JPH02268735A - Ophthalmic stereoscopic measuring apparatus - Google Patents

Ophthalmic stereoscopic measuring apparatus

Info

Publication number
JPH02268735A
JPH02268735A JP1090968A JP9096889A JPH02268735A JP H02268735 A JPH02268735 A JP H02268735A JP 1090968 A JP1090968 A JP 1090968A JP 9096889 A JP9096889 A JP 9096889A JP H02268735 A JPH02268735 A JP H02268735A
Authority
JP
Japan
Prior art keywords
image
index
slit
eye
fundus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1090968A
Other languages
Japanese (ja)
Inventor
Isao Matsumura
勲 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1090968A priority Critical patent/JPH02268735A/en
Publication of JPH02268735A publication Critical patent/JPH02268735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To detect the position of an object regardless of the direction or size of a slit like index by rotating the slit like index projected on the eyeground on the eyeground. CONSTITUTION:The luminous flux from a light source 1 passes through a slit like index S to reach a perforated mirror 5 through a relay lens 4 and is reflected by the perforated mirror 5 to reach the cornea Ec of an eye E to be examined and reaches the eyeground Ef through the pupil Ep to form a slit like index image. The reflected light from the eyeground Ef is emitted from the eye E to be examined to pass through an objective lens 6 and passes through the perforation part of the mirror 5 while forms an aeral image F' to reach an image receiving means 9 through a focusing lens 7 and a projection lens 8. The image received by the image receiving means 9 is inputted to an image processor 10 to be subjected to image processing and measurement to be displayed on a television monitor 11. The trigger signal from a trigger signal generator 12 is emitted by the signal from the image processor 10 and a pulse motor is driven to rotate an index projection optical system 3 and an image is taken in the image processor 10 through an image receiving means 9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被検眼の眼底に指標を投影し、眼底上に投影
された指標の変形状態から眼底の立体計測を行う眼科用
立体計測装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an ophthalmological stereoscopic measurement device that projects an index onto the fundus of an eye to be examined and performs three-dimensional measurement of the fundus based on the deformed state of the index projected onto the fundus. It is related to.

[従来の技術] 従来、被検眼の眼底に瞳上で偏心した位置にある開口部
から、第4図に示すような開口部の偏心方向に垂直な方
向に長さを持つ複数のスリット状指標Sを所定方向から
投影し、このスリットの変形状態から眼底の立体計測を
行う装置が提案されている。
[Prior Art] Conventionally, a plurality of slit-shaped indicators having a length in a direction perpendicular to the eccentric direction of the opening as shown in FIG. An apparatus has been proposed that projects S from a predetermined direction and performs three-dimensional measurement of the fundus from the deformed state of the slit.

[発明が解決しようとする課題] しかしながら、この従来の方法によると一定の方向つま
りスリット状指標Sに垂直な方向に存在する対象物に対
しては計測することが不可能である。即ち、第5図に示
すように乳頭部りから延びる血管A、Bの内、スリット
状指標Sにほぼ垂直な血管Aは賓ずれとして計測される
が、スリット状指標Sにほぼ平行な血管Bにおいてはス
リット状指標Sに掛からない限り横ずれの計測が不可能
である。
[Problems to be Solved by the Invention] However, according to this conventional method, it is impossible to measure an object that exists in a certain direction, that is, in a direction perpendicular to the slit-shaped index S. That is, as shown in FIG. 5, among the blood vessels A and B extending from the papilla, blood vessel A that is almost perpendicular to the slit-like mark S is measured as a deviation, but blood vessel B that is almost parallel to the slit-like mark S is measured as a deviation. In this case, it is impossible to measure the lateral shift unless it is applied to the slit-like index S.

本発明の目的は、上述の欠点を解消し、眼底における血
管等の形状、大きさによらずに深さ情報が得られる眼科
用立体計測装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide an ophthalmological stereoscopic measurement device that can obtain depth information regardless of the shape and size of blood vessels in the fundus.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係る眼科用立体
計測装置においては、被検眼の眼底を撮影する撮影光学
系と、被検眼の眼底にスリット状・指標を投影する指標
投影光学系と、眼底に投影された指標像を前記撮影光学
系を介して受像する受像手段と、該受像手段からの画像
情報を取り込み凹凸を算出する演算手段とを有する眼科
装置であって、前記指標投影系は被検眼の瞳孔と光学的
に略共役な位置にあって、瞳孔の中心に関して偏心して
設けた開口部を有するマスク手段と、該開口部の偏心方
向と垂直方向に長さを有する前記スリット状指標を設け
た指標板を略瞳孔中心に回転させる回転手段とを備えた
ことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the ophthalmological stereoscopic measurement device according to the present invention includes a photographing optical system for photographing the fundus of the eye to be examined, and a slit-like structure in the fundus of the eye to be examined. An ophthalmology clinic comprising an index projection optical system for projecting an index, an image receiving means for receiving an index image projected onto the fundus of the eye via the photographing optical system, and a calculation means for taking in image information from the image receiving means and calculating unevenness. The target projection system is located at a position optically substantially conjugate with the pupil of the eye to be examined, and includes a mask means having an aperture eccentrically provided with respect to the center of the pupil, and a mask means perpendicular to the eccentric direction of the aperture. The present invention is characterized by comprising a rotating means for rotating an index plate provided with the slit-shaped index having a length in the direction approximately about the center of the pupil.

[作用] 上記の構成を有する眼科用立体計測装置は、被検眼の眼
底に投影するスリット状指標を眼底上で回転させること
により、その方向や大きさに関係なく対象物の位置が検
知できる。
[Operation] The ophthalmological stereoscopic measurement device having the above configuration can detect the position of an object regardless of its direction or size by rotating the slit-shaped index projected onto the fundus of the eye to be examined on the fundus.

[実施例] 本発明を第1図〜第3図に図示の実施例に基づいて詳綱
に説明する。
[Example] The present invention will be explained in detail based on the example illustrated in FIGS. 1 to 3.

第1図は本発明の構成図であり、1は光源であって、光
源1から出射される光束に沿って、コンデンサレンズ2
.指標投影光学系3、リレーレンズ4、穴あきミラー5
が配置され、光束は穴あきミラー5により左方に反射さ
れ、対物レンズ6を介して被検眼Eに入射するようにな
っている。
FIG. 1 is a block diagram of the present invention, in which 1 is a light source, and along the light flux emitted from the light source 1, a condenser lens 2
.. Index projection optical system 3, relay lens 4, perforated mirror 5
is arranged, and the light beam is reflected to the left by the perforated mirror 5 and enters the eye E through the objective lens 6.

指標投影光学系3は光軸方向に開口絞り板3a。The target projection optical system 3 includes an aperture stop plate 3a in the optical axis direction.

リレーレンズ3b、スリット状指標板3Cから構成され
、第2図に示すような配置で光軸が一致する指標投影光
−学系を形成しており、光軸を中心にして一体的に回転
できるようになっている。被検眼Eからの反射光は右行
して、対物レンズ6、穴あきミラー5を通過するように
され、穴あきミラー5の後方にはフォーカシングレンズ
7、撮影レンズ8、二次元COD等の受像手段9が配列
されている。また、受像手段9の出力はイメージプロセ
ッサlOにt1i統され、このイメージプロセッサ10
はテレビモニタ11、トリガ信号発生器12に接続され
ている。
It is composed of a relay lens 3b and a slit-shaped index plate 3C, forming an index projection optical system whose optical axes coincide with each other in the arrangement shown in FIG. 2, and which can rotate integrally around the optical axis. It looks like this. The reflected light from the subject's eye E travels to the right and passes through an objective lens 6 and a perforated mirror 5, and behind the perforated mirror 5 there is a focusing lens 7, a photographing lens 8, an image receiving device such as a two-dimensional COD, etc. Means 9 are arranged. Further, the output of the image receiving means 9 is integrated t1i to the image processor IO, and this image processor 10
is connected to a television monitor 11 and a trigger signal generator 12.

光源lからの光束はコンデンサレンズ2を経て、光軸か
ら偏位して配置された開口Pを有する′開口絞り板3a
に至る。この開口Pを通過した光はリレーレンズ3b、
開口Pの偏位方向に垂直な方向に長さ゛を持つスリット
状指標Sを有するスリット状指標板3cに到達する。ス
リット状指標Sを通過した光はリレーレンズ4を経て孔
あきミラー5に至るが、穴あきミラー5で反射された光
は対物レンズ6を経て被検眼Eの角膜Ecに至り、瞳孔
Epを経て眼底Efに到達し、スリット状指標像を形成
する。一方、眼底Ef上のスリット状指標像による反射
光は被検眼Eを出射した後に再び対物レンズ6を通り、
−旦空中像F′を形成して穴あきミラー5の孔部を通過
し、フォーカシングレンズ7、撮影レンズ8により受像
手段9に到達する。受像手段9で受像された画像はイメ
ージプロセッサ10に入力され1画像処理、計測された
後にテレビモニタ11に表示される。
The light beam from the light source 1 passes through the condenser lens 2, and then passes through the aperture diaphragm plate 3a, which has an aperture P deviated from the optical axis.
leading to. The light passing through this aperture P passes through the relay lens 3b,
A slit-shaped indicator plate 3c having a slit-shaped indicator S having a length '' in a direction perpendicular to the direction of deviation of the aperture P is reached. The light that has passed through the slit-like index S passes through the relay lens 4 and reaches the perforated mirror 5, but the light reflected by the perforated mirror 5 passes through the objective lens 6, reaches the cornea Ec of the eye E, and passes through the pupil Ep. It reaches the fundus Ef and forms a slit-like index image. On the other hand, the reflected light from the slit-shaped index image on the fundus Ef passes through the objective lens 6 again after exiting the eye E to be examined.
- Once the aerial image F' is formed, it passes through the hole of the perforated mirror 5 and reaches the image receiving means 9 through the focusing lens 7 and photographing lens 8. The image received by the image receiving means 9 is input to an image processor 10, subjected to one-image processing and measurement, and then displayed on a television monitor 11.

第3図は眼底Ef、特に乳頭部りを含む眼底Ef上にス
リット状指標Sが投影された状態を示し、成る時刻にお
けるスリット状指標像はSoのようであり、乳頭部りの
凹みに応じてスリット状指標像S”が弯曲するので、そ
の弯曲変位量をイメージプロセッサ10により計測演算
することにより。
Fig. 3 shows a state in which a slit-like index S is projected onto the fundus Ef, especially the fundus Ef including the papilla. Since the slit-shaped index image S'' is curved, the image processor 10 measures and calculates the amount of the curved displacement.

このスリット状指標像S上における凹みの深さを知るこ
とができる0次に、所定量だけ指標投影光学系3を回転
した際のスリット像はS′″のようになり、このときの
このスリット像S′″上での凹み量は前記と同様の手段
により計測できる。更に。
The depth of the concavity on this slit-shaped index image S can be known. Next, when the index projection optical system 3 is rotated by a predetermined amount, the slit image becomes S'''; The amount of depression on the image S'' can be measured by the same means as described above. Furthermore.

次の回転を与えた場合も同様で、結局は経線方向での計
測が可能となる。
The same goes for the case of applying the next rotation, and eventually measurement in the meridian direction becomes possible.

なお、上記の具体的構成としては、イメージプロセッサ
10からの信号によってトリガ信号発生器12からトリ
ガ信号が発せられ、図示しないバルスモータを駆動して
指標投影光学系3を回転させ、更にこの状態での画像が
受像手段9を介してイメージプロセッサ10に取り込ま
れる。なお、各回転に応じた画像はイメージプロセッサ
10に収められているフレームメモリ等に取り込んでお
き、取り込み画像相互間での情報の補間を含めて後にま
とめて処理することも考えられる。
In the above-mentioned specific configuration, a trigger signal is generated from the trigger signal generator 12 in response to a signal from the image processor 10, and a pulse motor (not shown) is driven to rotate the target projection optical system 3. An image is taken into an image processor 10 via an image receiving means 9. Note that it is also possible to capture images corresponding to each rotation into a frame memory or the like stored in the image processor 10, and to process them together later, including interpolation of information between the captured images.

[発明の効果] 以上説明したように本発明に係る眼科用立体計測装置は
、眼底上を略連続的に走査できると共に平均化によるノ
イズ補正も可能で、眼底上の対象物の形状や大きさに関
係なく、その深さ位置を正確に計測できるという利点が
ある。
[Effects of the Invention] As explained above, the ophthalmological stereoscopic measurement device according to the present invention can scan the fundus almost continuously, and can also perform noise correction by averaging, and can detect the shape and size of the object on the fundus. The advantage is that the depth position can be accurately measured regardless of the depth.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図〜第3図は本発明に係る眼科用立体計測装置
の一実施例を示し、第1図は構成図、第2図は指標投影
光学系の説町図、第3図は眼底上のスリット状指標の説
明図であり、第4図は従来のスリット状指標の配置図、
第5図は従来の手法による眼底上のスリット状指標像の
説明図である。 符号lは光源、2はコンデンサレンズ、3は指標投影光
学系、3aは開口絞り板、3bはリレーレンズ、3Cは
指標板、4はリレーレンズ、5は穴あきミラー、6は対
物レンズ、7はフォーカシングレンズ、8は撮影レンズ
、9は受像手段、10はイメージプロセッサ、11はテ
レビモニタ、12はトリガ信号発生器である。 特許出願人   キャノン株式会社 第3図 り 第4図 15m
Drawings 1 to 3 show an embodiment of the ophthalmological stereoscopic measuring device according to the present invention, in which Fig. 1 is a configuration diagram, Fig. 2 is a schematic diagram of the index projection optical system, and Fig. 3 is a fundus. It is an explanatory diagram of the above slit-shaped index, and FIG. 4 is a layout diagram of the conventional slit-shaped index,
FIG. 5 is an explanatory diagram of a slit-shaped index image on the fundus according to a conventional method. Symbol l is a light source, 2 is a condenser lens, 3 is an index projection optical system, 3a is an aperture stop plate, 3b is a relay lens, 3C is an index plate, 4 is a relay lens, 5 is a perforated mirror, 6 is an objective lens, 7 8 is a focusing lens, 8 is a photographic lens, 9 is an image receiving means, 10 is an image processor, 11 is a television monitor, and 12 is a trigger signal generator. Patent applicant Canon Co., Ltd. Figure 3 Figure 4 15m

Claims (1)

【特許請求の範囲】[Claims] 1、被検眼の眼底を撮影する撮影光学系と、被検眼の眼
底にスリット状指標を投影する指標投影光学系と、眼底
に投影された指標像を前記撮影光学系を介して受像する
受像手段と、該受像手段からの画像情報を取り込み凹凸
を算出する演算手段とを有する眼科装置であって、前記
指標投影系は被検眼の瞳孔と光学的に略共役な位置にあ
って、瞳孔の中心に関して偏心して設けた開口部を有す
るマスク手段と、該開口部の偏心方向と垂直方向に長さ
を有する前記スリット状指標を設けた指標板を略瞳孔中
心に回転させる回転手段とを備えたことを特徴とする眼
科用立体計測装置。
1. A photographing optical system for photographing the fundus of the eye to be examined, an index projection optical system for projecting a slit-shaped index onto the fundus of the eye to be examined, and an image receiving means for receiving the index image projected onto the fundus through the photographing optical system. and a calculation means for taking in image information from the image receiving means and calculating unevenness, wherein the index projection system is located at a position substantially optically conjugate with the pupil of the eye to be examined, and is located at the center of the pupil. mask means having an opening eccentrically provided with respect to the opening, and rotation means for rotating an index plate provided with the slit-shaped index having a length in a direction perpendicular to the eccentric direction of the opening approximately around the center of the pupil. An ophthalmological stereoscopic measurement device featuring:
JP1090968A 1989-04-10 1989-04-10 Ophthalmic stereoscopic measuring apparatus Pending JPH02268735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090968A JPH02268735A (en) 1989-04-10 1989-04-10 Ophthalmic stereoscopic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090968A JPH02268735A (en) 1989-04-10 1989-04-10 Ophthalmic stereoscopic measuring apparatus

Publications (1)

Publication Number Publication Date
JPH02268735A true JPH02268735A (en) 1990-11-02

Family

ID=14013299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090968A Pending JPH02268735A (en) 1989-04-10 1989-04-10 Ophthalmic stereoscopic measuring apparatus

Country Status (1)

Country Link
JP (1) JPH02268735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287937A (en) * 1999-04-08 2000-10-17 Konan Inc Eyegrounds photographing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287937A (en) * 1999-04-08 2000-10-17 Konan Inc Eyegrounds photographing device

Similar Documents

Publication Publication Date Title
JP3709335B2 (en) Ophthalmic equipment
US5889576A (en) Ophthalmic apparatus
JP4492847B2 (en) Eye refractive power measuring device
JP3647164B2 (en) Ophthalmic measuring device
JP3283339B2 (en) Ophthalmic equipment
US6206523B1 (en) Eye refractive power measurement apparatus
US7219999B2 (en) Device for measuring optical characteristic of eye
JP2001231752A (en) Ophthalmometer
JP2004236689A (en) Ophthalmologic device
US6607272B1 (en) Retinal blood flow measuring apparatus using a laser beam
JP4551283B2 (en) Ophthalmic equipment
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JPH0440935A (en) Ophthalmic refracting power measuring instrument
JPH02268735A (en) Ophthalmic stereoscopic measuring apparatus
JP4136691B2 (en) Ophthalmic equipment
JPH0975308A (en) Corneal endothelial cell photographing device
JP2945092B2 (en) Eye refractometer
JPH11235316A (en) Optometrical device
JPH09108185A (en) Ophthalmological device
JP3056800B2 (en) Ophthalmic equipment
JPH1132994A (en) Ophthalmic device
JPH01242029A (en) Positioning apparatus of ophthalmic machines
JPH03267039A (en) Eye refractometer
JP2000296109A (en) Optometer
JP2004236688A (en) Ophthalmologic device