JPH02269360A - Memory type electrophotographic sensitive body - Google Patents

Memory type electrophotographic sensitive body

Info

Publication number
JPH02269360A
JPH02269360A JP9128889A JP9128889A JPH02269360A JP H02269360 A JPH02269360 A JP H02269360A JP 9128889 A JP9128889 A JP 9128889A JP 9128889 A JP9128889 A JP 9128889A JP H02269360 A JPH02269360 A JP H02269360A
Authority
JP
Japan
Prior art keywords
poly
intermediate layer
layer
iodine
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9128889A
Other languages
Japanese (ja)
Inventor
Hiroshi Komon
小門 宏
Junichi Hanna
純一 半那
Katsuyoshi Hoshino
勝義 星野
Yusuke Nakazawa
雄祐 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP9128889A priority Critical patent/JPH02269360A/en
Publication of JPH02269360A publication Critical patent/JPH02269360A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the efficient memory type electrophotographic sensitive body by providing an intermediate layer contg. poly(3-alkyl thiophene) subjected to a doping treatment with iodine between a conductive base and a photoconductive layer. CONSTITUTION:The intermediate layer contg. the poly(3-alkyl thiophene) subjected to the doping treatment with the iodine is provided between the conductive base and the photoconductive layer. While the intermediate layer may be formed of the poly(3-alkyl thiophene) alone, the layer may be in the state of being mixed with other resins. The poly(3-alkyl thiophene) is incorporated at least at >=10wt.%, more preferably >=20wt.% into the intermediate layer. The doping treatment is usually executed by exposing the layer to the vapor of the iodine. The memory type latent image is formed in this way without degrading the performance of the photosensitive body and at the light quantity of image exposure level.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子写真用メモリー性感光体に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a memory photoreceptor for electrophotography.

(従来の技術) 電子写真の基本プロセスである帯電、露光、現像、転写
の内、画像露光のプロセスを省略し、1回の露光で多数
枚コピーを作製するシステムの開発が以前から行われて
いる。このシステムでは1回の像露光により光導電性が
持続する、いわゆるメモリー性にすぐれた感光体が必要
となるため、感光体へのメモリー性付与の研究が盛んに
報告されている。メモリー性付与の方法としては、メモ
リー性付与剤を添加する方法が一般的であり、ロイコ色
素(特開昭52−4839号)、プロトン酸(米国特許
3,879,201号および3,997.342号)、
ハロゲン化物(米国特許3,081.165号)、ジア
ゾニウム塩(Photographic 5cienc
e and II!ngineering26巻、69
頁(1982)) 、などのメモリー性付与剤が提案さ
れている。
(Prior art) Among the basic processes of electrophotography: charging, exposure, development, and transfer, systems have been developed that omit the image exposure process and make multiple copies with a single exposure. There is. This system requires a photoreceptor with excellent so-called memory properties, which maintains photoconductivity after one image exposure, and therefore, research on imparting memory properties to photoreceptors has been actively reported. A common method for imparting memory properties is to add a memory imparting agent, such as leuco dye (Japanese Patent Application Laid-Open No. 52-4839), protonic acid (US Pat. Nos. 3,879,201 and 3,997. No. 342),
halides (U.S. Pat. No. 3,081.165), diazonium salts (Photographic
e and II! ngineering volume 26, 69
(1982)) have been proposed.

(発明が解決しようとする問題点) 上記メモリー性付与剤の添加により、メモリー性が付与
されるが、メモリー性を付与するためには光導電層の組
成物の劣化の恐れのある紫外光を含む水銀灯の光を照射
したり、タングステンランプ、螢光灯などによる長時間
の露光が必要であったり、ジアゾニウム塩のように、光
で分解しやすく、繰返し使用が困難であるなど実用化が
難かしいという問題があった。
(Problems to be Solved by the Invention) Memory properties are imparted by adding the above-mentioned memory imparting agent, but in order to impart memory properties, ultraviolet light, which may deteriorate the composition of the photoconductive layer, is not used. It is difficult to put it into practical use because it requires irradiation with light from a mercury lamp, or requires long exposure using a tungsten lamp, fluorescent lamp, etc., and it is easily decomposed by light and difficult to use repeatedly, such as diazonium salts. There was a problem with that.

一方、−数的にいわゆる導電性ポリマー、例えばポリア
ルキルチオフェン層をヨウ素で処理した中間層を設けた
感光体の例も既に知られているか(特開昭62−296
152号)、この例は本発明と異なり、通常の電子写真
感光体であって、通常のカールソンプロセス、即ち帯電
および露光を含むプロセスを繰り返しても帯電特性に殆
んど変化がなく、メモリー性は全(ないものである。
On the other hand, are there any known examples of photoreceptors that have an intermediate layer formed by treating a numerically so-called conductive polymer, such as a polyalkylthiophene layer, with iodine?
No. 152), this example differs from the present invention in that it is a normal electrophotographic photoreceptor, and there is almost no change in charging characteristics even after repeating the normal Carlson process, that is, a process including charging and exposure, and it has good memory properties. is the whole (not).

(問題点を解決するための手段) 本発明者らは、上記問題点解決のために鋭意検討した結
果、本発明に到達した。
(Means for Solving the Problems) The present inventors have arrived at the present invention as a result of intensive studies to solve the above problems.

すなわち、本発明の目的は、効率的なメモリー性の電子
写真用感光体を提供することにあり、しかして、かかる
本発明の目的は導電性支持体と光導電層との間に、ヨウ
素でドーピング処理をしたポリ(3−アルキルチオフェ
ン)を含有する中間層を有する電子写真用メモリー性感
光体によって達成される。
That is, an object of the present invention is to provide an electrophotographic photoreceptor with efficient memory properties. This is achieved by an electrophotographic memory photoreceptor having an intermediate layer containing doped poly(3-alkylthiophene).

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、導電性支持体としては、アルミ、黄銅
などの金属のドラムやシート、あるいは、ポリエステル
やポリイミドなどの絶縁性のプラスチックフィルムやシ
ート、紙などの表面を導電化処理をしたものなどが用い
られる。導電化処理法としては、蒸着、スパッタなどの
方法による、アルミ、金9wAなとの金属層や、酸化イ
ンジウム。
In the present invention, the conductive support may be a drum or sheet made of metal such as aluminum or brass, or an insulating plastic film or sheet made of polyester or polyimide, or paper whose surface has been treated to make it conductive. used. As a conductive treatment method, a metal layer such as aluminum, gold 9WA, or indium oxide is formed by a method such as vapor deposition or sputtering.

酸化スズなどのいわゆる透明導電層の形成法が挙げられ
る。
Examples include a method of forming a so-called transparent conductive layer such as tin oxide.

これらの内、酸化インジウム−酸化スズ系のいわゆるI
TOと呼ばれる透明導電層を有する、支持体が好ましい
Among these, indium oxide-tin oxide system so-called I
Preference is given to supports having a transparent conductive layer called TO.

本発明において、中間層には、ヨウ素でドーピング処理
したポリ(3−アルキルチオフェン)が用いられる。ア
ルキル基としては、メチル基、エチル基、プロピル基、
ブチル基、ヘキシル基等が挙げられる。
In the present invention, poly(3-alkylthiophene) doped with iodine is used for the intermediate layer. Alkyl groups include methyl group, ethyl group, propyl group,
Examples include butyl group and hexyl group.

中間層は、前記ポリ(3−アルキルチオフェン)単独か
ら形成されていてもよいが、他の樹脂と混合された状態
であってもよい、このとき、前記のポリ(3−アルキル
チオフェン)は少なくとも10重量%以上、好ましくは
20重量%以上該中間層中に含有することが好ましい、
該中間層に混合して使用される他の樹脂としては例えば
アクリル樹脂、メタアクリル樹脂、エポキシ樹脂、酢酸
ビニル樹脂、塩化ビニル樹脂、スチレン樹脂、ウレタン
樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリ
ビニルアセタール樹脂、セルロース誘導体、ポリビニル
アルコール等が挙げられる。
The intermediate layer may be formed from the poly(3-alkylthiophene) alone, or may be in a mixed state with other resins. In this case, the poly(3-alkylthiophene) may contain at least It is preferable that the intermediate layer contains 10% by weight or more, preferably 20% by weight or more,
Examples of other resins that may be mixed in the intermediate layer include acrylic resin, methacrylic resin, epoxy resin, vinyl acetate resin, vinyl chloride resin, styrene resin, urethane resin, polyester resin, polycarbonate resin, polyvinyl acetal resin, Examples include cellulose derivatives and polyvinyl alcohol.

これらは二種以上混合して使用してもよい。Two or more of these may be used in combination.

中間層を形成するポリ(3−アルキルチオフェン)は導
電性支持体上で直接対応するモノマーを酸化重合させて
成膜してもよいし、別途重合して合成したポリ(3−ア
ルキルチオフェン)を必要に応じて他の樹脂と混合して
塗布により成膜してもよい、導電性支持体上で重合を行
う場合、あらかじめ該支持体上に接着性改良等のために
、他の樹脂の薄膜を形成した後、該重合を行なってもよ
い、この場合、電解重合の方法でも、予め#lI薄膜中
に酸化重合触媒を含有させておき気相中の3−アルキル
チオフェンを化学重合さ廿る方法で重合反応により該薄
膜中にポリ(3−アルキルチオフェン)が形成される。
The poly(3-alkylthiophene) forming the intermediate layer may be formed by oxidative polymerization of the corresponding monomer directly on the conductive support, or the poly(3-alkylthiophene) synthesized by separate polymerization may be formed. If necessary, it may be mixed with other resins and formed into a film by coating.When polymerizing on a conductive support, a thin film of other resin may be applied on the support in advance to improve adhesion, etc. The polymerization may be carried out after the formation of 3-alkylthiophene in the gas phase. In this case, an oxidative polymerization catalyst may be contained in the #lI thin film in advance, and 3-alkylthiophene in the gas phase is chemically polymerized using an electrolytic polymerization method. In the method, poly(3-alkylthiophene) is formed in the thin film by a polymerization reaction.

上記の種々の方法のうち、中間層の形成方法としては、
膜の均一性の点からは電解重合により導電性支持体上で
直接3−アルキルチオフェンを重合させて成膜する方法
が好ましく、この場合膜質が非常に良好で表面の均一な
層が得られる。具体的には、導電性支持体を単独又は、
表面にポリマーの薄膜を形成した状態で3−アルキルチ
オフェンを含む電解液中に浸漬し、電圧を印加する。電
解液の溶媒としては、アセトニトリル、テトラヒドロフ
ラン、ジメチルホルムアミド、ジメチルスルホキシド、
二トロベンゼンプロピレンカーボネート、ピリジン、メ
タノール、水等が用いられ、支持体電解質としては、ア
ルカリ金属塩、アンモニウム塩、テトラアルキルアンモ
ニウム塩等が用いられる。中間層の膜厚は1μl以下が
好ましい。
Among the various methods mentioned above, the method for forming the intermediate layer is as follows:
From the viewpoint of film uniformity, it is preferable to form a film by directly polymerizing 3-alkylthiophene on a conductive support by electrolytic polymerization. In this case, a layer with very good film quality and a uniform surface can be obtained. Specifically, the conductive support may be used alone or
With a thin polymer film formed on the surface, it is immersed in an electrolytic solution containing 3-alkylthiophene, and a voltage is applied. As a solvent for the electrolyte, acetonitrile, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide,
Nitrobenzene propylene carbonate, pyridine, methanol, water, etc. are used, and as the support electrolyte, alkali metal salts, ammonium salts, tetraalkylammonium salts, etc. are used. The thickness of the intermediate layer is preferably 1 μl or less.

続いて成膜されたポリ(3−アルキルチオフェン)をヨ
ウ素によりドーピング処理するが、該ドーピング処理は
通常ヨウ素の蒸気に曝すことによって行われる。
Subsequently, the formed poly(3-alkylthiophene) is doped with iodine, which is usually done by exposing it to iodine vapor.

成膜されたポリ(3−アルキルチオフェン)は該ドーピ
ング処理を施す前に適当な溶剤で洗うかまたは電解質液
中で脱ドープ処理する、即ち、成膜されたポリ(3−ア
ルキルチオフェン)を導電性支持体ごと電解質溶液に浸
漬し、該導電性支持体を陰極として該溶液に通電するこ
とにより、予めポリ(3−アルキルチオフェン)から陰
イオンを離脱させておくのが好ましい。
Before the doping treatment, the formed poly(3-alkylthiophene) is washed with an appropriate solvent or dedoped in an electrolyte solution, that is, the formed poly(3-alkylthiophene) is made conductive. It is preferable to remove anions from the poly(3-alkylthiophene) in advance by immersing the conductive support in an electrolyte solution and applying electricity to the solution using the conductive support as a cathode.

本発明感光体の光導電層のタイプは電荷移動錯体型、色
素増感型、機能分離型等公知のタイプを含めていずれの
タイプのものでもよいが、電荷移動錯体型の光導電層が
好ましい。
The photoconductive layer of the photoreceptor of the present invention may be of any type, including known types such as a charge transfer complex type, dye-sensitized type, and functionally separated type, but a charge transfer complex type photoconductive layer is preferable. .

電荷移動錯体型の光導電層は、電子供与性化合物と電子
受容性化合物の混合により形成される光導電性電荷移動
錯体から成る。
The charge transfer complex type photoconductive layer consists of a photoconductive charge transfer complex formed by mixing an electron donating compound and an electron accepting compound.

電子供与性化合物としては、例えばポリビニルカルバゾ
ール、ポリビニルアントラセン、ポリアセナフチレン、
ポリスチリルアントラセン、ポリビニルピレン等の光導
電性ポリマーや、オキサシアルゾール、ピラゾリンイソ
オキサゾールなどの含窒素複素環化合物、ヒドラゾン化
合物、トリアリールアミンなどの低分子化合物が挙げら
れる。
Examples of electron-donating compounds include polyvinylcarbazole, polyvinylanthracene, polyacenaphthylene,
Examples include photoconductive polymers such as polystyrylanthracene and polyvinylpyrene, nitrogen-containing heterocyclic compounds such as oxasialzole and pyrazoline isoxazole, and low-molecular compounds such as hydrazone compounds and triarylamines.

電子受容性化合物としては、例えば、2.4.7− )
リニトロフルオレノン、2.4,5.7−チトラニトロ
フルオレノン、テトラシアノエチレンテトラシアノキノ
ジメタン、クロラニル、プロマニル、テレフタラルマロ
ノニトリル等のルイス酸と称される化合物が挙げられる
Examples of electron-accepting compounds include 2.4.7-)
Compounds called Lewis acids such as linitrofluorenone, 2,4,5,7-titranitrofluorenone, tetracyanoethylenetetracyanoquinodimethane, chloranil, promanil, and terephthalal malononitrile are mentioned.

このうち電子供与性物質としてポリビニルカルバゾール
、電子受容性物質として2,4.7− )リニトロフル
オレノンを組合せて用いるのが最も好ましい。
Among these, it is most preferable to use a combination of polyvinylcarbazole as the electron-donating substance and 2,4,7-)linitrofluorenone as the electron-accepting substance.

光導電性電荷移動錯体は、上記電子供与性化合物と電子
受容性化合物の混合により得られる。−般には、電子供
与性化合物(ポリマーの場合はモノマー単位)1モルに
対し、電子受容性化合物は、0.05〜1.3モル、好
ましくは0.1〜1.1モルの割合で用いられる。
A photoconductive charge transfer complex can be obtained by mixing the electron-donating compound and the electron-accepting compound. - Generally, the electron-accepting compound is used at a ratio of 0.05 to 1.3 mol, preferably 0.1 to 1.1 mol, per 1 mol of the electron donating compound (monomer unit in the case of a polymer). used.

光導電層には必要によりバインダーポリマー可塑剤、そ
の他の添加剤を添加してもよい。
A binder polymer plasticizer and other additives may be added to the photoconductive layer if necessary.

バインダーポリマーとしては、ポリエステル。Polyester is used as a binder polymer.

ポリカーボネート、メタアクリル樹脂、フェノキシ樹脂
、ポリアクリレート、ポリスルホンなどが挙げられる。
Examples include polycarbonate, methacrylic resin, phenoxy resin, polyacrylate, polysulfone, and the like.

電子供与性化合物がポリビニルカルバゾールなどのポリ
マーの場合は、必ずしも別途バインダーポリマーを添加
する必要はないが、適当なポリマーを選択し、ポリビニ
ルカルバゾールなどの電子供与性化合物としての効果を
損なわない範囲、即ち該電子供与性化合物100重量部
に対し50重量部以下の範囲で添加し本発明感光体の強
度向上を図るのが好ましい。電子供与性化合物が低分子
化合物の場合は、バインダーポリマーを該電子供与性化
合物100重量部に対し70重量部から200重量部、
好ましくは80〜150重量部添加するとよい。
When the electron-donating compound is a polymer such as polyvinylcarbazole, it is not necessarily necessary to separately add a binder polymer, but it is necessary to select an appropriate polymer and add it within the range that does not impair the effect of the electron-donating compound such as polyvinylcarbazole. It is preferable to add 50 parts by weight or less to 100 parts by weight of the electron donating compound in order to improve the strength of the photoreceptor of the present invention. When the electron-donating compound is a low-molecular-weight compound, 70 to 200 parts by weight of the binder polymer is added to 100 parts by weight of the electron-donating compound;
It is preferable to add 80 to 150 parts by weight.

上記組成物からなる塗布液を前記中間層上に塗布し、乾
燥することにより光導電層が形成される。
A photoconductive layer is formed by applying a coating liquid made of the above composition onto the intermediate layer and drying it.

塗布液の溶媒としては、テトラヒドロフラン、ジオキサ
ン等のエーテル類、トルエン、キシレン等の芳香族炭化
水素、メチルエチルケトン、メチルイソブチルケトン等
のケトン類、酢酸エチル、酢酸ブチル等のエステル類等
が用いられる。光導電層の膜厚は5μIll〜30μm
が好ましい。
As the solvent for the coating liquid, ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and esters such as ethyl acetate and butyl acetate are used. The thickness of the photoconductive layer is 5μIll to 30μm
is preferred.

本発明の感光体にメモリー性潜像を形成するには、暗所
でコロナ放電等により帯電した後、像露光することによ
り行なわれる。露光量は潜像を形成するに必要な露光量
であれば良い。
A memorable latent image is formed on the photoreceptor of the present invention by charging the photoreceptor by corona discharge or the like in a dark place and then imagewise exposing it to light. The exposure amount may be any amount necessary to form a latent image.

以下に本発明の実施例を示すが、本発明はその要旨を越
えない限り下記実施例によって限定されるものではない
Examples of the present invention are shown below, but the present invention is not limited by the following examples unless it exceeds the gist thereof.

実施例 酸化インジウム−酸化スズから成る透明導電層CITO
)を有するする石英ガラス板を、3−メチルチオフェン
の0.1Mアセトニトリル溶液にテトラブチル過塩素酸
塩を0.1 Mの濃度になる様に加えてなる溶液に浸漬
し、0.2mA/cfflの電流密度で電解重合を行な
い、ITO上に0.4μmの膜厚でポリ(3−メチルチ
オフェン)重合膜を形成した。この石英ガラス板を、3
−メチルチオフェンを除いた電解質液中に移し、陰極処
理により脱ドープを行ない、次いで脱ドープした重合膜
をヨウ素蒸気にさらし、ヨウ素のドーピングを行ない中
間層を形成した。この中間層の上に、ポリビニルカルバ
ゾールと2.4.7− )リニトロフルオレノン(モル
比1:0.5)のテトラヒドロフラン溶液を塗布し、乾
燥し、膜厚約7μ醗の光導電層を形成し、感光体を作製
した。
Example: CITO transparent conductive layer made of indium oxide-tin oxide
) was immersed in a solution of 3-methylthiophene in 0.1M acetonitrile and tetrabutyl perchlorate added to a concentration of 0.1M, and the temperature was 0.2mA/cffl. Electrolytic polymerization was performed at a current density to form a poly(3-methylthiophene) polymer film with a thickness of 0.4 μm on ITO. This quartz glass plate, 3
- It was transferred into an electrolyte solution excluding methylthiophene and dedoped by cathodic treatment, and then the dedoped polymer film was exposed to iodine vapor to form an intermediate layer by doping with iodine. A tetrahydrofuran solution of polyvinylcarbazole and 2.4.7-)linitrofluorenone (molar ratio 1:0.5) is applied onto this intermediate layer and dried to form a photoconductive layer with a thickness of about 7 μm. Then, a photoreceptor was produced.

この感光体の電子写真特性を静電複写紙試験装置(川口
電機製作所製モデル5P−428)を用いて測定した。
The electrophotographic properties of this photoreceptor were measured using an electrostatic copying paper tester (Model 5P-428 manufactured by Kawaguchi Electric Seisakusho).

暗所でコロナ帯電(印加電圧−8kV)を行い、500
nm単色光を0.1 mW/ ciの露光強度で3秒間
照射した。コロナ帯電直後の感光体の表面電位をVs+
 (V) 、該コロナ帯電後暗所で10秒間経過した後
の表面電位の減衰率(%)を求め暗減衰としてD+で表
示し、前記照射の際表面電位が半減するのに要する露光
量を感度(半減露光量。
Perform corona charging (applied voltage -8 kV) in the dark, and
nm monochromatic light was irradiated for 3 seconds with an exposure intensity of 0.1 mW/ci. The surface potential of the photoreceptor immediately after corona charging is Vs+
(V) The attenuation rate (%) of the surface potential after 10 seconds in the dark after the corona charging is calculated and expressed as D+ as dark attenuation, and the amount of exposure required for the surface potential to be halved during the irradiation is calculated. Sensitivity (half exposure amount.

E′A(1) )として求めた。It was calculated as E′A(1)).

続いて、上記の帯電から露光までのプロセスを全く同様
に繰返し、帯電直後の表面電位v3!、暗減衰りよおよ
び半減露光量E’4<z+ を測定した。
Next, the process from charging to exposure described above is repeated in exactly the same way, and the surface potential immediately after charging is v3! , dark decay depth and half-reduction exposure E'4<z+ were measured.

表面電位VStとvoを比較してメモリー性の指標とし
た。即ち、メモリー性は の値で評価した。
The surface potentials VSt and vo were compared and used as an index of memory property. That is, the memory property was evaluated by the value of.

メモリー性が全くない場合は、■、の値が変化しないた
め、F、−0となり、メモリー性が大きいとF、の値も
大きくなり、最大値は100となる。測定結果を表1に
示す。
If there is no memory property, the value of ■, does not change, so it becomes -0, and if the memory property is large, the value of F, also increases, and the maximum value is 100. The measurement results are shown in Table 1.

本発明の感光体はこの結果から、従来のメモリー性悪光
体に比べ感度測定に要する程度の少ない露光量できわめ
て大きなメモリー性を付与することができ、しかも暗減
衰も小さく、変動もほとんどな(、しかも感度が高い特
性が示された。このことは、メモリー性を付与し、連続
してコロナ帯電を行なっても安定したV、が得られるこ
とを示している。
From these results, the photoreceptor of the present invention can provide extremely large memory properties with a small exposure amount required for sensitivity measurement compared to conventional memory-prone photoreceptors, and has small dark decay and almost no fluctuation ( Moreover, the characteristics of high sensitivity were shown.This shows that it is possible to impart memory properties and obtain stable V even when corona charging is performed continuously.

この感光体を、乾燥基中100°Cで10分1いた所、
メモリー性、即ち一回の露光による持続的な光導電性は
消去された。
This photoreceptor was kept at 100°C for 10 minutes in a dry base.
The memory property, ie the persistent photoconductivity with a single exposure, was erased.

一方この感光体を一8kVでコロナ帯電した所、VS+
は一186vとなり、暗減衰も大きく、負帯電では実用
性のないことが示された。
On the other hand, when this photoreceptor was corona charged at 18kV, VS+
The voltage was -186V, the dark decay was large, and it was shown that it was not practical with negative charging.

比較例1 石英ガラス板を浸漬して電解重合を行う溶液として、テ
トラブチルテトラフルオロボレートとピロールをそれぞ
れ濃度0.1 Mとなる様に溶解したプロピレンカーボ
ネートを用いた以外は前記実施例と全く同様に電解重合
を行ない、ITO膜上にポリピロール膜を形成し、ヨウ
素のドーピング処理をせずに該実施例と全く同様にして
感光体を作製し、電子写真特性を測定した。
Comparative Example 1 Completely the same as the previous example except that propylene carbonate in which tetrabutyltetrafluoroborate and pyrrole were dissolved to a concentration of 0.1 M was used as the solution for electrolytic polymerization by dipping a quartz glass plate. Electrolytic polymerization was carried out to form a polypyrrole film on the ITO film, and a photoreceptor was prepared in exactly the same manner as in the example without iodine doping treatment, and its electrophotographic properties were measured.

測定結果を表1に示す。The measurement results are shown in Table 1.

比較例2 石英ガラス板を浸漬して電解重合を行う溶液として、リ
チウムテトラフルオロポレートとアニリンをそれぞれ濃
度0.1 Mとなる様に溶解してなる水溶液を用いた以
外は前記実施例1と全く同様にして電解重合を行ない、
ITO膜上にポリアニリン膜を形成し、次いで該実施例
と全く同様にしてヨウ素のドーピング処理と光導電層の
形成を行ない、感光体を作製し、電子写真特性を測定し
た。
Comparative Example 2 Completely the same as Example 1 except that an aqueous solution containing lithium tetrafluoroporate and aniline dissolved at a concentration of 0.1 M was used as the solution for electrolytic polymerization by dipping a quartz glass plate. Electrolytic polymerization is carried out in the same manner,
A polyaniline film was formed on the ITO film, and then iodine doping treatment and formation of a photoconductive layer were performed in exactly the same manner as in the example, a photoreceptor was prepared, and its electrophotographic properties were measured.

測定結果を表1に示す。The measurement results are shown in Table 1.

比較例3 ポリ(3−メチルチオフェン)の中間膜を有していない
以外は前記実施例で作製したのと全く同じ感光体を作製
し、該実施例と全く同様にして電子写真特性を測定した
。測定結果を表1に示す。
Comparative Example 3 A photoreceptor identical to that produced in the above example except that it did not have a poly(3-methylthiophene) interlayer film was prepared, and its electrophotographic properties were measured in the same manner as in the above example. . The measurement results are shown in Table 1.

表1の結果から、比較例は、いずれもメモリー性が劣り
、しかも感度も低く、暗減衰も大きいものもあるなど、
いずれもメモリー性感光体としての性能は不十分であり
、本発明感光体に設けられている中間層がメモリー性付
与には効果の大きいことが示された。
From the results in Table 1, all of the comparative examples have poor memory performance, low sensitivity, and large dark decay.
All of them had insufficient performance as a memory photoreceptor, indicating that the intermediate layer provided in the photoreceptor of the present invention was highly effective in imparting memory properties.

表 (発明の効果) 本発明によれば、特定の中間層を付与することにより感
光体の性能を低下させず、しかも像露光程度の光量でメ
モリー性潜像を形成することができる。
Table (Effects of the Invention) According to the present invention, by providing a specific intermediate layer, the performance of the photoreceptor is not deteriorated, and moreover, a memorable latent image can be formed with a light amount comparable to that of image exposure.

Claims (1)

【特許請求の範囲】[Claims] (1)導電性支持体と光導電層との間にヨウ素でドーピ
ング処理をしたポリ(3−アルキルチオフェン)を含有
する中間層を有することを特徴とする電子写真用メモリ
ー性感光体。
(1) A memory photoreceptor for electrophotography, comprising an intermediate layer containing poly(3-alkylthiophene) doped with iodine between a conductive support and a photoconductive layer.
JP9128889A 1989-04-11 1989-04-11 Memory type electrophotographic sensitive body Pending JPH02269360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9128889A JPH02269360A (en) 1989-04-11 1989-04-11 Memory type electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9128889A JPH02269360A (en) 1989-04-11 1989-04-11 Memory type electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH02269360A true JPH02269360A (en) 1990-11-02

Family

ID=14022280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9128889A Pending JPH02269360A (en) 1989-04-11 1989-04-11 Memory type electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH02269360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319789A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emission device and its preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319789A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emission device and its preparation method
JP4601843B2 (en) * 2000-02-29 2010-12-22 株式会社半導体エネルギー研究所 Light emitting device

Similar Documents

Publication Publication Date Title
US4988597A (en) Conductive and blocking layers for electrophotographic imaging members
EP0056727B1 (en) Infrared sensitive photoconductive element
US4584253A (en) Electrophotographic imaging system
US5385796A (en) Electrophotographic imaging member having unmodified hydroxy methacrylate polymer charge blocking layer
US4588667A (en) Electrophotographic imaging member and process comprising sputtering titanium on substrate
JPH0670718B2 (en) Electrophotographic image forming member
US4748099A (en) Process for forming printing plate using an electrophotographic material for obtaining toner image
SU508235A3 (en) Method of transferring latent electrostatic image
US4933246A (en) Electrophotographic imaging member with a copolymer blocking layer
US4231799A (en) Electrophotographic recording material
JPH02269360A (en) Memory type electrophotographic sensitive body
JP3042383B2 (en) Electrophotographic photoreceptor
US4725520A (en) Electrophotographic recording material
JP2003098704A (en) Negative electrification monolayer dispersion type photoreceptor
EP0448780A1 (en) Electrophotographic imaging member
JPH02269357A (en) Electrophotographic sensitive body
JP2004198594A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
SU288731A1 (en)
JPH04226469A (en) Electrophotographic sensitive body, electrophotographic device using same and facsimile
JP2001175011A (en) Electrophotographic photoreceptor
JP2724037B2 (en) Electrophotographic photoreceptor
JPS58163947A (en) Electrophotographic receptor
JPS58105234A (en) Electrophotographic receptor
JPH0348504B2 (en)
JPS6255777B2 (en)