JPH02269038A - Laminated material - Google Patents

Laminated material

Info

Publication number
JPH02269038A
JPH02269038A JP27189889A JP27189889A JPH02269038A JP H02269038 A JPH02269038 A JP H02269038A JP 27189889 A JP27189889 A JP 27189889A JP 27189889 A JP27189889 A JP 27189889A JP H02269038 A JPH02269038 A JP H02269038A
Authority
JP
Japan
Prior art keywords
layer
diamond
aluminum nitride
silicon carbide
ceramic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27189889A
Other languages
Japanese (ja)
Other versions
JP2683115B2 (en
Inventor
Herbert Schachner
エルベール シャシュネール
Gerard Horlaville
ジェラール オルラビル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Memorial Institute Inc
Original Assignee
Battelle Memorial Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute Inc filed Critical Battelle Memorial Institute Inc
Publication of JPH02269038A publication Critical patent/JPH02269038A/en
Application granted granted Critical
Publication of JP2683115B2 publication Critical patent/JP2683115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To improve thermal conductivity of a laminate material by forming a ceramic layer of the material continuously containing a foundation base material, a diamond layer and a ceramic layer to an aluminum nitride layer. CONSTITUTION: The laminate material continuously contains a sintered silicon carbide foundation base material, a diamond layer and a ceramic layer, and the ceramic layer is made of an aluminum nitride. The material is used as a heat sink for manufacturing an integrated circuit. Thus, the aluminum nitride is used as the ceramic layer, thereby remarkably improving a thermal conductivity to about twice as large as that of the silicon carbide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、積層材及びそれのヒートシンクとしての用途
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminate and its use as a heat sink.

〔従来の技術及び発明が解決しようとする課題〕大規模
集積回路(LSI)に伴う集積回路における半導体装置
の密度の増大は、大きな熱伝導率と良好な電気絶縁性と
を有するヒートシンク基材を用いることを要求する。
[Prior art and problems to be solved by the invention] The increase in the density of semiconductor devices in integrated circuits accompanying large-scale integrated circuits (LSI) requires the use of heat sink substrates with high thermal conductivity and good electrical insulation. request that it be used.

これが、CVD (化学気相成長)で堆積させたダイヤ
モンドの層を有する基材が既に提案された゛理由である
。グイ、ヤモンド層はあらゆる種類の基材上に効果的に
堆積させることができるとは限らないので、交互のダイ
ヤモンド及びSiC層を有する積層材が欧州特許出願公
開第221531号明細書で提案されている。一般にS
iCはダイヤモンド層を堆積させるための最良の基礎基
材の一つである、ということは公知である。欧州特許出
願公開第221531号明細書によれば厚い均一なダイ
ヤモンド層を得るのは困難であるから、交互のSiC及
びダイヤモンド層を有する積層材を獲得することが有益
になる。
This is why substrates with a layer of diamond deposited by CVD (chemical vapor deposition) have already been proposed. Since gouy and diamond layers cannot be deposited effectively on all kinds of substrates, a laminate with alternating diamond and SiC layers was proposed in EP-A-221,531. There is. Generally S
It is known that iC is one of the best basic substrates for depositing diamond layers. Since it is difficult to obtain a thick uniform diamond layer according to EP 221 531, it becomes advantageous to obtain a laminate with alternating SiC and diamond layers.

この技術の障害は、90W/m−にというSiCの比較
的小さな熱伝導率、すなわちダイヤモンドのそそして厚
い均一なダイヤモンド層を達成するという問題に更に加
えて、堆積速度は一般に1廊/hの十分のいくつかに限
られ、それゆえたとえ堆積′が均一であってもダイヤモ
ンド層は非常に高くつくものになる。
Obstacles to this technology are the relatively small thermal conductivity of SiC of 90 W/m, i.e. the relatively small thermal conductivity of diamond, and in addition to the problem of achieving thick and uniform diamond layers, the deposition rate is generally 1/h. only a few tenths of the diameter, and therefore even if the deposition is uniform, the diamond layer becomes very expensive.

これらのあらゆる理由から、ダイヤモンド及びセラミッ
クスの層を組み合わせて適当の経費で十分なだけの厚さ
と良好な層の均質性とを達成することが有益である。
For all these reasons, it would be advantageous to combine diamond and ceramic layers to achieve sufficient thickness and good layer homogeneity at a reasonable expense.

本発明の目的は、積層材の熱伝導性を改良するための取
り合わせを提供することである。
It is an object of the invention to provide an arrangement for improving the thermal conductivity of laminates.

〔課題を解決するための手段及び作用効果〕この発明の
別の目的は、焼結された炭化ケイ素の基礎基材、ダイヤ
モンド層及びセラミックス層を連続して含んでなる積層
材であって当該セラミックス層が窒化アルミニウムでで
きている積層材を提供することであり、そしてそれを集
積回路の製造にヒートシンクとして用いることである。
[Means for Solving the Problems and Effects] Another object of the present invention is to provide a laminate material comprising a sintered silicon carbide base material, a diamond layer, and a ceramic layer in succession, the ceramic layer comprising: It is an object to provide a laminate material whose layers are made of aluminum nitride and to use it as a heat sink in the manufacture of integrated circuits.

セラミックス層として窒化アルミニウムを用いることは
、その熱伝導率が炭化ケイ素のそれの約2倍であるので
著しい改良である。炭化ケイ素の代りに窒化アルミニウ
ムを用いることは、ダイヤモンドは炭化ケイ素上には申
し分なく堆積するけれどもアルミニウムを含有している
全ての基材には標準的に非常に不完全に堆積することが
知られているため、自明のことではなかった。従って、
窒化アルミニウムがダイヤモンド上に申し分なく堆積す
るということは予想外であった。更に、窒化アルミニウ
ムの堆積速度はダイヤモンドのそれよりも約100倍速
く、それゆえに良好な熱伝導率を有する比較的厚い層を
適当の値段で達成するこえ、堆積速度が約100倍速い
からである。
The use of aluminum nitride as the ceramic layer is a significant improvement since its thermal conductivity is approximately twice that of silicon carbide. The use of aluminum nitride in place of silicon carbide is advantageous since diamond is known to deposit satisfactorily on silicon carbide but typically very poorly on all aluminum-containing substrates. It was not self-evident. Therefore,
It was unexpected that aluminum nitride would deposit satisfactorily on diamond. Furthermore, the deposition rate of aluminum nitride is about 100 times faster than that of diamond, thus achieving relatively thick layers with good thermal conductivity at a reasonable cost, as well as the deposition rate being about 100 times faster. .

添付の図面は、本発明に伴う積層材を達成するために基
材上に層を堆積させるための反応器の態様を説明しそし
て模式的に例示する。
The accompanying drawings describe and schematically illustrate embodiments of a reactor for depositing layers on a substrate to achieve a laminate according to the invention.

第1図により例示されるダイヤモンドを堆積させるだめ
の装置は、側壁2が両端を黄銅のキャップ3及び4でそ
れぞれ密封して閉鎖された二酸化ケイ素(SiO□)の
管からなる円筒閉鎖容器1からなる反応器を含んでなる
。キャップ3には、閉鎖容器1を真空ポンプに接続する
ための管6を有する中央の開口5が含まれている。管2
の中には同軸上を回転するように垂直棒7が取付けられ
る。
The apparatus for depositing diamonds, illustrated in FIG. It comprises a reactor. The cap 3 includes a central opening 5 with a tube 6 for connecting the enclosure 1 to a vacuum pump. tube 2
A vertical rod 7 is installed in the holder so as to rotate on the same axis.

その上端部には、被覆されるべき基材Sを保持するため
の二酸化ケイ素の支持体8がある。この棒7には、管6
の周りのリング10を含んでなる磁気駆動装置に適合し
た磁気要素9も用意される。
At its upper end there is a support 8 of silicon dioxide for holding the substrate S to be coated. This rod 7 has a tube 6
A magnetic element 9 is also provided which is adapted to a magnetic drive comprising a ring 10 around the .

閉鎖容′器1の円筒部分2は、抵抗発熱体11に取巻か
れる。キャップ4にも、該閉鎖容器をメタン及び水素の
源に接続する管13のための軸線方向の開口12が含ま
れている。キャップ14はまた、発電機16からタンタ
ルのフィラメン)Tへ電力を供給する2本の電線15を
絶縁するために、例えばテフロン(商標)の二つの絶縁
体14をも含んでなる。
The cylindrical part 2 of the closed vessel 1 is surrounded by a resistive heating element 11. The cap 4 also includes an axial opening 12 for a tube 13 connecting the enclosure to a source of methane and hydrogen. The cap 14 also comprises two insulators 14, for example Teflon™, to insulate the two electrical wires 15 supplying power from the generator 16 to the tantalum filament T.

第2図の反応器は窒化アルミニウム層を堆積させるため
のものであって、一方では真空ポンプ(図示せず)へ管
18により接続され、そして他方では管19によりHi
 +NH3の源と管20によりH2のもう一つの源とに
接続される閉鎖容器17を含んでなる。この管20には
、AlC1,供給原料21と加熱流体のための人口23
及び出口24を有する加熱マントル22とが用意される
。閉鎖容器17の内部には基材Sを保持するためのステ
ンレス鋼の支持体25が配置され、そ七て閉鎮容器17
はその基材を高周波誘導により加熱するため高周波コイ
ル26により取巻かれる。
The reactor of FIG. 2 is for depositing an aluminum nitride layer and is connected on the one hand by a tube 18 to a vacuum pump (not shown) and on the other hand by a tube 19 to a Hi
+NH3 and a closed vessel 17 connected by a tube 20 to another source of H2. This tube 20 contains AlC 1, feedstock 21 and a population 23 for heating fluid.
and a heating mantle 22 having an outlet 24. A stainless steel support 25 for holding the substrate S is disposed inside the closed container 17, and the closed container 17
is surrounded by a high frequency coil 26 to heat the substrate by high frequency induction.

〔実施例〕〔Example〕

例1 この例では、密度が3.07g/cdであって(B。 Example 1 In this example, the density is 3.07 g/cd (B.

C)添加成分を含有している焼結炭化ケイ素基材上に窒
化アルミニウム/ダイヤモンドの二つの組み合わせを堆
積させる。この焼結基材は、直径16鮒及び厚さ1mo
+の円盤の形をしており、その表面粗さRa=0.4−
である。
C) Depositing the aluminum nitride/diamond dual combination onto a sintered silicon carbide substrate containing additive components. This sintered base material has a diameter of 16 mm and a thickness of 1 mo.
It has the shape of a positive disk, and its surface roughness Ra = 0.4-
It is.

ダイヤモンドを堆積させるために、上記の炭化ケイ素円
盤を第1図の支持体8の上に置き、そして閉鎖容器1に
管13を通して20 al /m i nのHz +1
%CH4を供給する。このガス混合物は、抵抗発熱体1
1により840℃に加熱される基材表面から約10mm
離れており且つ2000℃にされた熱いタンタルフィラ
メントによって活性化される。反応器内部の圧力は2 
kPaであり、また堆積の期間は19時間である。得ら
れるダイヤモンド層は5#Iの厚さである。
To deposit the diamond, the silicon carbide disk described above is placed on the support 8 of FIG.
%CH4. This gas mixture is added to the resistive heating element 1
Approximately 10 mm from the surface of the substrate heated to 840°C by 1.
It is activated by a hot tantalum filament that is separate and brought to 2000°C. The pressure inside the reactor is 2
kPa and the duration of the deposition is 19 hours. The resulting diamond layer is 5#I thick.

その後、この被覆基材を窒化アルミニウム層を堆積させ
るため第2図に示された閉鎖容器17に入れる。
This coated substrate is then placed in a closed vessel 17 shown in FIG. 2 for depositing the aluminum nitride layer.

H2+2%AlCl、の混合物を100c+f/min
の速度で管20を通して導入し、モしてH2+1%NH
A mixture of H2 + 2% AlCl at 100c + f/min
H2 + 1% NH was introduced through tube 20 at a rate of
.

の混合物を400c+f/minの速度で管19を通し
て導入する。基材はコイル26で840℃に加熱される
is introduced through tube 19 at a rate of 400 c+f/min. The substrate is heated to 840° C. by coil 26.

反応器の圧力は6.65kPaであり、操作は10分間
実施されて、その結果としてダイヤモンドの上に窒化ア
ルミニウムの5mの層ができる。
The reactor pressure is 6.65 kPa and the operation is carried out for 10 minutes, resulting in a 5 m layer of aluminum nitride on top of the diamond.

先に述べたように、窒化アルミニウム上にダイヤモンド
の層をもう一つ形成するのは非常に困難であるから、新
しいダイヤモンド層を適用する前に窒化アルミニウム層
の上へ炭化ケイ素の薄い中間層を堆積させる。このため
に、第2図の反応器の別形(第3図参照)を使用し、そ
してこの別形においては、供給管20はアルゴン源につ
ながれ、そしてアルゴンは液体のジメチルクロロシラン
を入れた壜27を通してバブリングされて、そのアルゴ
ンガスによりジメチルクロロシランの蒸気が運ばれる。
As mentioned earlier, it is very difficult to form another layer of diamond on aluminum nitride, so a thin intermediate layer of silicon carbide is applied over the aluminum nitride layer before applying the new diamond layer. deposit For this purpose, a variant of the reactor according to FIG. 2 (see FIG. 3) is used, and in this variant the feed pipe 20 is connected to a source of argon, and the argon is connected to a bottle containing liquid dimethylchlorosilane. 27, the argon gas carries dimethylchlorosilane vapor.

水素は管19によって供給される。この層の厚さは約0
.1〜5烏でよい。
Hydrogen is supplied by pipe 19. The thickness of this layer is approximately 0
.. 1 to 5 crows is sufficient.

例2 最初のダイヤモンド/窒化アルミニウムの組を例1のと
ふりに堆積させ、続いて次に述べる条件下で炭化ケイ素
の層を堆積させる。
Example 2 A first diamond/aluminum nitride pair is deposited on the top of Example 1, followed by a layer of silicon carbide under the conditions described below.

管19及び20を通る合計流量は500caf/min
であって、これは0.8%のMe2SiC1,,5%の
H2及び94.2%のArの混合物である。基材の温度
は1020℃、そして反応器の内部圧力は13.3kP
aである。
Total flow rate through pipes 19 and 20 is 500 caf/min
, which is a mixture of 0.8% Me2SiCl, 5% H2 and 94.2% Ar. The temperature of the substrate is 1020℃, and the internal pressure of the reactor is 13.3kP.
It is a.

堆積操作は30分継続し、また炭化ケイ素層の厚さは2
−である。
The deposition operation lasted 30 minutes and the thickness of the silicon carbide layer was 2
− is.

次いで、例1で述べたようにこの薄い炭化ケイ素層の上
でダイヤモンド及び窒化アルミニウムの堆積を繰り返す
ことができる。そして所望されるだけ何回も上記の操作
全体を、各回ごとに窒化アルミニウム層とダイヤモンド
層との間に炭化ケイ素の薄い中間層を配置しながら繰り
返すことができる。
The diamond and aluminum nitride deposition can then be repeated on this thin silicon carbide layer as described in Example 1. The entire operation described above can then be repeated as many times as desired, each time placing a thin intermediate layer of silicon carbide between the aluminum nitride layer and the diamond layer.

【図面の簡単な説明】 第1図は、ダイヤモンドを堆積させるために用いられる
反応器の断面図である。 第2図は、窒化アルミニウムを堆積させるための反応器
の断面図である。 第3図は、第2図の反応器の別形の部分断面図である。 図中、1は閉鎖容器、8は支持体、11は抵抗発熱体、
17は閉鎖容器、21は窒化アルミニウム供給原料、2
5は支持体、26は高周波コイル、Sは基材、Tはタン
タルフィラメント。 図面の浄書く内容に変更なしン 手 続 補 正 書(方式) 事件の表示 平成1年特許願第27 1898号 λ 発明の名称 積 層 材 ふ 補正をする者 事件との関係
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a reactor used to deposit diamond. FIG. 2 is a cross-sectional view of a reactor for depositing aluminum nitride. FIG. 3 is a partial cross-sectional view of an alternative version of the reactor of FIG. 2; In the figure, 1 is a closed container, 8 is a support, 11 is a resistance heating element,
17 is a closed container, 21 is an aluminum nitride feedstock, 2
5 is a support, 26 is a high-frequency coil, S is a base material, and T is a tantalum filament. Procedural amendment (method) with no change to the content of the drawings Indication of the case 1999 Patent Application No. 27 1898 λ Name of the invention Laminated material Person who makes the amendment Relationship to the case

Claims (1)

【特許請求の範囲】 1、焼結された炭化ケイ素の基礎基材、ダイヤモンド層
及びセラミックス層を連続して含んでなる積層材であっ
て、当該セラミックス層が窒化アルミニウムの層である
ことを特徴とする上記の積層材。 2、炭化ケイ素の中間結合層の上に堆積した少なくとも
もう一組のダイヤモンド/窒化アルミニウム層を更に含
んでなることを特徴とする、請求項1記載の積層材。 3、集積回路の製造にヒートシンクとして用いられる、
請求項1記載の積層材。
[Claims] 1. A laminated material comprising a sintered silicon carbide base material, a diamond layer, and a ceramic layer in succession, characterized in that the ceramic layer is an aluminum nitride layer. and the above laminated materials. 2. The laminate of claim 1, further comprising at least one diamond/aluminum nitride layer deposited on the intermediate bonding layer of silicon carbide. 3. Used as a heat sink in the manufacture of integrated circuits,
The laminate material according to claim 1.
JP1271898A 1988-10-21 1989-10-20 Laminated material Expired - Lifetime JP2683115B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3931/88-2 1988-10-21
CH393188A CH675997A5 (en) 1988-10-21 1988-10-21 Thermo-conductive sintered silicon carbide laminate

Publications (2)

Publication Number Publication Date
JPH02269038A true JPH02269038A (en) 1990-11-02
JP2683115B2 JP2683115B2 (en) 1997-11-26

Family

ID=4266574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271898A Expired - Lifetime JP2683115B2 (en) 1988-10-21 1989-10-20 Laminated material

Country Status (2)

Country Link
JP (1) JP2683115B2 (en)
CH (1) CH675997A5 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113400734A (en) * 2020-03-16 2021-09-17 北京电子工程总体研究所 High-temperature-resistant heat-insulating material-proof integrated structure based on precursor conversion ceramic and manufacturing method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057993A (en) * 1983-09-09 1985-04-03 住友電気工業株式会社 Circuit board for placing semiconductor element
EP0221531A3 (en) * 1985-11-06 1992-02-19 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha High heat conductive insulated substrate and method of manufacturing the same
US5373171A (en) * 1987-03-12 1994-12-13 Sumitomo Electric Industries, Ltd. Thin film single crystal substrate
DE3709200A1 (en) * 1987-03-20 1988-09-29 Heraeus Gmbh W C Electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113400734A (en) * 2020-03-16 2021-09-17 北京电子工程总体研究所 High-temperature-resistant heat-insulating material-proof integrated structure based on precursor conversion ceramic and manufacturing method and application thereof
CN113400734B (en) * 2020-03-16 2024-05-07 北京电子工程总体研究所 High-temperature-resistant heat-proof and heat-insulating material integrated structure based on precursor conversion ceramic, and manufacturing method and application thereof

Also Published As

Publication number Publication date
CH675997A5 (en) 1990-11-30
JP2683115B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
TW492075B (en) Electrode, wafer stage, plasma device, method of manufacturing electrode and wafer stage
EP0713538B2 (en) Method of rapidly densifying a porous structure
US6140215A (en) Method and apparatus for low temperature deposition of CVD and PECVD films
US5126206A (en) Diamond-on-a-substrate for electronic applications
CN103911596B (en) A kind of device preparing diamond film and use the method that this device prepares diamond film
JPH11354260A (en) Multiple-layered ceramic heater
US5147687A (en) Hot filament CVD of thick, adherent and coherent polycrystalline diamond films
JPH06218278A (en) Method and apparatus for densifying porous billet
TW200947588A (en) Processing apparatus and processing method
EP0272418B1 (en) Apparatus and process to condensate diamond
CA2089288A1 (en) Multilayer cvd diamond films
TWI358740B (en) Holder for use in semiconductor or liquid-crystal
JPH02269038A (en) Laminated material
JP2978023B2 (en) Manufacturing method of synthetic diamond film
US5272009A (en) Laminate material and its use as heat-sink
JPS6396912A (en) Substrate holder
JPS62167294A (en) Production of diamond thin film by vapor phase method
JP4166345B2 (en) Corrosion resistant material against chlorine gas
JP4482319B2 (en) Reaction vessel
JP4366979B2 (en) CVD equipment
JP3110978B2 (en) Heating element for vapor phase growth equipment
EP0411298A1 (en) Method for improving adhesion of synthetic diamond coatings to substrates
JP4714328B2 (en) Method for controlling the diameter of graphite nanofibers
RU222432U1 (en) Reactor for producing epitaxial layers of silicon carbide on a silicon substrate
JP3869160B2 (en) Multilayer ceramic heater and manufacturing method thereof