JPH0226828A - Production of titanium tetrachloride - Google Patents

Production of titanium tetrachloride

Info

Publication number
JPH0226828A
JPH0226828A JP17772988A JP17772988A JPH0226828A JP H0226828 A JPH0226828 A JP H0226828A JP 17772988 A JP17772988 A JP 17772988A JP 17772988 A JP17772988 A JP 17772988A JP H0226828 A JPH0226828 A JP H0226828A
Authority
JP
Japan
Prior art keywords
furnace
conductive
particles
fluidized bed
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17772988A
Other languages
Japanese (ja)
Inventor
Tadashi Ogasawara
忠司 小笠原
Kenji Fujita
健治 藤田
Yoshitake Natsume
義丈 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP17772988A priority Critical patent/JPH0226828A/en
Publication of JPH0226828A publication Critical patent/JPH0226828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To discharge only undesirable, non-conductive and difficultly reactable substance at high efficiency in the chlorination of raw material contg. Ti and to prevent the accumulation thereof by re-charging only conductive particles separated from fluidized particles drawn out from a fluid chlorination furnace by electrostatic concentration. CONSTITUTION:The raw material contg. Ti such as synthetic rutile and coke are charged in the fluid chlorination furnace 1 lined the inside surface thereof with refractory 2. A fluidized bed 3 is formed by introducing Cl2 gas from the underpart of the furnace 1 and TiCl4 gas is discharged form the upper part of the furnace 1. On the other hand, a part of particles forming the fluidized bed 3 is discharged outside of the furnace, sent to an electrostatic concentrator 5 after cooling 4 to 90-250 deg.C to separate into conductive particles and non-conductive ones. Then, the conductive particles are re-charged to the furnace 1 together with the raw material contg. Ti and coke. In the electrostatic concentration, the voltage between both electrodes is preferably 5-50kV. According to the method above-mentioned, the accumulation in the furnace of non-conductive substance, difficultly reactable substance, is prevented and the occupancy rate of the conductive substance, reactable substance, in the furnace, is increased, and thereby, the reactivity in the chlorination above-mentioned can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチタン含有鉱石、合成ルチル等のチタン含有原
料を塩素化して四塩化チタンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing titanium tetrachloride by chlorinating titanium-containing raw materials such as titanium-containing ores and synthetic rutile.

〔従来の技術〕[Conventional technology]

金属チタンの製造原料である四塩化チタンは、チタン含
有鉱石、合成ルチル等のチタン含有原料を塩素化するこ
とにより製造される。この場合、通常は金属性円筒容器
の内側を耐火物でライニングした塩化炉内で、チタン含
有原料と石油コークスとを塩素ガスにより950〜10
70℃の温度で流動化させることが行われる。炉内で粒
子が流動化する層は流動層、流動層における反応は流動
反応と呼ばれている。
Titanium tetrachloride, which is a raw material for producing titanium metal, is produced by chlorinating titanium-containing raw materials such as titanium-containing ores and synthetic rutile. In this case, the titanium-containing raw material and petroleum coke are heated to 950 to 1000
Fluidization is carried out at a temperature of 70°C. The bed in which particles are fluidized in the furnace is called a fluidized bed, and the reaction in the fluidized bed is called a fluidized reaction.

このような四塩化チタン製造方法において流動反応を継
続していくと、原料中やライニング材の侵食された部分
に含まれる物質のなかの相対的に反応速度の遅い物質、
すなわち950〜1070″Cの温度域でT i O!
 、Cより反応速度の遅いSiO□、Zrot 、An
!i 0s等の物質(以下これらを難反応性物質と呼ぶ
)が、徐々に流動層内に蓄積し、多いときにはこれらの
難反応性物質が流動層重量の50%を超えることもある
When the flow reaction continues in such a titanium tetrachloride production method, substances with relatively slow reaction rates among the substances contained in the raw materials and the eroded parts of the lining material,
That is, T i O! in the temperature range of 950 to 1070″C!
, SiO□, Zrot, An, which has a slower reaction rate than C
! Substances such as i 0s (hereinafter referred to as refractory substances) gradually accumulate in the fluidized bed, and in some cases these refractory substances may exceed 50% of the weight of the fluidized bed.

流動層において難反応性物質が増加すると、反応速度が
速いT i Ox 、 C(以下これらを反応性物質と
呼ぶ)の濃度が相対的に低くなり、反応性を悪化させる
When the amount of poorly reactive substances increases in the fluidized bed, the concentration of T i Ox and C (hereinafter referred to as reactive substances), which have a high reaction rate, becomes relatively low, which worsens the reactivity.

この対策としては、反応温度の上昇と流動層高の増大と
が知られている。反応温度を高くすると、難反応性物質
の反応が促進され、難反応物質の蓄積が抑制される。流
動層の高さを増大させたときには、流動層において難反
応物質の占める比率が相対的に低下し、反応性悪化が抑
えられる。しかるに、これらの対策は難反応性物質の蓄
積による反応性悪化を抑える一方で、次のような弊害を
生じる。
As countermeasures against this problem, raising the reaction temperature and increasing the height of the fluidized bed are known. Increasing the reaction temperature promotes the reaction of poorly reacting substances and suppresses the accumulation of difficultly reacting substances. When the height of the fluidized bed is increased, the proportion of poorly reacting substances in the fluidized bed is relatively reduced, and deterioration of reactivity is suppressed. However, while these measures suppress the deterioration of reactivity due to the accumulation of refractory substances, they cause the following disadvantages.

〔発明が解決しようとする課題] 反応温度を高くしようとしてコークスを燃焼させると、
コークスが消費され、更に炭酸ガスの平衡がCOに偏る
ため、コークスの消費量が増加し、四塩化チタンの製造
コストを増加させる。又、塩化炉のライニング材の侵食
も増大する。流動層高さを上げた場合は流動層高さの上
がった分が新しいライニング材に接することになり、そ
の部分が余計に侵食され新たな難反応性′!yJ質を流
動層に供給する。さらに時間の経過とともに原料中の難
反応性物質が同しように蓄積してしまう。したがって、
期待するほどの効果は得られない。
[Problem to be solved by the invention] When coke is burned in an attempt to raise the reaction temperature,
Since coke is consumed and the balance of carbon dioxide gas is biased towards CO, the amount of coke consumed increases and the production cost of titanium tetrachloride increases. Also, the erosion of the lining material of the chlorination furnace increases. When the height of the fluidized bed is increased, the increased height of the fluidized bed comes into contact with the new lining material, which causes additional erosion and new reactivity! yJ quality is fed into the fluidized bed. Furthermore, with the passage of time, refractory substances in the raw materials accumulate in the same way. therefore,
You won't get the desired effect.

流動層において難反応性物質が十分に制限されないと、
流動層に含まれる原料量が少なくなるので、塩化炉操業
の余裕時間が不足し、運転者は厳密な操業管理を強いら
れるといった問題も生じる。また、操業の経過にともな
って難反応性物質も徐々には反応するが、通常の操業温
度では反応速度はきわめて遅い。
If refractory substances are not sufficiently restricted in the fluidized bed,
Since the amount of raw material contained in the fluidized bed decreases, there is a problem that there is not enough spare time for operating the chlorination furnace, and the operator is forced to strictly manage the operation. In addition, as the operation progresses, the refractory substances gradually react, but the reaction rate is extremely slow at normal operating temperatures.

本発明は斯かる状況に鑑み、コークスの消費量や流動層
高を増大させることなく、難反応性物質の蓄積を抑える
四塩化チタン製造方法を提供することを目的とする。
In view of this situation, the present invention aims to provide a method for producing titanium tetrachloride that suppresses the accumulation of refractory substances without increasing coke consumption or fluidized bed height.

〔課題を解決するための手段] 流動反応による四塩化チタンの製造において、流動層に
蓄積される難反応性物質と反応性物質とを分離できれば
、流動層から難反応性物質のみを除去でき、その蓄積を
防ぐことが可能となる。本発明者らは、難反応性物質が
おしなべて非導電性であり、導電性である反応性物質と
は電気導電性の上で明確に区別できることから、流動層
を形成する粒子を静電選鉱により導電性のものと非導電
性のものとに分離すれば、非導電性の難反応物質のみが
高効率で排出でき、その蓄積が防止できることを知見し
た。
[Means for solving the problem] In the production of titanium tetrachloride by fluidized reaction, if it is possible to separate the poorly reactive substances and reactive substances accumulated in the fluidized bed, only the hardly reactive substances can be removed from the fluidized bed, It becomes possible to prevent the accumulation. The present inventors used electrostatic beneficiation to collect particles that form a fluidized bed, since refractory substances are generally non-conductive and can be clearly distinguished from conductive reactive substances based on their electrical conductivity. It has been found that by separating conductive and non-conductive substances, only non-conductive and difficult-to-react substances can be discharged with high efficiency and their accumulation can be prevented.

本発明の方法は斯かる知見に基づき開発されたもので、
流動塩化炉内でチタン含有原料を塩素化して四塩化チタ
ンを製造する方法において、流動塩化炉内の流動層を形
成する粒子を炉外に抜き出し、抜き出した粒子を静電選
鉱して導電性のものと非導電性のものとに分離し、非導
電性の粒子を除外する一方で導電性の粒子を炉内に再投
入することにより、難反応性物質の炉内蓄積を防止する
ものである。
The method of the present invention was developed based on such knowledge,
In the method of manufacturing titanium tetrachloride by chlorinating titanium-containing raw materials in a fluidized chlorination furnace, the particles that form the fluidized bed in the fluidized chlorination furnace are extracted outside the furnace, and the extracted particles are electrostatically beneficent to form a conductive material. This method prevents the accumulation of refractory substances in the furnace by separating the particles from non-conductive particles and excluding the non-conductive particles while reinjecting the conductive particles into the furnace. .

〔作  用〕[For production]

静電選鉱とは、従来はある物質が静電場に入る前に、あ
るいは入る際に表面電荷をあたえられた場合、その電荷
の符号によっである電極には反発し、他の電極には吸引
されるという現象を利用したものであったが、最近では
表面電荷のみではなく粒子の電気伝導度の差により同様
の現象が起こることを利用して鉱石を選鉱することも可
能になっている。
Electrostatic beneficiation is the conventional method that when a substance is given a surface charge before or when it enters an electrostatic field, it will be repelled to certain electrodes and attracted to other electrodes depending on the sign of the charge. However, recently it has become possible to sort ores by taking advantage of the fact that a similar phenomenon occurs not only due to surface charge but also due to differences in the electrical conductivity of particles.

流動塩化炉内の流動層を形成する粒子に対し、このよう
な静電選鉱を施し、導電性のものと非導電性のものに分
離し、導電性のものを炉内に再投入することにより難反
応性物質のみが抽出され、難反応性物質の炉内蓄積が防
止される。
By applying electrostatic beneficiation to the particles that form the fluidized bed in the fluidized chlorination furnace, separating them into conductive and non-conductive particles, and reinjecting the conductive particles into the furnace. Only non-reactive substances are extracted, and accumulation of non-reactive substances in the furnace is prevented.

[実施例] 第1図は本発明の方法の具体的手順を示すフロー図であ
る。
[Example] FIG. 1 is a flow diagram showing specific steps of the method of the present invention.

流動塩化炉lは内面が耐火物2でライニングされている
。塩化炉l内には合成ルチル等のチタン含有原料とコー
クスとが装填される。この状態で炉上方より塩素ガスを
注入することにより流動層3が形成され、四塩化チタン
ガスが炉上方より取り出される。
The inner surface of the fluidized chlorination furnace 1 is lined with a refractory 2. A titanium-containing raw material such as synthetic rutile and coke are charged into the chlorination furnace 1. In this state, a fluidized bed 3 is formed by injecting chlorine gas from above the furnace, and titanium tetrachloride gas is taken out from above the furnace.

一方、流動層3を形成する粒子は一部が炉外に抜き出さ
れて熱交換器4に送られ、冷却された後、導出管6を通
して静電選鉱機5に送られ、導電性のものと非導電性の
ものとに分離される。導出管6には抜き出し粒子に伴な
われた炉内ガスのみを炉内に戻すためごく少量のN2あ
るいはArガスを流す。
On the other hand, some of the particles forming the fluidized bed 3 are extracted outside the furnace, sent to the heat exchanger 4, cooled, and then sent to the electrostatic separator 5 through the outlet pipe 6. and non-conductive. A very small amount of N2 or Ar gas is passed through the outlet pipe 6 in order to return only the furnace gas accompanying the extracted particles into the furnace.

静電選鉱を行う前に冷却を行うのは、炉内の粒子温度が
約1000°Cであり、選鉱装置に特別な耐熱構造をし
なければならないためである。冷却温度は250 ”C
超では耐熱構造が必要であり、90°C未満ではごくわ
ずか残留した塩化物が粒子表面に付着し、それらが空気
中の水分を吸着してどの粒子も導電性となり分離効率が
低下するので、90〜250°Cの範囲が好ましい。
The reason why cooling is performed before performing electrostatic beneficiation is because the particle temperature in the furnace is about 1000°C, and the ore beneficiation equipment must have a special heat-resistant structure. Cooling temperature is 250”C
At temperatures above 90°C, a heat-resistant structure is required, and at temperatures below 90°C, a very small amount of residual chloride will adhere to the particle surface, which will adsorb moisture in the air, making all particles conductive and reducing separation efficiency. A range of 90 to 250°C is preferred.

静電選鉱においては、電極間電圧は5〜50kvとする
のが好ましい。5kv未満では分離効率が悪化し、50
kvでは装置が大きくなり高価となる。
In electrostatic beneficiation, the interelectrode voltage is preferably 5 to 50 kV. If it is less than 5 kV, the separation efficiency will deteriorate and the
kv requires a large and expensive device.

静電選鉱を施された粒子のうち導電性のものは流動塩化
炉lにチタン含有原料およびコークスとともに再投入さ
れる。非導電性のものはそのまま廃棄するか、もしくは
1または複数回の再静電選鉱を経て廃棄する。再静電選
鉱は導電性粒子と非導電性粒子との分離効率を高め、非
導電性粒子とともに廃棄される導電性粒子の量を少なく
する。再静電選鉱には1回目の静電選鉱に使用する選鉱
機を使用してもよいし、別の選鉱機を使用してもよい。
Among the particles subjected to electrostatic beneficiation, conductive particles are reinjected into the fluidized chlorination furnace 1 together with the titanium-containing raw material and coke. Non-conductive materials are either discarded as is or are discarded after undergoing one or more re-electrostatic beneficiations. Re-electrostatic beneficiation increases the separation efficiency of conductive and non-conductive particles and reduces the amount of conductive particles that are discarded along with the non-conductive particles. For re-electrostatic ore separation, the ore concentrator used for the first electrostatic ore separation may be used, or a different ore separator may be used.

次に実施結果の説明を行う。いずれの実施結果において
も、四塩化チタンの製造は金属製円筒容器内を耐火物で
ライニングした塩素他炉において、チタン含有鉱石と石
油コークスを1000 ’Cにて下部からの塩素ガスで
流動化させながら行なわれた。
Next, we will explain the implementation results. In both implementation results, titanium tetrachloride was produced by fluidizing titanium-containing ore and petroleum coke at 1000'C with chlorine gas from the bottom in a chlorine furnace with a metal cylindrical container lined with a refractory. It was done while

O実施結果1 塩化炉1内の流動層3から80kg/Hrの速度で粒子
を連続的に抜きとって熱交換器4に供給し、200°C
まで冷却した後、静電選鉱に供給した。静電選鉱におけ
る電極間電圧は18kVとした。その結果、粒子は72
.6%の導電性粒子と27.4%の非導電性粒子とに分
離された。各粒子の構成を第2表に示す。
O Implementation Result 1 Particles are continuously extracted from the fluidized bed 3 in the chlorination furnace 1 at a rate of 80 kg/Hr, supplied to the heat exchanger 4, and heated to 200°C.
After being cooled to 100%, it was fed to electrostatic beneficiation. The interelectrode voltage in electrostatic beneficiation was 18 kV. As a result, the particles are 72
.. It was separated into 6% conductive particles and 27.4% non-conductive particles. The composition of each particle is shown in Table 2.

第   2   表 導電性粒子はその大部分が反応性物質(TiO□、C)
である。非導電性粒子はその3/4が難反応性物質(S
 iOZ 、Al−t 03 、Zr0z等)である。
Table 2 Most of the conductive particles are reactive substances (TiO□, C)
It is. 3/4 of the non-conductive particles are made up of poorly reactive substances (S
iOZ, Al-t03, Zr0z, etc.).

導電性粒子を塩化炉lに再投入し、非導電性粒子を廃棄
することにより、反応温度や流動層高を必要以上に上昇
させなくても難反応性物質が炉内に蓄積されるのが防止
される。
By reintroducing conductive particles into the chlorination furnace and discarding non-conductive particles, it is possible to prevent the accumulation of refractory substances in the furnace without raising the reaction temperature or fluidized bed height more than necessary. Prevented.

流動量において難反応性物質が25wt%を占めた段階
で上記条件にて粒子の抜き出しおよび分離を行い、難反
応性物質の含有量を5wt%まで低下させた。これによ
り反応温度990℃のままで反応を続行できた。また、
この操業により炉ライニング材の侵食も抑制され、炉寿
命を約1.5倍に延長することができた。
At the stage when the hardly reactive substance accounted for 25 wt% in the flow rate, particles were extracted and separated under the above conditions to reduce the content of the hardly reactive substance to 5 wt%. This allowed the reaction to continue at the same reaction temperature of 990°C. Also,
This operation also suppressed erosion of the furnace lining material and extended the furnace life by about 1.5 times.

O実施結果2 熱交換器4で粒子を室温まで冷却する以外は、実施結果
1と同じ条件で操業を行った。導電性粒子と非導電性粒
子との分離効率および各粒子の構成は、第3表に示され
るように実施結果1とほとんど変わらなかった。しかし
、通常は粒子を室温まで冷却すると、粒子表面に塩化物
が付着し、表面導電性が変化して分離効率を低下させる
ことが懸念されるので、冷却温度は90°C以上とする
のがよい。
O Result 2 The operation was carried out under the same conditions as Result 1 except that the particles were cooled to room temperature in the heat exchanger 4. The separation efficiency between conductive particles and non-conductive particles and the composition of each particle were almost the same as in Example Results 1, as shown in Table 3. However, if the particles are cooled to room temperature, there is a concern that chlorides will adhere to the particle surface, changing the surface conductivity and reducing the separation efficiency, so it is recommended that the cooling temperature be 90°C or higher. good.

第   3   表 O実施結果3 実施結果1で分離抽出された非導電性粒子に対して再度
静電選鉱を施した。電極間電圧は20kv、静電選鉱機
における粒子フィード速度は120kg/Hrとした。
Table 3 O Implementation Results 3 The non-conductive particles separated and extracted in Implementation Results 1 were subjected to electrostatic beneficiation again. The interelectrode voltage was 20 kV, and the particle feed rate in the electrostatic separator was 120 kg/Hr.

結果は、第4表に示されるように、非導電性粒子が19
.3%の導電性粒子と80.7%の非導電性粒子とに分
離された。これより、複数回の静電選鉱により非導電性
粒子中の難反応性物質濃度が一層高まり、非導電性粒子
とともに廃棄される反応性物質の量が減少する。
As shown in Table 4, the results show that the non-conductive particles were 19
.. It was separated into 3% conductive particles and 80.7% non-conductive particles. As a result, the concentration of the hardly reactive substance in the non-conductive particles is further increased by electrostatic beneficiation multiple times, and the amount of the reactive substance discarded together with the non-conductive particles is reduced.

第 表 要がないので、不必要にコークスを消費させることがな
く、また流動層高を高める必要がないのでラインニング
材の侵食も抑制され、これらの両面からも経済性を向上
させることが可能となる。
Since there is no need for a table, coke is not consumed unnecessarily, and since there is no need to increase the height of the fluidized bed, erosion of the lining material is suppressed, making it possible to improve economic efficiency from both of these aspects. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の代表的手順を示すフロー図であ
る。 図中、1:流動塩化炉、3:流動層、5:静電選鉱機。 [発明の効果]
FIG. 1 is a flow diagram illustrating typical steps of the method of the present invention. In the figure, 1: fluidized chlorination furnace, 3: fluidized bed, 5: electrostatic separator. [Effect of the invention]

Claims (1)

【特許請求の範囲】[Claims] 1、流動塩化炉内でチタン含有原料を塩素化して四塩化
チタンを製造する方法において、流動塩化炉内の流動層
を形成する粒子を炉外に抜き出し、抜き出した粒子を静
電選鉱して導電性のものと非導電性のものとに分離し、
非導電性の粒子を除外する一方で導電性の粒子を炉内に
再投入することにより、難反応性物質の炉内蓄積を防止
することを特徴とする四塩化チタン製造方法。
1. In a method for producing titanium tetrachloride by chlorinating titanium-containing raw materials in a fluidized chlorination furnace, the particles that form the fluidized bed in the fluidized chlorination furnace are extracted outside the furnace, and the extracted particles are electrostatically sorted to make them conductive. separated into conductive and non-conductive,
A method for producing titanium tetrachloride, characterized in that accumulation of refractory substances in the furnace is prevented by excluding non-conductive particles while reinjecting conductive particles into the furnace.
JP17772988A 1988-07-15 1988-07-15 Production of titanium tetrachloride Pending JPH0226828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17772988A JPH0226828A (en) 1988-07-15 1988-07-15 Production of titanium tetrachloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17772988A JPH0226828A (en) 1988-07-15 1988-07-15 Production of titanium tetrachloride

Publications (1)

Publication Number Publication Date
JPH0226828A true JPH0226828A (en) 1990-01-29

Family

ID=16036096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17772988A Pending JPH0226828A (en) 1988-07-15 1988-07-15 Production of titanium tetrachloride

Country Status (1)

Country Link
JP (1) JPH0226828A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058270A (en) * 2012-12-26 2013-04-24 攀钢集团攀枝花钢铁研究院有限公司 Control system and control method for low temperature fluidizing chlorination furnace
WO2014136890A1 (en) * 2013-03-06 2014-09-12 東邦チタニウム株式会社 Method for treating titanium-containing feedstock
JP2015140268A (en) * 2014-01-27 2015-08-03 株式会社大阪チタニウムテクノロジーズ Titanium tetrachloride production method
US9944536B2 (en) 2013-03-06 2018-04-17 Toho Titanium Co., Ltd. Titanium-tetrachloride manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058270A (en) * 2012-12-26 2013-04-24 攀钢集团攀枝花钢铁研究院有限公司 Control system and control method for low temperature fluidizing chlorination furnace
WO2014136890A1 (en) * 2013-03-06 2014-09-12 東邦チタニウム株式会社 Method for treating titanium-containing feedstock
CN104619647A (en) * 2013-03-06 2015-05-13 东邦钛株式会社 Method for treating titanium-containing feedstock
JPWO2014136890A1 (en) * 2013-03-06 2017-02-16 東邦チタニウム株式会社 Method for processing titanium-containing raw materials
US9656879B2 (en) 2013-03-06 2017-05-23 Toho Titanium Co., Ltd. Method for treating titanium-containing feedstock
US9944536B2 (en) 2013-03-06 2018-04-17 Toho Titanium Co., Ltd. Titanium-tetrachloride manufacturing method
RU2660029C2 (en) * 2013-03-06 2018-07-04 Тохо Титаниум Ко., Лтд. Method for treating titanium-containing feedstock
JP2015140268A (en) * 2014-01-27 2015-08-03 株式会社大阪チタニウムテクノロジーズ Titanium tetrachloride production method

Similar Documents

Publication Publication Date Title
US2701179A (en) Metal halide production
US4349367A (en) Method of recovering waste heat from furnace flue gases using a granular heat exchange means
US5785733A (en) Fluidized bed type reduction apparatus for iron ore particles and method for reducing iron ore particles using the apparatus
CN1057131C (en) Fluidized bed treatment of EAF dust
CN113929134A (en) Recycling method of fine-fraction titanium-rich material
JPH0226828A (en) Production of titanium tetrachloride
RU2278167C2 (en) Method for production of iron metal
US3890138A (en) Reduction of iron-containing ores
US3853536A (en) Process for the production of iron-containing titaniferous particles
US2928724A (en) Method for producing titanium tetrachloride
US2456935A (en) Refining of volatilizable metals
JP6211940B2 (en) Titanium tetrachloride production method
US1422135A (en) Method of manufacturing calcium carbide
US2855287A (en) Fluid bed roasting method for separating and recovering cd-pb-zn components
US20100263484A1 (en) Smelting furnace
KR102231653B1 (en) Charging apparatus charging material for blast furnace and charging method of the same
AU1211697A (en) 2-stage fluidized bed furnace for pre-reducing fine iron ore and method for pre-reducing fine iron ore using the furnace
US2985507A (en) Method of purifying metal halides
US2842425A (en) Use of slag for agglomeration of rutile for shaft furnace chlorination
JPS63140006A (en) Method for charging raw material into blast furnace
US3960544A (en) Process for the production of iron-containing titaniferous particles
CN1075201A (en) Circulating fluidized bed furnace for pre-reduction of fine iron ore
US1929502A (en) Process of treating sulphide materials
KR940008450B1 (en) Making method and device of iron ore prereduction
US1729196A (en) Process for recovery of tin and similar functioning metals from materials containing the same