JPH02269450A - Stator coil - Google Patents

Stator coil

Info

Publication number
JPH02269450A
JPH02269450A JP3822590A JP3822590A JPH02269450A JP H02269450 A JPH02269450 A JP H02269450A JP 3822590 A JP3822590 A JP 3822590A JP 3822590 A JP3822590 A JP 3822590A JP H02269450 A JPH02269450 A JP H02269450A
Authority
JP
Japan
Prior art keywords
coil
poles
pole
phase
rotor magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3822590A
Other languages
Japanese (ja)
Inventor
Saburo Kazama
風間 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3822590A priority Critical patent/JPH02269450A/en
Publication of JPH02269450A publication Critical patent/JPH02269450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc Machiner (AREA)

Abstract

PURPOSE:To reduce a torque ripple by a method wherein a back electromotive voltage of the whole of phases of a second coil pole group obtained by summing up the counter electromotive voltages of coil poles on both planes serially is made to equal to the value of the counter electromotive voltage of the whole of a first coil pole group. CONSTITUTION:The number of turns of a pattern conductor for one pole on a plane on one side of each of sheet coils 20, 20' and 20'' is N1, N2 and N3 (N1<N2< N3) respectively. Lamination is made in the sequence of a phase U, a phase V and a phase W with a shift of 2pi/3 of an electrical angle from each other, and sheet layers are fixed to each other by a bonding agent or the like. In an electromagnetic element of a motor, the sheet coil of the phase U is disposed on the side of the position whereat a magnetic field intensity is high, while the sheet coil of the phase W is disposed on the side of the position whereat the intensity is low. Each of the the numbers N1, N2 and N3 of turns of the sheet coils of the phases is set at such a value as makes it possible to equalize the amount of linkage to a magnetic flux at the fixed position thereof corresponding to the distribution of the magnetic field intensity in the electromagnetic element of the motor, and therefore the value of a counter electromotive voltage generated between the ends of the sheet coil of each phase becomes equal to the others when the sheet coils are incorporated in the motor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパターン状導体(エツチングやメツキ等の製法
により渦巻状に薄膜の導体を形成したちの)で形成した
モータ用の固定子コイルの構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a stator coil for a motor formed of a patterned conductor (a thin film conductor formed in a spiral shape by a manufacturing method such as etching or plating). It's about structure.

〔従来の技術〕[Conventional technology]

従来のモータを第1図に示す、これは巻線による扁平な
8極3相24コイル極の固定子コイルを用いた例である
。第2図はこのモータのコイル1相分の平面図、第3図
は各相コイルの相対位置の説明図、第4図は回転子マグ
ネットの磁極の平面図である0本例の3相コイルは第2
図に示す形状のコイル3個を、第3図のように、コイル
極が互にム(電気角)づつ回転子マグネット2の回転力
向にずれるようにして積層し第1図のように固定子ヨー
ク3の面上に接着剤等で固定した構成である。固定子コ
イルの各相コイルの形状、素線径、及び巻数は等しい、
モータ電磁部においては回転子マグネット2の磁極面は
コイルに対向しマグネット磁束がコイルと鎖交するよう
になっている。
A conventional motor is shown in FIG. 1, which is an example using a flat 8-pole, 3-phase, 24-pole stator coil formed by winding. Fig. 2 is a plan view of one phase of the coil of this motor, Fig. 3 is an explanatory diagram of the relative position of each phase coil, and Fig. 4 is a plan view of the magnetic poles of the rotor magnet. is the second
Three coils of the shape shown in the figure are stacked as shown in Figure 3 so that the coil poles are shifted from each other by mm (electrical angle) in the direction of the rotational force of the rotor magnet 2, and fixed as shown in Figure 1. It has a configuration in which it is fixed onto the surface of the child yoke 3 with adhesive or the like. The shape, wire diameter, and number of turns of each phase coil of the stator coil are the same.
In the motor electromagnetic section, the magnetic pole surface of the rotor magnet 2 faces the coil so that the magnetic flux interlinks with the coil.

さらに固定子ヨーク3.コイルおよび回転子マグネット
2を包むようにカップ型のシールドケース4を設けてあ
り回転子マグネット2の漏洩磁界がシールドケース4の
外部に漏洩しないようにしである。
Furthermore, stator yoke 3. A cup-shaped shield case 4 is provided to enclose the coil and rotor magnet 2 to prevent the leakage magnetic field of the rotor magnet 2 from leaking to the outside of the shield case 4.

このモータの電磁部における回転子マグネット2の磁束
分布を第5図及び第6図に示す。第5図は軸方向分布図
、第6図は円周方向分布図である。
The magnetic flux distribution of the rotor magnet 2 in the electromagnetic section of this motor is shown in FIGS. 5 and 6. FIG. 5 is an axial distribution diagram, and FIG. 6 is a circumferential distribution diagram.

回転子マグネット2の磁束1oは固定子ヨーク3に到達
するものの他に回転軸6側に漏洩するもの、シールドケ
ース4側に漏洩するものおよび回転子マグネット2の隣
接磁極に短絡的に入るものがある。固定子ヨーク3に到
達する磁束は磁束の径路途中にある固定子コイルの全部
の相コイル1゜1′  1′に鎖交するが、シールドケ
ース4や回転軸6及び隣接磁極に漏洩する磁束は全部の
相のコイルには鎖交せずに一部のコイルに鎖交するがま
たはいずれのコイルにも鎖交しないかのいずれかである
。従って鎖交磁束量は各相コイルによって異なり、各相
コイルの形状と巻数とが等しくされているこの従来のモ
ータにおいては、回転子マグネット2の回転により各相
コイルに誘起される逆起電圧値が異なる。一般に直流モ
ータにおいては発生トルクτと1相分のコイルの逆起電
圧e。
In addition to reaching the stator yoke 3, the magnetic flux 1o of the rotor magnet 2 also leaks to the rotating shaft 6 side, leaks to the shield case 4 side, and enters adjacent magnetic poles of the rotor magnet 2 in a short-circuit manner. be. The magnetic flux that reaches the stator yoke 3 interlinks with all phase coils 1゜1'1' of the stator coil on the magnetic flux path, but the magnetic flux that leaks to the shield case 4, rotating shaft 6, and adjacent magnetic poles is It is either unlinked to all phase coils, linked to some coils, or not linked to any coils. Therefore, the amount of flux linkage differs depending on each phase coil, and in this conventional motor in which the shape and number of turns of each phase coil are made equal, the back electromotive force induced in each phase coil by the rotation of the rotor magnet 2 are different. Generally, in a DC motor, the generated torque τ and the back electromotive force e of the coil for one phase.

どの間には次式の関係がある。すなわちτcc g 、
・T−6・・・・・・・・・・・・・・・(1)ここで
rは平均駆動半径、tはコイルの通電電流である。
There is a relationship between the following equations. That is, τcc g ,
・T-6・・・・・・・・・・・・・・・(1) Here, r is the average driving radius, and t is the current flowing through the coil.

該平均駆動半径は、回転子マグネットに対しコイルが設
置される半径方向位置によって規制される。また、逆起
電圧e0は、コイル導体が鎖交する磁束量と、その鎖文
部の半径位置の両方の関数でもある。従って半径位置等
設置位置寸法及び形状の等しい各相コイルに一定の電流
を通電した場合、各相コイルと回転子マグネッ]・間に
発生するトルクはそれぞれの相の逆起電圧値e6に比例
することになる。従って逆起電圧値に相間で差がある本
例においては1発生トルクには相間でそれぞれの逆起電
圧差に対応した差を生ずる。本従来例の固定子コイルの
各相に発生する逆起電圧波形のモデルを第7図に示す。
The average drive radius is limited by the radial position of the coil relative to the rotor magnet. Further, the back electromotive force e0 is also a function of both the amount of magnetic flux interlinked with the coil conductor and the radial position of the chain portion. Therefore, when a constant current is applied to each phase coil with the same installation position size and shape, such as radial position, the torque generated between each phase coil and rotor magnet is proportional to the back electromotive voltage value e6 of each phase. It turns out. Therefore, in this example where there is a difference in the back electromotive voltage value between the phases, there is a difference in one generated torque between the phases corresponding to the respective back electromotive voltage difference. FIG. 7 shows a model of the back electromotive force waveform generated in each phase of the stator coil of this conventional example.

固定子コイルは回転子マグネット2の磁極面に近いコイ
ルから順にU、v、W相とし逆起電圧波形はそれぞれ正
弦波としてそのm幅比を3:2:1としている0本固定
子コイルの各相に一定振幅の電流を3相的にスイッチン
グして通電した場合の発生トルク波形を第8図に示す、
逆起電圧の振幅比に対応して相間で3:2:1のトルク
比があり合成トルクτカは同図のように大きなリップル
を持った波形となる。
The stator coil has U, V, and W phases in order from the coil closest to the magnetic pole surface of the rotor magnet 2, and the back electromotive force waveform is a sine wave, and the m width ratio is 3:2:1. Figure 8 shows the generated torque waveform when a current with a constant amplitude is applied to each phase by switching in three phases.
There is a torque ratio of 3:2:1 between the phases corresponding to the amplitude ratio of the back electromotive force, and the resultant torque τ has a waveform with large ripples as shown in the figure.

基本波の周波数は各相コイルの発生トルクの周波数と等
しく、これにこの3倍の周波数の高調波が重畳されてい
る。これがモータ回転軸の回転むらをひき起こす支配的
要因となる。
The frequency of the fundamental wave is equal to the frequency of the torque generated by each phase coil, and harmonics of three times this frequency are superimposed thereon. This becomes a dominant factor causing uneven rotation of the motor rotating shaft.

第9図及び第10図は従来の固定子コイルを用いた扁平
モータの逆起電圧と電磁部における磁束密度の実測結果
例を示した図である。第9図は逆起電圧を、また、第1
0図は磁束密度の回転軸方向の成分を、それぞれ相対値
で示しである。実験には、外径40nm、内径12nm
、厚さ5mmで円周2.6m(1相分厚さ0.75m)
の固定子コイルを用い、回転子マグネット磁極面と固定
子ヨーク面間距離り、は3.1noとした。この結果、
逆起電圧の相対値は、相間で回転子マグネット2の磁極
面に近いコイルから順に、1 、0.87.0.80の
比になる。
FIGS. 9 and 10 are diagrams showing examples of actual measurement results of back electromotive force and magnetic flux density in the electromagnetic section of a flat motor using a conventional stator coil. Figure 9 shows the back electromotive force and the
Figure 0 shows the components of the magnetic flux density in the direction of the rotation axis, each expressed as a relative value. For the experiment, the outer diameter was 40 nm and the inner diameter was 12 nm.
, 5mm thick and circumference 2.6m (1 phase thickness 0.75m)
The stator coil was used, and the distance between the rotor magnet magnetic pole surface and the stator yoke surface was set to 3.1no. As a result,
The relative values of the back electromotive force have a ratio of 1, 0.87, and 0.80 between the phases, starting from the coil closest to the magnetic pole surface of the rotor magnet 2.

これが各相間のトルク比になる。合成トルクのリップル
は約±12%になる。また、各相コイルの位置の磁束密
度値の比は、はぼ上記逆起電圧の比に等しい、また距雑
り、を4noとし、コイル厚を3.5mmとすると、磁
束密度分布も大幅に変化し逆起電圧比は、1 : 0.
85 : 0.70となり、合成トルクのリップルは±
18%に増大する。
This becomes the torque ratio between each phase. The ripple of the resultant torque is approximately ±12%. In addition, the ratio of the magnetic flux density values at the positions of each phase coil is approximately equal to the ratio of the back electromotive force mentioned above. Also, if the distance error is set to 4no. and the coil thickness is set to 3.5 mm, the magnetic flux density distribution will also be significantly The back electromotive force ratio is 1:0.
85: 0.70, and the ripple of the composite torque is ±
This increases to 18%.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の如くこの種の従来の固定子コイルにおいては、(
1)電磁部の磁束量分布特性に基づく回転軸の大きなト
ルクリップルが発生し回転軸の回転むらの主原因となる
という欠点がある。さらに、(2)細線を巻線して製作
するため、専用の巻線設備が必要である上に、巻線作業
に時間がかかりコスト高になる。さらに、(3)コイル
極の形状も一様にしにくい上に、極の配列角精度も低い
ため出力の安定性も低い。また、(4)!型のコイルを
製作しにくいため薄型モータを構成することがむずかし
い、(5)各コイル極の端末接続のためのスペースが固
定子コイル内に必要である、等の欠点がある。
As mentioned above, in this type of conventional stator coil, (
1) There is a drawback that a large torque ripple occurs on the rotating shaft based on the magnetic flux distribution characteristics of the electromagnetic part, which is the main cause of uneven rotation of the rotating shaft. Furthermore, (2) since it is manufactured by winding a thin wire, special winding equipment is required, and the winding work takes time and increases costs. Furthermore, (3) it is difficult to make the shape of the coil poles uniform, and the accuracy of the arrangement angle of the poles is also low, resulting in low output stability. Also, (4)! There are disadvantages such as: (5) it is difficult to construct a thin motor because it is difficult to manufacture a shaped coil; and (5) space is required within the stator coil for terminal connection of each coil pole.

本発明の目的は、上記した従来技術の欠点をなくし、各
相内に発生する逆起電圧の値を等しくして、低トルクリ
ップルで、かつ高出力安定性を有するモータを低コスト
に構成できる固定子コイルを提供するにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to equalize the values of the back electromotive voltages generated in each phase, and to construct a motor with low torque ripple and high output stability at a low cost. is to provide stator coils.

【課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の固定子コイルでは
In order to achieve the above object, in the stator coil of the present invention.

複数相のコイル極群のコイル極が、回転子マグネットの
磁極面から順次遠ざかる方向に配された複数の異なる平
面上にパターン状導体で渦巻状に形成され、上記回転子
マグネットの回転時において該回転子マグネットの磁極
面からの磁束の変化により上記各相のコイル極群に発生
される逆起電圧の値が相間で等しくまたは略等しくされ
た固定子コイルであって、しかも。
The coil poles of the coil pole group of multiple phases are spirally formed with patterned conductors on a plurality of different planes arranged in a direction sequentially moving away from the magnetic pole surface of the rotor magnet, and when the rotor magnet rotates, the coil poles are spirally formed with patterned conductors. A stator coil in which the value of the back electromotive force generated in the coil pole group of each phase is made equal or substantially equal between the phases due to a change in magnetic flux from the magnetic pole surface of the rotor magnet.

同相のコイル極が、上記回転子マグネットの磁極面に近
い側の対向平面と該磁極面から遠b1側の対向平面との
複数の平面上に分割され、かつ回転子マグネットの回転
軸に対し同心状に配されて成る第1のコイル極群と、 該第1のコイル極群とは異なる位相を形成するコイル極
群であって、上記第1のコイル極群が分割配置された上
記複数の対向平面よりも上記回転子マグネットの磁極面
に対し遠い側に配された対向平面と近い側に配された対
向平面との複数の平面上に分割され、かつ上記回転子マ
グネットの回転軸に対し同心状に配されて成る第2のコ
イル極群と、 を備えた構成とする。
Coil poles of the same phase are divided into a plurality of planes, including an opposing plane near the magnetic pole surface of the rotor magnet and an opposing plane far from the magnetic pole surface b1, and are concentric with the rotation axis of the rotor magnet. a first coil pole group arranged in a shape; and a coil pole group forming a phase different from the first coil pole group, the plurality of coil pole groups having the first coil pole group divided and arranged. It is divided into a plurality of planes, including an opposing plane arranged on a side farther from the magnetic pole face of the rotor magnet than the opposing plane, and an opposing plane arranged on a nearer side, and relative to the rotation axis of the rotor magnet. A second coil pole group arranged concentrically;

〔作用〕[Effect]

第1のコイル極群は、回転子マグネットの磁極面に近い
側の平面と遠い側の平面との複数の平面上にコイル極が
配列されるため、磁極面に近い平面上のコイル極では、
比較的強磁界中でパターン状導体が磁束と鎖交されこの
パターン状導体の単位長当たりに発生される逆起電圧は
比較的高く5また、磁極面から遠い平面上のコイル極で
は、比較的弱磁界中でパターン状導体が磁束と鎖交され
導体の単位長当たりに発生される逆起電圧は比較的低い
。これらの両平面のコイル極の逆起電圧は直列的に加算
されて第1のコイル極群の相全体の逆起電圧となる。
In the first coil pole group, the coil poles are arranged on a plurality of planes, a plane near the magnetic pole surface of the rotor magnet and a plane far from the magnetic pole surface, so the coil poles on the plane near the magnetic pole surface are
When a patterned conductor is interlinked with magnetic flux in a relatively strong magnetic field, the back electromotive force generated per unit length of this patterned conductor is relatively high. When a patterned conductor is interlinked with magnetic flux in a weak magnetic field, the back electromotive force generated per unit length of the conductor is relatively low. The back electromotive voltages of the coil poles on both planes are added in series to form the back electromotive voltage of the entire phase of the first coil pole group.

第2のコイル極群は、上記第1のコイル極群のコイル極
のうち回転子マグネットの磁極面に近い側に配されたコ
イル極よりも回転子マグネットの磁極面から遠い平面上
に配列されたコイル極では、該第1のコイル極群の該コ
イル極よりも磁束との鎖交量が少ないためパターン状導
体の単位長当たりの逆起電圧の値も低く、また、逆に、
上記第1のコイル極群のコイル極のうち回転子マグネッ
トの磁極面から遠い側に配されたコイル極よりも回転子
マグネットの磁極面に近い側の平面上に配列されたコイ
ル極では、該第1のコイル極群の該コイル極よりも磁束
との鎖交量が多いためパターン状導体の単位長当たりの
逆起電圧の値が高い。これら両平面のコイル極の逆起電
圧は直列的に加算されて第2のコイル極群の相全体の逆
起電圧となり、上記第1のコイル極群全体の上記逆起電
圧の値と等しいかまたは略等しくされる。
The second coil pole group is arranged on a plane farther from the magnetic pole surface of the rotor magnet than the coil poles arranged closer to the magnetic pole surface of the rotor magnet among the coil poles of the first coil pole group. The coil poles have a smaller amount of interlinkage with the magnetic flux than the coil poles of the first coil pole group, so the value of the back electromotive force per unit length of the patterned conductor is also lower, and conversely,
Among the coil poles of the first coil pole group, the coil poles arranged on a plane closer to the magnetic pole surface of the rotor magnet than the coil poles arranged on the side farther from the magnetic pole surface of the rotor magnet are Since the first coil pole group has a larger amount of interlinkage with the magnetic flux than the coil poles, the value of the back electromotive force per unit length of the patterned conductor is high. The back electromotive voltages of the coil poles on both planes are added in series to form the back electromotive voltage of the entire phase of the second coil pole group, which is equal to the value of the back electromotive force of the entire first coil pole group. or approximately equal.

(実施例〕 以下本発明を実施例に基づいて説明する。第11図及び
第12図は本発明の固定子コイルを構成するシートコイ
ルの構造側口で、うち第11図は1枚のシート状コイル
の平面図、また第12図はそのコイル極の拡大図である
。また第13図はパターンの断面図、第14図は結線図
である。本例も相当たり8極のコイル極構成である。薄
膜状の絶縁シート11の表裏面上にそれぞれ8極の渦巻
き状のパターン導体12を形成し各コイル極の内部の中
央に設けたスルーホール電極14で表裏のコイル極間を
直列に接続しコイル厚を増加させずに表裏の16コイル
極を全部直列に接続しである。絶縁シート11の表裏面
のパターン導体12はほぼ同一形状で表裏で互に重なり
合うように同位置に形成しである。コイル極のパターン
導体12の渦巻き方向は隣接極で互に反対方向になるよ
うにしである0巻き始め端と巻き終り端にはコイル端末
電極13.13’ をパターン導体で形成しである。パ
ターン導体12の表面部は薄い絶縁膜15で覆ってあり
積層しても短絡等を起こさないようにしである0本構造
のシートコイルではal、 cL、・・・・・・・・・
α、がシートの表面のパターンコイル、 cL1’  
 、’  ・・・・・・・・・α、′が裏面のパタα 一ンコイルである。各パターンコイルの接続順序は次の
ようになっている。すなわち1巻き始め端末電極13〜
表面パターンコイルα1〜スルーホール電極P□〜裏面
パターンコイルα、′〜裏面パターンコイルcL、 1
〜スル一ホール電極P2〜表面パターンコイル42〜表
面パターンコイル43〜・・・・・・・・・裏面パター
ンコイルα、′〜スルーホール電極P、〜表面パターン
コイルα、〜巻き終り端末電極13′、となっている、
パターン導体12の製作方法としてはエツチングによる
方法、メツキによる方法またはこれらを併用した方法等
がある。
(Example) The present invention will be described below based on Examples. Figures 11 and 12 show the structural side openings of sheet coils constituting the stator coil of the present invention, and Figure 11 shows one sheet. Fig. 12 is a plan view of the shaped coil, and Fig. 12 is an enlarged view of its coil poles. Fig. 13 is a cross-sectional view of the pattern, and Fig. 14 is a wiring diagram. This example also has a coil pole configuration with eight poles. A spiral pattern conductor 12 of eight poles is formed on the front and back surfaces of a thin film-like insulating sheet 11, respectively, and the front and back coil poles are connected in series by a through-hole electrode 14 provided at the center inside each coil pole. All 16 coil poles on the front and back sides are connected in series without increasing the coil thickness.The patterned conductors 12 on the front and back sides of the insulating sheet 11 have almost the same shape and are formed at the same position so as to overlap each other on the front and back sides. The spiral directions of the patterned conductor 12 of the coil poles are opposite to each other in adjacent poles, and coil terminal electrodes 13.13' are formed from the patterned conductor at the beginning and end of the winding. The surface of the patterned conductor 12 is covered with a thin insulating film 15 to prevent short circuits even when laminated.In a sheet coil with a zero-wire structure, al, cL, etc.
α is the pattern coil on the surface of the sheet, cL1'
,' ・・・・・・・・・α, ′ are the patterns α and 1 coil on the back side. The connection order of each pattern coil is as follows. That is, the terminal electrode 13 at the beginning of the first turn
Surface pattern coil α1 ~ through-hole electrode P□ ~ back pattern coil α,' ~ back pattern coil cL, 1
~Through hole electrode P2~Surface pattern coil 42~Surface pattern coil 43~... Back pattern coil α,'~Through hole electrode P, ~Surface pattern coil α, ~End of winding terminal electrode 13 ′,
The pattern conductor 12 can be manufactured by etching, plating, or a combination of these methods.

パターン導体12の断面積はパターン幅wpとパターン
厚さtpでコン1−ロールする。モータ用固定子コイル
としてはモータ電磁部(モータ固定子と回転子の間の電
磁部)の磁束との鎖交量が多く低抵抗である程モータ効
率を高くできて望ましい。
The cross-sectional area of the pattern conductor 12 is controlled by the pattern width wp and the pattern thickness tp. As a stator coil for a motor, it is desirable that the amount of interlinkage with the magnetic flux of the motor electromagnetic part (the electromagnetic part between the motor stator and the rotor) is large and the resistance is low, since the motor efficiency can be increased.

このためには本シーl−コイルではパターン状導体12
の厚さipの方を極力厚くして断面積を増大させて低抵
抗化を図りながら導体間ギャップgPを極力狭くして巻
数を増大させてパターン導体群をコイル極の外周部に集
中させ磁束鎖交量を増大させるようにする。また各コイ
ル極の形状もモータの効率及び回転円滑性に影響する。
For this purpose, in this seal coil, the patterned conductor 12
The thickness ip is made as thick as possible to increase the cross-sectional area and the resistance is lowered, while the inter-conductor gap gP is made as narrow as possible to increase the number of turns to concentrate the pattern conductor group on the outer periphery of the coil pole and increase the magnetic flux. Try to increase the amount of linkage. The shape of each coil pole also affects the efficiency and rotational smoothness of the motor.

このためコイル極形状としてはこ九ら性能を向上できる
ような形状とする必要がある。例えばブラシレスモータ
の場合には回転子マグネットの磁極から発生する磁束の
分布形状に対応させてコイル横形状を磁束との鎖交量が
多くかつトルクリップルの少ない形状とする0本シート
コイルの場合には複雑なコイル極形状も容易にかつ均一
に製作することができる上コイル極の配列角精度を非常
に高くできるためモータ8力の回転安定性をも大幅に向
上できる。また上記のように化学的方法により製作する
拳寿体側口で、第15図は各相のシートコイルのはモー
タ電磁部の磁場分布に対応させて各相のシートコイルの
パターン導体の巻数Nを変化させパターン導体長を相間
で変えて磁束鎖交量を各相で等しくし相コイル間での逆
起電圧を等しくする構成例である。シー1−コイル20
はU相コイル、シートコイル20’はV相コイル、シー
トコイル20′はW相コイルで、それぞれ片側平面1極
当たりのパターン導体の巻数はN1.N、、N□(N 
1<N2<N3)であり、また各相のコイル極寸法及び
設置半径位置は同一である。積層は互に電気角でbづつ
ずらせてU相、■相、W相の順に積層し各シート層間を
接着剤等で固定する。モータ電磁部内ではU相のシート
コイルは磁場強度の高い位置側に配置しW相のシートコ
イルは低い位置側に配置する。各相のシートコイルの巻
数N、、 N、。
Therefore, the shape of the coil pole must be such that the performance can be improved. For example, in the case of a brushless motor, in the case of a zero-sheet coil, the horizontal shape of the coil is shaped to have a large amount of interlinkage with the magnetic flux and a small torque ripple in accordance with the distribution shape of the magnetic flux generated from the magnetic poles of the rotor magnet. With this method, complicated coil pole shapes can be easily and uniformly manufactured, and the arrangement angle precision of the upper coil poles can be very high, so the rotational stability of the motor 8 force can also be greatly improved. In addition, for the side opening of the fist body manufactured by the chemical method as described above, Fig. 15 shows the number of turns N of the pattern conductor of the sheet coil of each phase corresponding to the magnetic field distribution of the motor electromagnetic part. This is a configuration example in which the pattern conductor length is changed between phases to equalize the amount of magnetic flux linkage in each phase and equalize the back electromotive force between the phase coils. Sea 1-Coil 20
is a U-phase coil, sheet coil 20' is a V-phase coil, sheet coil 20' is a W-phase coil, and the number of turns of the pattern conductor per pole on one side of each plane is N1. N,,N□(N
1<N2<N3), and the coil pole dimensions and installation radius positions of each phase are the same. The layers are stacked in the order of U phase, ■ phase, and W phase with an electrical angle of b shifted from each other, and each sheet layer is fixed with an adhesive or the like. In the motor electromagnetic section, the U-phase sheet coil is placed on the side where the magnetic field strength is high, and the W-phase sheet coil is placed on the side where the magnetic field strength is low. The number of turns of the sheet coil in each phase is N,, N,.

N、はそれぞれモータ電磁部内の磁場強度分布に対応し
てその固定位置において、そこの磁束との鎖交量を等し
くできるような値にしであるため、モータに組込んだ場
合各相のシートコイル端間に発生する逆起電圧値は互に
等しい値となる。各シートコイル内のパターン導体の結
線方法は前記第11図のシートコイルの場合と同様であ
る。本構造においては、パターン導体の占有スペースを
各相で同一とする場合、巻数の少ないU相及びV相のパ
ターン導体の断面積をそれぞれW相のパターン導体の断
面積より増大させより一層低抵抗とすることができる。
N is set to a value that corresponds to the magnetic field strength distribution in the motor electromagnetic section and equalizes the amount of interlinkage with the magnetic flux at that fixed position, so when installed in the motor, the sheet coils of each phase The back electromotive voltage values generated between the ends are equal to each other. The method of connecting the pattern conductors in each sheet coil is the same as that for the sheet coil shown in FIG. 11 above. In this structure, when the space occupied by the pattern conductor is the same for each phase, the cross-sectional area of the U-phase and V-phase pattern conductors with fewer turns is made larger than the cross-sectional area of the W-phase pattern conductor, resulting in even lower resistance. It can be done.

低抵抗化によりモータの発生トルクの増大とコイル内の
銅損の減少とが可能となリモータ効率を向上できる。シ
ートコイル積層前記のように、コイル極に発生される逆
起電圧は、コイル極が設置される半径位置と、磁束鎖交
量との双方の関数であり、さらに磁束鎖交量は、導体の
巻数等導体長と磁束量との積である。このため、コイル
極の設置半径位置、導体長、磁束量のうちのいずれか一
つの条件を独立的に変えるかまたはこれらの組み合わせ
の条件を連動的に変えることにより、該コイル極に発生
される逆起電圧の値を変化させることができる。
By lowering the resistance, it is possible to increase the torque generated by the motor and reduce copper loss in the coil, thereby improving remoter efficiency. Sheet coil stackingAs mentioned above, the back electromotive force generated at the coil poles is a function of both the radial position where the coil poles are installed and the amount of magnetic flux linkage, and the amount of magnetic flux linkage is also a function of the amount of magnetic flux linkage of the conductor. The number of turns is the product of the conductor length and the amount of magnetic flux. Therefore, by independently changing any one of the installation radial position, conductor length, and magnetic flux amount of the coil pole, or by changing the combination of these conditions in conjunction, the The value of the back electromotive voltage can be changed.

第17図は、このうち、各コイル極の半径方向寸法を各
相間で変化させパターン導体長を変えると同時にコイル
極の半径方向設置位置を変えて各相の逆起電圧を等しく
するようにした場合の構成例である。巻数、パターン導
体断面積及びコイル最外径(To)は各相で等しくしで
ある。シートコイル20”’はU相コイル、シートコイ
ル 、JIIIはV相コイル、シートコイル20HII
IはW相コイルでそれぞれ半径方向長さはΔr工、Δr
atΔr3である(ΔT工くΔr、<Δr、)、積層方
法及びコイル極の結線方法は前記第1の実施例の固定子
コイルの場合と同様である。本構造の固定子コイルでは
半径方向長さの短いシートコイルの内周部の余白部に端
末配線パターン導体や速度制御用の周波数信号発電用パ
ターン導体等を設はモータとしての必要な機能を固定子
コイルに一体化して付加することができモータをコンパ
クトな構成にできる。シートコイル積層数を相当たり2
枚以上とした場合も同様である。
Figure 17 shows an example in which the radial dimension of each coil pole is changed between each phase to change the length of the pattern conductor, and at the same time the radial installation position of the coil pole is changed to equalize the back electromotive force of each phase. This is a configuration example in case. The number of turns, pattern conductor cross-sectional area, and outermost coil diameter (To) are equal for each phase. Sheet coil 20"' is U-phase coil, sheet coil, JIII is V-phase coil, sheet coil 20HII
I is a W-phase coil whose radial lengths are Δr and Δr, respectively.
at Δr3 (ΔT × Δr, <Δr), and the stacking method and coil pole connection method are the same as in the case of the stator coil of the first embodiment. In the stator coil of this structure, terminal wiring pattern conductors, frequency signal generation pattern conductors for speed control, etc. are installed in the blank space on the inner circumference of the sheet coil, which has a short radial length, and the necessary functions as a motor are fixed. It can be integrated and added to the child coil, allowing the motor to have a compact configuration. The number of laminated sheet coils is equivalent to 2
The same applies when the number of sheets is more than one.

さらに、コイル極の半径方向寸法を各相間で異ならしめ
る構成において1巻数やパターン状導体の断面積や、コ
イルの最外径寸法等を、相間で変化させた構成であって
もよい。特に、コイルの最外径寸法を各相間で変え、か
つ回転子マグネットの磁極面に近い側のシート面上のコ
イル極の配列最外径寸法及びそのコイル極中心位置を、
回転子マグネットの磁極面から遠い側のシート面上のコ
イル極のそれらよりも、それぞれ大半径位置に設ける構
成では、次の特徴を有する。すなわち、かかる構成では
、回転子マグネットの回転時において、コイル導体に対
する回転子マグネットの磁界の変化速度が、回転子マグ
ネットの磁極面に近い側のコイル極の方が、遠い側のコ
イル極よりも大きい。このため、単位長さのコイル導体
で発生される逆起電圧の値は、該近い側のコイル極の方
が高い。従って該近い側のコイル極の導体長をこの点か
らもさらにその分だけ短くできコイルの低紙を゛各相間
で変化させパターン導体長を変える場合のシートコイル
構成例である。磁束の多い位置に設置する相のシートコ
イルはそのコイル極数を少なくし磁束の少ない位置に設
置する相のシートコイルはそのコイル極数を多くして磁
束鎖交量を各相間で等しくし、発生する逆起電圧を等し
くする。
Further, in a configuration in which the radial dimension of the coil pole is varied between phases, the number of turns, the cross-sectional area of the patterned conductor, the outermost diameter dimension of the coil, etc. may be varied between phases. In particular, the outermost diameter dimension of the coil is changed between each phase, and the outermost diameter dimension of the coil pole arrangement on the sheet surface on the side near the magnetic pole surface of the rotor magnet and the center position of the coil pole are changed.
The configuration in which the coil poles on the sheet surface on the side far from the magnetic pole surface of the rotor magnet are provided at larger radius positions than those of the coil poles has the following characteristics. That is, in this configuration, when the rotor magnet rotates, the rate of change of the magnetic field of the rotor magnet with respect to the coil conductor is such that the coil poles closer to the magnetic pole surface of the rotor magnet are faster than the coil poles farther away. big. Therefore, the value of the back electromotive force generated in the coil conductor of unit length is higher at the closer coil pole. Therefore, the length of the conductor of the coil pole on the near side can be further shortened by that amount from this point as well.This is an example of a sheet coil configuration in which the length of the pattern conductor is changed by changing the length of the coil between each phase. The number of coil poles is reduced for sheet coils of phases installed in positions with high magnetic flux, and the number of coil poles is increased for sheet coils of phases installed in positions of low magnetic flux, so that the amount of magnetic flux linkage is equalized between each phase. Equalize the back electromotive force generated.

本図はコイル極を片側平面当たり7極とした例である。This figure shows an example in which the number of coil poles is 7 per plane on one side.

本実施例の場合も上記第2実施例の場合と同様、シート
コイル面上のコイルパターンを設けない余白の部分にコ
イル端未配線パターン導体等を設は生産性を一層向上し
た構造にすることができる。
In the case of this embodiment as well, as in the case of the second embodiment, a coil end unwired pattern conductor etc. is provided in the blank area where the coil pattern is not provided on the sheet coil surface to achieve a structure that further improves productivity. I can do it.

コイル極数を変える方法としてはこの他シさをそれぞれ
別個の方法で変化させた構成例について述べたが、これ
らを組み合わせ併用した構成としても上記と同様の効果
が得られる。
As a method of changing the number of coil poles, we have described an example of a configuration in which the stiffness is changed using separate methods, but the same effect as described above can be obtained by using a combination of these methods.

計6枚のシートコイルをvL層した3相固定子コイノ!
3−転子マグ2ネツトの磁極面に対向させ固定子ヨーク
3の面上に固定した態様を示す。6枚のシートコイルは
それぞれコイル極寸法9巻数、パターン導体寸法等を同
一にしである。シートコイルの積層順序を上側3枚と下
側3枚で逆にしてあり相当たり2枚のシートコイルの合
計の磁束鎖交法としてパターン導体長さを変える構成例
ムシートコイルの半径方向設置位置またはギャップ方向
設置位置を変える構成例、またはこれらを組み合わせる
構成例につき述べた。これらはモータの種類や構造等に
よって使い分けて実施すると、それぞれの効果がさらに
一段と活かされる。
3-phase stator Koino with a total of 6 sheet coils in VL layer!
A mode is shown in which the trochanter magnet is fixed on the surface of the stator yoke 3 so as to face the magnetic pole surface of the 2-net. The six sheet coils each have the same coil pole size, 9 turns, pattern conductor size, etc. An example of a configuration in which the stacking order of the sheet coils is reversed for the upper three sheets and the lower three sheet coils, and the length of the pattern conductor is changed as a method of magnetic flux linkage for the total of two sheet coils. Radial installation position of the sheet coils Or, a configuration example in which the installation position in the gap direction is changed, or a configuration example in which these are combined has been described. If these are used differently depending on the type and structure of the motor, the effects of each will be further utilized.

第20図は本発明の固定子コイルを用いたモータの発生
トルクの説明図である。本発明の固定子コイルでは相間
の逆起電圧値が等しくなるように構成&発生トルク値も
各相間で等しくなり合成トルクも各相電流の切換周波数
の3倍の周波数の高調波成分のみとなりそのリップル量
は約±8%以下となる。モータの回転軸の回転むらは一
般にトルクリップル量に比例し、リップル周波数に反比
例する。従って本発明の固定子コイルを用いると従来の
固定子コイルの場合に比ベモータ軸の回転むらを大幅に
低減できる。
FIG. 20 is an explanatory diagram of the generated torque of a motor using the stator coil of the present invention. The stator coil of the present invention is configured so that the back electromotive voltage values between the phases are equal, and the generated torque values are also equal between each phase, and the resultant torque is only a harmonic component of a frequency three times the switching frequency of each phase current. The amount of ripple is approximately ±8% or less. The rotational unevenness of the rotating shaft of a motor is generally proportional to the amount of torque ripple and inversely proportional to the ripple frequency. Therefore, when the stator coil of the present invention is used, the uneven rotation of the motor shaft can be significantly reduced compared to the conventional stator coil.

第21図及び第22図は本発明の固定子コイルを用いた
モータのトルク対回転数特性及びトルク対電流特性の説
明図である。第21図はモータの1−ルク定数を一定に
して固定子コイルの抵抗値をのように巻数等を減らした
コイルはそのパターン導体の断面積を広くしてその抵抗
値を小さくできる。コイルに印加する電圧が一定の場合
、抵抗値の小さいコイルを組込んだモータのトルク対回
転数特性線4oは抵抗値の大きいコイルの場合の特性線
41よりもトルク値が増大する側にずれる。
FIGS. 21 and 22 are explanatory diagrams of the torque vs. rotation speed characteristics and torque vs. current characteristics of a motor using the stator coil of the present invention. FIG. 21 shows a coil in which the 1-lux constant of the motor is kept constant and the resistance value of the stator coil is reduced in the number of turns as shown in FIG. When the voltage applied to the coil is constant, the torque versus rotation speed characteristic line 4o of a motor incorporating a coil with a small resistance value shifts to the side where the torque value increases compared to the characteristic line 41 in the case of a coil with a large resistance value. .

図中のは定常動作点(定常回転数π5.定常負荷トルク
τ、)、0は特性41のモータにおいて回転数7Ljで
発生できる最大トルク点、IOは同様に特性40のモー
タで発生できる最大トルク点である。本図から明らかな
ように固定子コイルを低抵抗にして特性40とすること
により定常回転数における負荷トルク増加の場合のトル
ク変化幅(トルクマージンと呼ぶ)をより大きくとれる
(τ1.!1〉でよ□)し、また起動トルクもより大き
くできる(τjtx>τjtz)ためモータの起動時間
を短縮できる。さらに固定子コイルの銅損も低減できモ
ータ効率をその分向上させ得る。
The figure in the figure is the steady operating point (steady rotational speed π5, steady load torque τ,), 0 is the maximum torque point that can be generated by a motor with characteristic 41 at rotational speed 7Lj, and IO is the maximum torque that can be generated by a motor with characteristic 40. It is a point. As is clear from this figure, by setting the stator coil to a low resistance characteristic of 40, the torque change width (referred to as torque margin) when the load torque increases at a steady rotation speed can be made larger (τ1.!1> In addition, since the starting torque can be made larger (τjtx>τjtz), the starting time of the motor can be shortened. Furthermore, copper loss in the stator coil can be reduced, and motor efficiency can be improved accordingly.

第22図はトルクマージンを一定値(τ□)に固定した
場合の本命琲哨固定子コイルの特性の説明図である。図
中の特性40’の固定子コイルは第21図における特性
4oを有する固定子コイルより巻数を増し1−ルク定数
を増加させである。各相コイルの逆起電圧値を等しくし
巻線スペースの許す限りパターン導体断面積を広くとっ
てコイル抵抗値を低減するようにしていることは第21
図の特性40を有する固定子コイルと同様である。
FIG. 22 is an explanatory diagram of the characteristics of the favorite stator coil when the torque margin is fixed at a constant value (τ□). The stator coil having the characteristic 40' in the figure has a larger number of turns than the stator coil having the characteristic 4o in FIG. 21, and has an increased 1-lux constant. The 21st point is to equalize the back electromotive voltage value of each phase coil and to make the cross-sectional area of the pattern conductor as wide as the winding space allows to reduce the coil resistance value.
This is similar to the stator coil having the characteristic 40 shown in the figure.

1−ルク定数を増大させた本固定子コイルではトルク対
電流特性は特性43のように負荷トルクに対し電流値が
低減する特性となる。本コイルでは定常動作点における
負荷電流値を低減できるため駆動電子回路の出力段の消
費電力とコイルの銅損を低減できモータ効率の大幅な向
上が可能となる。
1 - In this stator coil with an increased torque constant, the torque vs. current characteristic becomes a characteristic as shown in characteristic 43, in which the current value decreases with respect to the load torque. This coil can reduce the load current value at the steady operating point, reducing power consumption in the output stage of the drive electronic circuit and copper loss in the coil, making it possible to significantly improve motor efficiency.

〔発明の効果〕〔Effect of the invention〕

本発明によれば固定子コイルをして、 (1)相間の逆起電圧差をなくせるためモータの発生ト
ルクリップルを極めて小さくでき、回転むらを大幅に低
減できる。
According to the present invention, by using a stator coil, (1) it is possible to eliminate the back electromotive force difference between the phases, so the torque ripple generated by the motor can be extremely reduced, and rotational unevenness can be significantly reduced;

(2)モータのトルク定数値を減少させることなくコイ
ル抵抗を低減できるためモータの発生1−ルクを増大で
きるとともにモータ効率も向上できる。
(2) Since the coil resistance can be reduced without reducing the torque constant value of the motor, it is possible to increase the torque generated by the motor and improve the motor efficiency.

(3)定常回転時のトルク制御幅を広くできかつ起動時
間を短縮できる。
(3) The torque control range during steady rotation can be widened and the startup time can be shortened.

(4)薄型形状のコイルにし易いため薄型のモータを構
成できる。
(4) Since the coil can be easily formed into a thin shape, a thin motor can be constructed.

(5) y!i作はエツチングやメツキ等の化学的方法
で行なうために多極構造のコイルも高精度・低コスト・
短時間に製作できる。
(5) Y! Since i production is done using chemical methods such as etching and plating, the multi-polar structure coil is also highly accurate, low cost, and
Can be produced in a short time.

(6)容易に各相コイルを極間連続構造にでき端末処理
工程数を大幅に減らせるため低コスト化が可能である。
(6) Costs can be reduced because each phase coil can be easily made into a continuous structure between poles, and the number of terminal processing steps can be significantly reduced.

(7) 112作を自動化し易い。(7) It is easy to automate 112 works.

(8)コイル極形状の均−性及び配列精度を高くできる
ためモータ出力の安定性を向上できる。
(8) Since the uniformity and arrangement precision of the coil pole shape can be improved, the stability of the motor output can be improved.

等の効果が得られる。Effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のモータの断面図、第2図、第3図は固定
子コイルの構造を示す平面図、第4図はマグネットの平
面図、第5図、第6図はモータ電磁部の磁束分布図、第
7図は従来の固定子コイルによる逆起電圧波形の説明図
、第8図はそれにより発生するモータトルク波形説明図
、第9図、第10図は従来コイルの逆起電圧値とモータ
電磁部の磁場分布の実測特性図、第11図。 第12図は本発明の固定子コイルのシートコイルの構造
を示す平面図、第13図は固定子コイ本発明の固定子コ
イルの易輪藷哨実施例を示す断面図、第20図は本発明
の固定子コイルを用いたモータの発生トルクの説明図、
第21図、第22図は本発明の固定子コイルを用いたモ
ータのトルク対回転数特性及びトルク対電流特性の特性
図である。 11:絶縁シート、 12:渦巻き状パターン導体。 14ニスルーホール電極。 第 50 76舷東分暉乙 構東な操口 十 第 q 口 ”i B fL;LY2 t)E frt (fl躬 q 乙 tぞ」釆の〔0淀二子ユイノしt;81丁5鰻社之膠電
りの少シ妻11勇舌果舎りl(ynm) 躬 /1 麿 重大≦β月の匡しヒ弓コイル/111M’J(禅4わ口
)?tz図 本爽ト明=)固貞:弓コイツムーJ!セク(Lζ人手面
句躬 130 本すし明・固定−和イLの構璧り脅’J(/ずツー−に
稿4穀灯めn)躬/411!1 #a!!] し ■ 幣ld a鼻犯 塙 /’7  口 コイル4th/1半fL方IvI可j邑と間コイI’−
J頃変y41PJ■ r 躬lば コづtLJ%数δ変えr4造−弁り 第 19 口
Fig. 1 is a sectional view of a conventional motor, Figs. 2 and 3 are plan views showing the structure of the stator coil, Fig. 4 is a plan view of the magnet, and Figs. 5 and 6 are the electromagnetic parts of the motor. Magnetic flux distribution diagram, Figure 7 is an explanatory diagram of the back electromotive force waveform due to the conventional stator coil, Figure 8 is an explanatory diagram of the motor torque waveform generated thereby, and Figures 9 and 10 are the back electromotive voltage of the conventional coil. Fig. 11 is an actual measurement characteristic diagram of the magnetic field distribution of the electromagnetic part of the motor. FIG. 12 is a plan view showing the structure of the sheet coil of the stator coil of the present invention, FIG. 13 is a cross-sectional view showing an easy-to-reverse embodiment of the stator coil of the present invention, and FIG. An explanatory diagram of the torque generated by the motor using the stator coil of the invention,
FIGS. 21 and 22 are characteristic diagrams of torque versus rotation speed characteristics and torque versus current characteristics of a motor using the stator coil of the present invention. 11: Insulating sheet, 12: Spiral pattern conductor. 14 Varnish through-hole electrode. 50th 76th east branch, east opening, 10th q mouth"i B fL;LY2 t)E frt The Shoshi Wife of the Glue Electric 11 Yujikashari l (ynm) 躬/1 Maro Seiki ≦ β Tsuki no Masashi Hiyumi Coil / 111 M'J (Zen 4 Waguchi)?tz Zumoto Soto Akira = ) Kosei: Yumi Koitsumu J! Sec (Lζhuman hand face phrase 130 Honsushi Akira・Fixed-Japanese L's structure threat 'J(/zutsu-ni draft 4 grain light n)躬/411!1 #a!!] し■ ld a nose crime /'7 mouth coil 4th/1 and a half fL way IvI possible j u and makoi I'-
J around change y41 PJ

Claims (1)

【特許請求の範囲】 1、異なった極性の磁極がその回転軸の周りに配列され
た回転子マグネットの磁極面に対向して設けられ、1相
当たり複数個のコイル極を有して成る複数相のコイル極
群のコイル極が、上記回転子マグネットの上記磁極面に
対向し該磁極面から順次遠ざかる方向に配された複数の
異なる平面上にパターン状導体で渦巻状に形成され、上
記回転子マグネットの回転時において該回転子マグネッ
トの磁極面からの磁束により上記各相のコイル極群に発
生される逆起電圧の値が相間で等しくまたは略等しくさ
れる、構成を有する固定子コイルにおいて、 同相のコイル極が、上記回転子マグネットの磁極面に近
い側の対向平面と該磁極面から遠い側の対向平面との複
数の平面上に分割され上記回転子マグネットの回転軸に
対し同心状に複数個配され極相互間を接続され少なくと
も、上記磁極面に近い側の対向平面上に配されたコイル
極群と、上記磁極面から遠い側の対向平面上に配された
コイル極群とが直列に接続されて成る第1のコイル極群
と、 該第1のコイル極群とは異なる位相を形成するコイル極
群であって、かつ該第1のコイル極群が分配されて配さ
れた上記複数の対向平面よりも上記回転子マグネットの
磁極面に対し遠い側に配された対向平面と近い側に配さ
れた 対向平面との複数の平面上に分割され上記回転子マグネ
ットの回転軸に対し同心状に複数個配され極相互間を接
続され少なくとも、上記遠い側の対向平面上に配された
コイル極群と、上記近い側の対向平面上に配されたコイ
ル極群とが直列に接続されて成る第2のコイル極群と、
を備えた構成を特徴とする固定子コイル。 2、上記第2のコイル極群は、 そのコイル極の渦巻状のパターン状導体の巻数が、上記
第1のコイル極群のコイル極の渦巻状のパターン状導体
の巻数と等しくされた構成を備えている、 特許請求の範囲第1項に記載の固定子コイル。 3、上記第1のコイル極群及び上記第2のコイル極群は
共に、 コイル極が、それぞれ上記回転子マグネットの回転軸方
向に直角な複数個の平面内において、上記回転軸に対し
同心状に複数個配列されて形成された構成を有している
、 特許請求の範囲第1項または第2項に記載の固定子コイ
ル。 4、上記第2のコイル極群は、 少なくとも、複数相のコイル極群を備え、該複数相のコ
イル極群の各相のコイル極群が、それぞれ上記第1のコ
イル極群が分割されて配された上記複数の対向平面より
も上記回転子マグネットの磁極面に対し遠い側に配され
た対向平面と近い側に配された対向平面との複数の平面
上に分割され、それぞれのコイル極が上記回転子マグネ
ットの回転軸に対し同心状に複数個配され極相互間を接
続されている構成を有している、 特許請求の範囲第1、2または3項に記載の固定子コイ
ル。 5、上記第2のコイル極群は、 同相のコイル極群が、上記第1のコイル極群が形成され
た複数の対向平面の間にあって上下の相隣る層として連
続されて積層された複数個の対向平面の上に配列された
構成を備えている、特許請求の範囲第1、2、3または
4項に記載の固定子コイル。 6、上記第1のコイル極群と上記第2のコイル極群は共
に、 それぞれ複数個のコイル極が2個の平面上に分割されて
配列されている構成である、 特許請求の範囲第1、2、3、4または5項に記載の固
定子コイル。
[Claims] 1. A plurality of magnetic poles having different polarities facing the magnetic pole faces of a rotor magnet arranged around its rotation axis, each having a plurality of coil poles. The coil poles of the coil pole group of the phase are spirally formed with patterned conductors on a plurality of different planes facing the magnetic pole surface of the rotor magnet and arranged in a direction sequentially moving away from the magnetic pole surface, In a stator coil having a configuration in which the value of the back electromotive force generated in the coil pole group of each phase is equal or approximately equal between the phases due to the magnetic flux from the magnetic pole surface of the rotor magnet when the child magnet rotates. , Coil poles of the same phase are divided into a plurality of planes including an opposing plane near the magnetic pole surface of the rotor magnet and an opposing plane far from the magnetic pole surface, and are concentric with the rotation axis of the rotor magnet. A plurality of coil poles are arranged in a plurality of coil poles, the poles are connected to each other, and at least a group of coil poles are arranged on opposing planes on the side closer to the magnetic pole face, and a group of coil poles are arranged on the opposing plane on the side farther from the magnetic pole face. a first coil pole group formed by connecting in series; a coil pole group forming a phase different from the first coil pole group, and the first coil pole group is arranged in a distributed manner; The rotation axis of the rotor magnet is divided into a plurality of planes including an opposing plane disposed on a side farther from the magnetic pole face of the rotor magnet and an opposing plane disposed on a side closer to the magnetic pole face of the rotor magnet than the plurality of opposing planes. A plurality of coil poles are arranged concentrically and the poles are connected to each other, and at least a group of coil poles arranged on the opposing plane on the far side and a group of coil poles arranged on the opposing plane on the near side are connected in series. a second coil pole group connected to;
A stator coil characterized by a configuration. 2. The second coil pole group has a configuration in which the number of turns of the spiral pattern conductor of the coil pole is equal to the number of turns of the spiral pattern conductor of the coil pole of the first coil pole group. A stator coil according to claim 1, comprising: a stator coil according to claim 1; 3. Both the first coil pole group and the second coil pole group have coil poles that are concentric with the rotation axis within a plurality of planes perpendicular to the rotation axis direction of the rotor magnet. The stator coil according to claim 1 or 2, having a configuration in which a plurality of stator coils are arranged in a row. 4. The second coil pole group includes at least a plurality of phases of coil pole groups, and each phase of the plurality of phase coil pole groups is divided from the first coil pole group. It is divided into a plurality of planes, an opposing plane arranged on a side farther from the magnetic pole face of the rotor magnet than the plurality of opposing planes arranged on the rotor magnet, and an opposing plane arranged on a side closer to the magnetic pole face of the rotor magnet. The stator coil according to claim 1, 2 or 3, wherein a plurality of stator coils are arranged concentrically with respect to the rotation axis of the rotor magnet and the poles are connected to each other. 5. The second coil pole group is a plurality of coil pole groups of the same phase stacked consecutively as upper and lower adjacent layers between the plurality of opposing planes on which the first coil pole groups are formed. A stator coil as claimed in claim 1, 2, 3 or 4, comprising an arrangement arranged on two opposing planes. 6. The first coil pole group and the second coil pole group each have a configuration in which a plurality of coil poles are divided and arranged on two planes, Claim 1 , 2, 3, 4 or 5.
JP3822590A 1990-02-21 1990-02-21 Stator coil Pending JPH02269450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3822590A JPH02269450A (en) 1990-02-21 1990-02-21 Stator coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3822590A JPH02269450A (en) 1990-02-21 1990-02-21 Stator coil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6943981A Division JPS57186972A (en) 1981-05-11 1981-05-11 Stator coil

Publications (1)

Publication Number Publication Date
JPH02269450A true JPH02269450A (en) 1990-11-02

Family

ID=12519367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3822590A Pending JPH02269450A (en) 1990-02-21 1990-02-21 Stator coil

Country Status (1)

Country Link
JP (1) JPH02269450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049702A1 (en) * 1999-02-20 2000-08-24 Embest Co., Ltd. A film coil and manufacturing method for motors and generators
JP2010252408A (en) * 2009-04-10 2010-11-04 Masaaki Iwatani Coil component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049702A1 (en) * 1999-02-20 2000-08-24 Embest Co., Ltd. A film coil and manufacturing method for motors and generators
JP2010252408A (en) * 2009-04-10 2010-11-04 Masaaki Iwatani Coil component

Similar Documents

Publication Publication Date Title
JP6977555B2 (en) Rotating machine
TWI501511B (en) Power generator and wind power generation system
US8154167B2 (en) Induction motor lamination design
JP5948061B2 (en) Rotating electric machine and vehicle equipped with the rotating electric machine
US20210234415A1 (en) Rotating electric machine
JP5214064B2 (en) Inverter integrated drive module
US20080129137A1 (en) Motor Winding
US9847685B2 (en) Coil
JP2001145286A (en) Stator of rotating electric machine and method of manufacturing the same
KR20130096989A (en) Multi-phase switched reluctance motor apparatus and control method thereof
JP2016149930A (en) Rotary electric machine, coil and coil device
US11329538B2 (en) Rotor of rotary electric machine
JP2016154445A (en) Rotary electric machine, and vehicle with the rotary electric machine
US9018822B2 (en) Stator for rotary electric machine
JP5525069B2 (en) Coil member and stator
JP2010068616A (en) Coil member and stator
WO2011148501A1 (en) Stator
JPH0340586B2 (en)
JPH02269450A (en) Stator coil
US11936243B2 (en) Rotating electric machine
US10284034B2 (en) Armature, rotating electric machine, crossflow fan
CN219918547U (en) Motor stator winding framework based on distributed fractional slot structure
US20240339879A1 (en) Coil assembly, armature and rotating electric machine
JPH0416613Y2 (en)
WO2022246700A1 (en) Modular motor having inter-phase magnetic isolation capability