects
Leal Ethanol production from cane resources
CN115093936A (en) Equipment for co-producing hydrogen, organic acid and biochar by treating organic waste
Brandt Ethanol production by fermentation
CN117701368A (en) Green energy power generation device and method thereof