JPH02268996A - Flux cored wire for gas shielded arc welding - Google Patents

Flux cored wire for gas shielded arc welding

Info

Publication number
JPH02268996A
JPH02268996A JP9161889A JP9161889A JPH02268996A JP H02268996 A JPH02268996 A JP H02268996A JP 9161889 A JP9161889 A JP 9161889A JP 9161889 A JP9161889 A JP 9161889A JP H02268996 A JPH02268996 A JP H02268996A
Authority
JP
Japan
Prior art keywords
flux
welding
wire
iron powder
cored wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9161889A
Other languages
Japanese (ja)
Inventor
Tomoyuki Suzuki
友幸 鈴木
Shigemi Maki
真木 成美
Harutoshi Kubota
窪田 晴敏
Hirotoshi Ishide
石出 博俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9161889A priority Critical patent/JPH02268996A/en
Publication of JPH02268996A publication Critical patent/JPH02268996A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To decrease the amt. of the spatters to be generated and to allow a highly efficient welding with a high deposition characteristic by specifying the content of C in a steel sheath, the content of iron powder with respect to a total flux and the content of FeO in the iron powder. CONSTITUTION:The flux cored wire for gas shielded arc welding is the flux cored wire formed by filling the flux contg. 90% metal powder essentially composed of iron powder into the steel sheath at 20 to 25% by the weight of the wire. The content of the C in the steel sheath is 0.01 to 0.006%, the content of the iron powder with respect to the total flux is 41 to 87% and the content of the FeO in the iron powder is 2.3 to 12.5%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鋼構造物の溶接に用いるガスシールドアーク溶
接用フラックス入りワイヤに係るものであり、更に詳し
くは、スパッタ発生が少なく、より高能率な溶接が可能
な金属粉系フラックス入りワイヤに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flux-cored wire for gas-shielded arc welding used for welding steel structures, and more specifically to a flux-cored wire that generates less spatter and has higher efficiency. The present invention relates to a metal powder-based flux-cored wire that can be welded with ease.

[従来の技術] 最近、ガスシールドアーク溶接用フラックス入りワイヤ
は、軟鋼50キロ級高張力をはじめとする各種鋼種を用
いる鋼構造物の溶接に広く用いられるようになった。こ
の理由として、フラックス入りワイヤはその内部に充填
されるフラックスの作用効果によって溶接の作業性が良
く、良好なビード外観、形状が得られると共にワイヤ溶
接速度が高く、溶接能率が向上することが挙げられる。
[Prior Art] Recently, flux-cored wires for gas-shielded arc welding have come to be widely used for welding steel structures using various steel types including 50 kg class high tensile strength mild steel. The reason for this is that flux-cored wire has good welding workability due to the action and effect of the flux filled inside it, provides a good bead appearance and shape, and has a high wire welding speed, which improves welding efficiency. It will be done.

しかし、最近の溶接の自動化、ロボット化の動向下にお
いて更に高性能、高能率なフラックス入りワイヤの開発
が待望されている現状にある。
However, with the recent trend toward automation and robotization of welding, there is a long-awaited development of flux-cored wires with even higher performance and efficiency.

このフラックス入りワイヤはワイヤの外皮部が鋼であっ
て、内部に10〜30%のフラックスを充填して構成さ
れている。
This flux-cored wire has an outer sheath made of steel, and the inside thereof is filled with 10 to 30% flux.

内部に充填するフラックスを大別すると、チタニャ系な
どのスラグ剤とSi、Mnなどの脱酸剤、合金剤からな
るものと、鉄粉、Si、Mnなどの金属粉で構成される
ものとがあるが、本発明は後者の金属粉系フラックス入
りワイヤに関する。
The flux to be filled inside can be roughly divided into those consisting of slag agents such as titania, deoxidizing agents such as Si and Mn, and alloying agents, and those consisting of metal powders such as iron powder, Si and Mn. However, the present invention relates to the latter metal powder-based flux-cored wire.

従来の金属粉系フラックス入りワイヤは次の特長を有す
るものの後述の欠点があり、実用化できていなかった。
Although conventional metal powder-based flux-cored wires have the following features, they have the following drawbacks and have not been put to practical use.

■ ソリッドワイヤと同等以上の溶着量を得ることがで
きて高能率である。
■ It is highly efficient as it can achieve a welding amount equal to or greater than that of solid wire.

■ スラグの生成が少なく溶着効率が高いため、厚板の
多層溶接時などのスラグ除去が要らず、連続溶接が可能
である。
■ Since slag generation is low and welding efficiency is high, continuous welding is possible without the need for slag removal during multi-layer welding of thick plates.

■ 金属、合金類を充填フラックスに添加できるので溶
接金属組成調整の自由度が広い。
■ Since metals and alloys can be added to the filling flux, there is a wide degree of freedom in adjusting the weld metal composition.

■ 鋼に添加が困難な金属、合金類および少量の酸化物
なども添加が可能である。
■ It is possible to add metals, alloys, and small amounts of oxides that are difficult to add to steel.

以上のように金属粉系フラックス入りワイヤは多くの特
長を有しているものの、特に炭酸ガスをシールドガスと
するアーク溶接時において前記チタニャ系フラックス入
りワイヤに比較するとスパッタ発生量が多く溶接能率の
低下を来すという問題があり、金属粉系フラックス入り
ワイヤを広く実用化できていないのが現状である。
Although the metal powder-based flux-cored wire has many features as described above, it generates more spatter than the titania-based flux-cored wire, especially during arc welding using carbon dioxide as a shielding gas, and reduces welding efficiency. Currently, metal powder-based flux-cored wires have not been widely put into practical use due to the problem of deterioration.

このようなスパッタの発生を押えるために例えば特開昭
60−257993号公報、特開昭61−180896
号公報記載の技術などが知られている。前者はフラック
スの流動度により、後者はフラックス率や炭素あるいは
アーク安定剤の添加量によりアークの安定化を図り、ス
パッタの低減を狙ったものである。
In order to suppress the occurrence of such spatter, for example, Japanese Patent Application Laid-Open No. 60-257993 and Japanese Patent Application Laid-Open No. 61-180896 are disclosed.
The technology described in the above publication is known. The former is aimed at reducing spatter by stabilizing the arc by adjusting the fluidity of the flux, and the latter by adjusting the flux rate and the amount of carbon or arc stabilizer added.

しかしながら、上記技術は溶接作業性面の向上を主体に
狙ったものであり、金属粉系ワイヤ本来の最も特徴とす
るところの溶接能率すなわち、高溶着性を得る点におい
ては、十分満足しうるものではない。
However, the above technology is mainly aimed at improving welding workability, and is fully satisfactory in terms of welding efficiency, which is the primary characteristic of metal powder wire, that is, high weldability. isn't it.

[発明が解決しようとする課題] 本発明は上記従来ワイヤの問題点を解決するためになさ
れたものであって、炭酸ガスシールドとするアーク溶接
においても、スパッタ発生が少ないのは勿論のこと、よ
り高能率な溶接が可能な金属粉系フラックス入りワイヤ
を提供するものである。
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned problems with conventional wires, and it is of course possible to reduce the occurrence of spatter even in arc welding using a carbon dioxide shield. The present invention provides a metal powder-based flux-cored wire that enables more efficient welding.

[課題を解決するための手段] 本発明のガスシールドアーク溶接用フラックス入りワイ
ヤは、鋼製外皮に鉄粉を主体とする金属粉を90%以上
含有するフラックスをワイヤ重量比で10〜25%充填
してなるフラックス入りワイヤにおいて、鋼製外皮のC
量が0.01〜0.06%、全フラックスに対する鉄粉
含有量が、41〜87%であり、かつ該鉄粉中のFeO
が2.3〜12.5%であることを特徴とするものであ
る。
[Means for Solving the Problems] The flux-cored wire for gas-shielded arc welding of the present invention has a steel outer sheath containing flux containing 90% or more of metal powder, mainly iron powder, in an amount of 10 to 25% by weight of the wire. In the flux-cored wire formed by filling, the C of the steel outer shell is
The iron powder content is 41 to 87% with respect to the total flux, and the FeO content in the iron powder is 0.01 to 0.06%.
is 2.3 to 12.5%.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

まず、本発明においてフラックス中の金属粉を90%以
上と限定したのは、余分なスラグを溶接中に生成させず
溶着効率を高めるためである。フラックス中の金属粉の
比率が90%未満では溶着効率においてソリッドワイヤ
よりも低くなることと、生成スラグが多くなり過ぎ1パ
ス毎にスラグ除去を要するようになり、溶接能率が低下
する。従ってフラックスの90%以上は金属粉でなけれ
ばならない。なおここでいう金属粉とは、鉄粉の他、S
i、Mn、Ti、B、Ai、Mg、[:a等の脱酸性元
素とNi、Cr、Mo、Cu等の合金元素を意味してい
る。これら元素の添加方法としては、各々単体で添加し
ても、またこれらの元素の合金として添加してもよい。
First, in the present invention, the metal powder content in the flux is limited to 90% or more in order to prevent excess slag from being generated during welding and to improve welding efficiency. If the ratio of metal powder in the flux is less than 90%, the welding efficiency will be lower than that of solid wire, and the amount of slag produced will be too large, requiring slag removal after each pass, resulting in a decrease in welding efficiency. Therefore, 90% or more of the flux must be metal powder. Note that the metal powder referred to here includes iron powder, S
It means deoxidizing elements such as i, Mn, Ti, B, Ai, Mg, and [:a, and alloying elements such as Ni, Cr, Mo, and Cu. These elements may be added singly or as an alloy of these elements.

次に金属粉中の鉄粉含有量を全フラックスに対し41〜
87%とした理由は金属粉系複合ワイヤの溶着速度を向
上させ溶接能率をあげるためである。金属粉中の鉄粉が
41%未満では溶接能率向上効果が認められず、87%
を超えると金属粉中の他の成分、例えばSi、Mn、T
iなどの脱酸剤およびNi、Cr、Moなどの合金剤の
絶対量が不足するため、所望の溶接金属性能が得られな
くなると共にアークが不安定になりスパッタが多発する
Next, the iron powder content in the metal powder is 41 to 41% relative to the total flux.
The reason for setting it to 87% is to improve the welding speed of the metal powder composite wire and increase the welding efficiency. If the iron powder in the metal powder is less than 41%, no effect of improving welding efficiency is observed, and the welding efficiency is 87%.
When the
Since the absolute amounts of deoxidizing agents such as i and alloying agents such as Ni, Cr, and Mo are insufficient, desired weld metal performance cannot be obtained, and the arc becomes unstable and spatter occurs frequently.

次にフラックスをワイヤ重量比で10〜25%充填して
なるとした理由は、フランクス充填率が低いとワイヤ断
面積に対する外皮の面積比率が大きくなり、電流が流れ
やすくなるため、外皮の抵抗発熱による溶融効果が期待
できず、結果的に溶融速度が低下する。また、アークが
集中し過ぎるため、アークの広がりが望めず、ビード形
状が凸形となり、母材とのなじみ性が劣化する。
Next, the reason for filling the flux with 10 to 25% by weight of the wire is that when the flux filling rate is low, the area ratio of the outer sheath to the cross-sectional area of the wire increases, making it easier for current to flow. No melting effect can be expected, and as a result, the melting rate decreases. Further, since the arc is too concentrated, it is difficult to expect the arc to spread, and the bead shape becomes convex, resulting in poor compatibility with the base material.

一方フラックス充填率が高くなり過ぎると外皮の面積比
率が小さくなり、電流密度が高くなって、外皮抵抗発熱
は向上する。しかし、外皮の溶融過剰傾向が著しくなり
、アークの不安定化が起こる。その結果スパッタが多発
しワイヤ溶着速度の低下を生じ、アンダーカット等の溶
接欠陥も起こり易い。更に外皮の薄肉化によるワイヤ剛
性が下がり、ワイヤ送給時の座屈が生じ易くなり、溶接
作業性能率のダウンにもつながる。以上の理由により、
フラックスの充填率は10〜25%に定めた。
On the other hand, if the flux filling rate becomes too high, the area ratio of the outer skin becomes smaller, the current density becomes higher, and the heat generated by the outer skin resistance increases. However, the tendency of over-melting of the outer skin becomes significant and the arc becomes unstable. As a result, spatter occurs frequently, reducing wire welding speed, and welding defects such as undercuts are likely to occur. Furthermore, the wire rigidity decreases due to the thinning of the outer skin, making it easier for buckling to occur during wire feeding, which also leads to a decrease in welding performance. For the above reasons,
The flux filling rate was set at 10 to 25%.

次に鉄粉および金属粉の添加量を上記範囲にすることに
より、金属粉系フラックス大すワイヤの特長である溶接
能率の向上は一応達成できるが、しかし従来の最大の問
題点であったスパッタ量の低減と同時により優れた溶着
性を図ることはできない。そこで本発明者らはスパッタ
低減と同時により優れた溶着性の向上を目的に実験を重
ねた結果、フラックス入りワイヤ中の成分、特にC量が
スパッタ発生に大きく影響し、またフラックス中の含有
量の最も高い鉄粉に着目し、その成分中のFeOが溶着
速度に大きく寄与していることを見出した。
Next, by adjusting the amount of iron powder and metal powder added within the above range, it is possible to improve welding efficiency, which is a feature of metal powder-based flux wire, but spatter, which is the biggest problem with conventional methods, can be achieved. It is not possible to reduce the amount and simultaneously achieve better weldability. As a result of repeated experiments aimed at reducing spatter and at the same time improving welding performance, the present inventors found that the components in flux-cored wire, especially the amount of C, greatly affected spatter generation. We focused our attention on the iron powder with the highest iron powder and found that FeO in its components greatly contributed to the welding rate.

すなわちFeO量を0.1〜18%の範囲で種々変動さ
せた鉄粉を60%含むフラックスをC=0.03%、 
Si= 0.01. Mn= 0.30.  P = 
0.01%。
That is, a flux containing 60% iron powder with FeO content varied in the range of 0.1 to 18%, C = 0.03%,
Si=0.01. Mn=0.30. P=
0.01%.

S=0.01%の外皮に21%充填した1、6 +nm
φの金属粉系フラックス入すワイヤを作製した。
S = 0.01% shell filled with 21% 1,6 +nm
A wire with a diameter of φ metal powder-based flux was made.

第1図はこれらワイヤの下向溶接姿勢における溶接能率
の測定結果を示す。溶接条件は電流400A、電圧32
V%溶接速度40 Ca1l/分、CChガス流125
1/分、チップ母林間距1125mmとし、下向溶接を
行ってワイヤの溶着速度を比較検討した。なお、試験板
は5M−50B鋼の板厚20 mm、サイズは幅130
mm、長さ400mmを用いて行った。
FIG. 1 shows the measurement results of the welding efficiency of these wires in the downward welding position. Welding conditions are current 400A, voltage 32
V% welding speed 40 Ca1l/min, CCh gas flow 125
The welding speed of the wire was compared and examined by performing downward welding at a speed of 1/min and a distance between the chip bases of 1125 mm. The test plate was made of 5M-50B steel with a thickness of 20 mm and a width of 130 mm.
mm, and the length was 400 mm.

実験から鉄粉中のFeOが2.3%未満では溶着速度の
向上はみいだせなかった。これは、充填フラックスに多
量に含まれる鉄粉のFeOが少量であるため、フラック
ス中部の絶縁作用が有効に働かずフラックスにも通電作
用が生じるためと考えられる。つまり、ワイヤに流れる
電流が一定とすればワイヤの外皮に流れる電流が減少し
ていることである。
Experiments have shown that no improvement in the welding rate was found when the FeO content in the iron powder was less than 2.3%. This is thought to be because the filling flux contains a large amount of FeO in the iron powder, so that the insulating effect in the middle of the flux does not work effectively and the flux also has an energizing effect. In other words, if the current flowing through the wire is constant, the current flowing through the outer sheath of the wire is decreasing.

すなわち、充填フラックスへの分流率増大を意味し、結
果的にワイヤ外皮の抵抗発熱が減少するため、溶着速度
の低下が起きるものと考えられる。一方12.5%超で
は、フラックスの絶縁作用が大きくなり外皮の抵抗発熱
が増大するが、ワイヤ先端の溶滴のCO反応が激しくな
ってスパッタ発生量が増加すると共にスラグが多量に生
成されて逆に溶着量の減少を来たす。次にスパッタ量に
及ぼす外皮のC量の影響を検討した。即ち第1表に示す
フラックスを用いC量をo、aoa〜0,09%と変化
させた種々の外皮を用いてり、S mll1φのワイヤ
を作製し、下向溶接におけるスパッタ発生量を測定した
In other words, this means an increase in the diversion rate to the filling flux, which results in a decrease in the resistance heat generation of the wire sheath, which is thought to cause a decrease in the welding speed. On the other hand, if it exceeds 12.5%, the insulating effect of the flux increases and the resistance heat generation of the outer skin increases, but the CO reaction of the droplets at the tip of the wire becomes intense, increasing the amount of spatter and producing a large amount of slag. On the contrary, it causes a decrease in the amount of welding. Next, the influence of the amount of C in the outer skin on the amount of spatter was investigated. That is, using the flux shown in Table 1 and using various outer skins with varying amounts of C from o, aoa to 0.09%, wires of S mm 1φ were prepared, and the amount of spatter generated during downward welding was measured. .

第  1  表 その結果を第2図に示す。なお溶接条件は溶接能率の試
験の場合と同条件で行った。なお、スパッタの捕集は銅
製のスパッタ捕集箱を用いて行った。実験から外皮のC
量が0.01%未満ではアーク雰囲気中における酸素と
のGO反応が減少するため、ワイヤ先端の溶滴離脱力が
低下する。そのために溶滴サイズが大粒化し、溶滴移行
がスムースに行なわれず最終的には大粒のスパッタとし
て周囲に飛散することになる。
Table 1 The results are shown in Figure 2. The welding conditions were the same as those used in the welding efficiency test. Note that spatter was collected using a copper sputter collection box. From the experiment, the integument C
When the amount is less than 0.01%, the GO reaction with oxygen in the arc atmosphere is reduced, resulting in a droplet detachment force at the tip of the wire. As a result, the size of the droplets increases, and the droplets do not transfer smoothly, eventually scattering around as large spatter particles.

方、外皮のC量が0.06%超になるとCO反応が過剰
となるためにスパッタ発生が増加する傾向になる。した
がって外皮のC量は0.OI〜0.06%とした。
On the other hand, if the amount of C in the outer skin exceeds 0.06%, the CO reaction becomes excessive and spatter generation tends to increase. Therefore, the amount of C in the outer skin is 0. The OI was set to 0.06%.

以上が本発明ワイヤの主要構成であるが、アーク安定化
や少量のスラグの物性調整によりビード形成良好化を図
るためにSiO2,MnO,A文203FaO,FeO
3,MgOなどの酸化物を単体もしくは化合物の形態で
その総量が10%を超えない範囲で添加することができ
る。ワイヤ外皮としては通常軟鋼を用いるが、低合金鋼
あるいは高合金鋼を用いれば外皮の電気抵抗が大き゛く
なフて、抵抗発熱による溶着速度向上が更に期待できる
The above is the main structure of the wire of the present invention, but in order to improve bead formation by stabilizing the arc and adjusting the physical properties of a small amount of slag, SiO2, MnO, A203FaO, FeO
3. An oxide such as MgO can be added alone or in the form of a compound in an amount that does not exceed 10% in total. Mild steel is normally used for the wire sheath, but if low alloy steel or high alloy steel is used, the electrical resistance of the sheath will be greater, and therefore a further increase in the welding speed due to resistance heat generation can be expected.

また、ワイヤ断面構造は、外皮円周部に合せ目を有する
オーブンシームワイヤの他、円周部に合せ目を持たない
クローズドシームワイヤのいずれでもよいが、自動化、
ロボット化を考慮すればシームレスワイヤが望ましい。
In addition, the cross-sectional structure of the wire may be either an oven seam wire that has a seam on the circumference of the outer skin or a closed seam wire that does not have a seam on the circumference.
Seamless wire is desirable when considering robotization.

また、本発明を用いて溶接する場合に使用するシールド
ガス組成としては、炭酸ガスの他に炭酸ガスに酸素ガス
あるいはアルゴンガスを混合する場合も適用可能である
。アルゴンガスとの混合ガスの場合、アルゴンのアーク
安定化作用が重畳されるので、更にスパッタを低減させ
ることができる。次に実施例を用いて本発明を更に具体
的に説明する。
Further, as the shielding gas composition used when welding using the present invention, in addition to carbon dioxide gas, a mixture of carbon dioxide gas and oxygen gas or argon gas is also applicable. In the case of a mixed gas with argon gas, since the arc stabilizing effect of argon is superimposed, spatter can be further reduced. Next, the present invention will be explained in more detail using Examples.

[実 施 例] 第2表に本発明フラックス入りワイヤおよび比較のため
に試作したフラックス入りワイヤのフラックス組成を、
第3表、第4表にこれらワイヤを用いて溶接したときの
溶接試験結果を示す。第3.4表において、No 1〜
Na1lが本発明例、No12〜No17が比較例であ
る。ワイヤ外皮は第2表に示す軟鋼外皮と合金外皮を用
いてフラックスを充填し、断面形状がシームレスワイヤ
の1.6 mmφワイヤにて炭酸ガスをシールドとして
試験を供した。本発明例はいずれもスパッタ発生量が少
なく、高溶着性に富みかつ機減的性質も良好であった。
[Example] Table 2 shows the flux compositions of the flux-cored wire of the present invention and the flux-cored wire prototyped for comparison.
Tables 3 and 4 show the results of welding tests using these wires. In Table 3.4, No. 1~
Na1l is an example of the present invention, and Nos. 12 to 17 are comparative examples. The wire sheath was a mild steel sheath and an alloy sheath shown in Table 2, filled with flux, and tested using a 1.6 mmφ wire with a seamless cross-sectional shape as a carbon dioxide shield. All of the examples of the present invention had a small amount of spatter, had high welding properties, and had good mechanical properties.

これに対しNo12ワイヤは金属粉量が少ないため、溶
接能率が満足されず、No13は外皮のC量が多くNo
14は逆にC量が少ないため、いずれもスパッタが多発
した。
On the other hand, No. 12 wire has a small amount of metal powder, so the welding efficiency is not satisfied, and No. 13 wire has a large amount of C in the outer sheath, so No.
On the contrary, since the amount of C was small in No. 14, spatter occurred frequently in all cases.

また、No15は鉄粉のFeO量が少なく、No16は
逆にFeO量が過剰のため、No17はC量およびFe
O量共に少ないため、溶着速度の低下あるいはスパッタ
が多発し採用できない。
In addition, No. 15 has a small amount of FeO in the iron powder, and No. 16 has an excessive amount of FeO, so No. 17 has a large amount of C and FeO.
Since both the amount of O is small, the welding speed decreases or spatter occurs frequently, so it cannot be used.

第    2    表 [発明の効果] 以上のように、本発明のガスシールドアーク溶接用フラ
ックス入りワイヤは主として炭酸ガスをシールドガスと
して用いてもスパッタ発生量が少なく高溶着性に富むた
め、より高能率な溶接を可能にした。すなわちこの種ワ
イヤの実用性を飛躍的に高めることができる。
Table 2 [Effects of the Invention] As described above, the flux-cored wire for gas-shielded arc welding of the present invention generates less spatter and has high welding properties even when carbon dioxide gas is mainly used as the shielding gas, so it has higher efficiency. This makes possible welding. In other words, the practicality of this type of wire can be dramatically improved.

溶接の自動化、ロボット化および高能率化に答える本発
明の価値は高い。
The value of the present invention is high as it responds to the automation, robotization, and high efficiency of welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鉄粉中のFeO量と溶着速度の関係を示す図、
第2図は外皮のC量とスパッタ発生の関係を示す図であ
る。 他4名 スパッタ発生量(g/分) トコ ω (口 D 0口 溶着速度(g/分)
Figure 1 is a diagram showing the relationship between the amount of FeO in iron powder and the welding speed.
FIG. 2 is a diagram showing the relationship between the amount of carbon in the outer skin and the occurrence of spatter. Amount of spatter generated by other 4 people (g/min) Toko ω (mouth D 0 mouth welding speed (g/min)

Claims (1)

【特許請求の範囲】[Claims] 1 鋼製外皮に鉄粉を主体とする金属粉を90重量%以
上含有するフラックスをワイヤ重量比で10〜25%充
填してなるフラックス入りワイヤにおいて、鋼製外皮の
C量が0.01〜0.06重量%、全フラックスに対す
る鉄粉含有量が、41〜87重量%であり、かつ該鉄粉
中のFeOが2.3〜12.5重量%であることを特徴
とするガスシールドアーク溶接用フラックス入りワイヤ
1. A flux-cored wire in which a steel sheath is filled with flux containing 90% by weight or more of metal powder, mainly iron powder, in an amount of 10 to 25% by weight of the wire, in which the amount of C in the steel sheath is 0.01 to 0.01. 0.06% by weight, an iron powder content of 41 to 87% by weight relative to the total flux, and a gas shielded arc characterized in that FeO in the iron powder is 2.3 to 12.5% by weight. Flux-cored wire for welding.
JP9161889A 1989-04-11 1989-04-11 Flux cored wire for gas shielded arc welding Pending JPH02268996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9161889A JPH02268996A (en) 1989-04-11 1989-04-11 Flux cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9161889A JPH02268996A (en) 1989-04-11 1989-04-11 Flux cored wire for gas shielded arc welding

Publications (1)

Publication Number Publication Date
JPH02268996A true JPH02268996A (en) 1990-11-02

Family

ID=14031563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9161889A Pending JPH02268996A (en) 1989-04-11 1989-04-11 Flux cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JPH02268996A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154294A (en) * 1986-12-16 1988-06-27 Nippon Steel Corp Composite wire for gas shielded arc welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154294A (en) * 1986-12-16 1988-06-27 Nippon Steel Corp Composite wire for gas shielded arc welding

Similar Documents

Publication Publication Date Title
MXPA05013178A (en) Cored electrode for reducing diffusible hydrogen.
KR20190019020A (en) Electrodes for forming austenitic and duplex steel weld metal
JP2002103084A (en) Flux cored wire for gas shielded arc welding
JP2711077B2 (en) Flux-cored wire for gas shielded arc welding
JPS63215395A (en) Composite wire for gas shielded arc welding
JP2578483B2 (en) Gas shielded arc welding flux cored wire
JPH02268996A (en) Flux cored wire for gas shielded arc welding
JPH0521677B2 (en)
JPH02274395A (en) Combined wire for gas shielded arc welding
JPS6216747B2 (en)
JPH03294092A (en) Flux cored wire electrode for gas shielded arc welding
JPS62110897A (en) Iron power flux cored wire
JPH0246994A (en) Solid wire for gas shielded arc welding
JPH10314985A (en) Flux-cored wire for gas shielded metal arc horizontal position welding
JPH03169485A (en) High current density welding method and flux-cored wire
JPS63154294A (en) Composite wire for gas shielded arc welding
JPH05285692A (en) Flux cored wire for gas shielded arc welding
JPH0240435B2 (en) GASUSHIIRUDOAAKUYOSETSUYOFURATSUKUSUIRIWAIYA
JP2578906B2 (en) Composite wire for self-shielded arc welding
JP2528311B2 (en) Wire with flux for gas shield welding
JPH0565277B2 (en)
JP3230100B2 (en) Iron powder flux cored wire
JP3652499B2 (en) Seamless flux-cored wire for gas shielded arc welding
JPH03230892A (en) Flux cored wire for gas shield arc welding
JPH0545359B2 (en)