JP6211940B2 - Titanium tetrachloride production method - Google Patents

Titanium tetrachloride production method Download PDF

Info

Publication number
JP6211940B2
JP6211940B2 JP2014012563A JP2014012563A JP6211940B2 JP 6211940 B2 JP6211940 B2 JP 6211940B2 JP 2014012563 A JP2014012563 A JP 2014012563A JP 2014012563 A JP2014012563 A JP 2014012563A JP 6211940 B2 JP6211940 B2 JP 6211940B2
Authority
JP
Japan
Prior art keywords
furnace
fluidized bed
titanium tetrachloride
fine particles
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014012563A
Other languages
Japanese (ja)
Other versions
JP2015140268A (en
Inventor
浩士 稗田
浩士 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2014012563A priority Critical patent/JP6211940B2/en
Publication of JP2015140268A publication Critical patent/JP2015140268A/en
Application granted granted Critical
Publication of JP6211940B2 publication Critical patent/JP6211940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、流動塩化炉を用いた流動塩化法による四塩化チタン製造方法に関し、更に詳しくは、流動層での高沸点塩化物の蓄積による流動不良トラブルを効果的に解消できる四塩化チタン製造方法に関する。   The present invention relates to a method for producing titanium tetrachloride by a fluidized chlorination method using a fluidized chlorination furnace. More specifically, the present invention relates to a method for producing titanium tetrachloride that can effectively eliminate a flow failure problem due to accumulation of high boiling point chloride in a fluidized bed. About.

金属Tiの製造原料である四塩化チタンは、工業的には流動塩化炉を用いた流動塩化法により製造されることが多い。流動塩化炉を用いた流動塩化法による四塩化チタンの製造では、原料となるチタン鉱石(天然ルチルや合成ルチル、チタンスラグ)の粉末をコークス粉末と混合した状態で流動塩化炉内に供給すると共に、炉底から塩素ガスを吹き込み、高温下で炉内下部に原料流動層を形成する。これにより、チタン鉱石が塩素ガスにより塩素化され、四塩化チタンガスが生成されて炉頂部から導出される。   Titanium tetrachloride, which is a raw material for producing metal Ti, is often produced industrially by a fluid chlorination method using a fluid chlorination furnace. In the production of titanium tetrachloride by fluidized chlorination using a fluidized chlorination furnace, the raw material titanium ore (natural rutile, synthetic rutile, titanium slag) is mixed with coke powder and supplied into the fluidized chlorination furnace. Then, chlorine gas is blown from the bottom of the furnace, and a raw material fluidized bed is formed in the lower part of the furnace at a high temperature. As a result, the titanium ore is chlorinated with chlorine gas, and titanium tetrachloride gas is generated and led out from the top of the furnace.

チタン鉱石には不純物としてCaOやMgOなどの金属酸化物が含まれている。これらの不純物は、炉内で塩化されることによりCaClやMgClなどの塩化物を生成する。これらの塩化物は、沸点が高い高沸点塩化物であることから、炉内温度領域(1000〜1100℃)でも気体にならず、液体として存在し、流動塩化炉の運転時間が長くなるにつれて蓄積が進む。流動層中で液体として存在する高沸点塩化物は粒子同士を凝集させる作用があるため、高沸点塩化物の蓄積は粒子の流動不良を引き起こす原因になる。 Titanium ore contains metal oxides such as CaO and MgO as impurities. These impurities are chlorinated in the furnace to produce chlorides such as CaCl 2 and MgCl 2 . Since these chlorides are high-boiling chlorides having a high boiling point, they do not become a gas even in the furnace temperature range (1000 to 1100 ° C.), exist as liquids, and accumulate as the operating time of the fluidized chlorination furnace increases. Advances. Since the high boiling point chloride present as a liquid in the fluidized bed has an action of aggregating the particles, accumulation of the high boiling point chloride causes a defective flow of the particles.

そして、粒子の凝集や焼結といった流動不良トラブルに陥ると、反応性が低下するために、塩素ガスが未反応のまま系外へ排出されることがある。系外へ排出された塩素ガスは短期的には排ガス処理設備で中和処理されるが、長期間放置できる事態ではないため、長期的には流動塩化炉への塩素ガスの供給を停止し、代わりにドライエア又は酸素ガスを炉内に供給してコークスを燃焼させ、炉内温度を上昇させることにより反応性を改善する対策が講じられるが、コークスロスや塩素ガス再供給までの間が生産ロスとなることによる経済的損失は避け得ない。   And, when falling into a fluid flow trouble such as particle aggregation or sintering, the reactivity is lowered, so that chlorine gas may be discharged out of the system without being reacted. Chlorine gas discharged outside the system is neutralized in the exhaust gas treatment facility in the short term, but since it is not a situation that can be left for a long time, the supply of chlorine gas to the fluid chlorination furnace will be stopped in the long term, Instead, measures are taken to improve the reactivity by supplying dry air or oxygen gas into the furnace to burn the coke and raising the furnace temperature. Economic loss due to becoming unavoidable.

高沸点塩化物の蓄積による流動不良トラブルは、以前はチタン鉱石の品質が高く、不純物濃度が低かったために実質的な問題に至ることは少なかった。しかし、近年の世界的なチタン鉱石の需要逼迫状況に伴って鉱石価格が高騰し、従来より純度の低いチタン鉱石を使用していかざるを得なくなった。これに伴ってチタン鉱石中の不純物濃度が高くなり、その結果として高沸点塩化物の蓄積が顕著化し、流動不良トラブルによる経済的損失が問題化してきた。   Previously, poor flow problems due to the accumulation of high-boiling chlorides rarely led to substantial problems because of the high quality of titanium ore and low impurity concentration. However, with the recent tightening of global demand for titanium ore, the price of ore has soared and it has been unavoidable to use titanium ore with lower purity than before. Along with this, the concentration of impurities in the titanium ore has increased, and as a result, the accumulation of high-boiling chlorides has become prominent, and economic loss due to fluid flow trouble has become a problem.

このような高沸点塩化物の蓄積による流動不良トラブルとは別に、流動塩化炉を用いた流動塩化法による四塩化チタンの製造では、流動層中の難反応性物質の蓄積による反応性低下の問題がある。これは、流動塩化炉を長期にわたって運転し続けると、チタン鉱石中に含まれる不純物のうち、炉内温度域でも塩素ガスと反応し難い成分が、難反応性物質として流動層中に蓄積して、反応性を低下させる現象である。   Apart from such poor flow problems due to the accumulation of high-boiling chlorides, the production of titanium tetrachloride by the fluidized chlorination method using a fluidized chlorination furnace has the problem of reduced reactivity due to the accumulation of hardly reactive substances in the fluidized bed. There is. This is because, when the fluidized chlorination furnace is operated for a long time, among the impurities contained in the titanium ore, components that are difficult to react with chlorine gas even in the furnace temperature range accumulate in the fluidized bed as hardly reactive substances. This is a phenomenon that reduces reactivity.

流動層中に蓄積する代表的な難反応性物質はSiOである。難反応性物質の主成分であるSiOは、チタン鉱石からだけでなく、流動塩化炉の炉内面に設置された耐火レンガからも物理的な磨耗によって流動層中に持ち込まれる。そして、流動層中の難反応性物質が所定の比率以上に多くなった場合は、流動層全体の反応性が著しく低下する。 A typical hardly reactive substance that accumulates in the fluidized bed is SiO 2 . SiO 2 which is a main component of the hardly reactive substance is brought into the fluidized bed not only from the titanium ore but also from the refractory brick installed on the inner surface of the fluidized chlorination furnace by physical wear. And when the hardly reactive substance in a fluidized bed increases more than a predetermined ratio, the reactivity of the whole fluidized bed falls remarkably.

後者の問題、すなわち流動層中の難反応性物質の蓄積による反応性低下の問題に対しては、流動層を構成する粒子物質を定期的に抜き取り、代わりに反応性を有する原料粉末及びコークス粉末を流動層中に供給することの有効性が特許文献1により提示されている。後で詳しく述べるが、この流動粒子物質の抜き取り対策は、前者の問題、すなわち流動層中の高沸点塩化物の蓄積による流動不良トラブルに対しては、必ずしも最善と言えない。   For the latter problem, that is, the problem of a decrease in reactivity due to accumulation of hardly reactive substances in the fluidized bed, the particulate material constituting the fluidized bed is periodically extracted, and instead reactive raw material powder and coke powder. Patent Document 1 proposes the effectiveness of supplying the liquid in the fluidized bed. As will be described in detail later, this countermeasure for extracting the fluidized particulate material is not necessarily the best for the former problem, that is, the trouble of poor flow due to the accumulation of high boiling point chloride in the fluidized bed.

特開2000−109322号公報JP 2000-109322 A

本発明の目的は、流動塩化炉を用いた流動塩化法による四塩化チタンの製造で問題となる流動層での高沸点塩化物の蓄積による流動不良トラブルを効果的に解決できる四塩化チタン製造方法を提供することにある。   An object of the present invention is to provide a titanium tetrachloride production method capable of effectively solving a flow failure trouble due to accumulation of high boiling point chloride in a fluidized bed, which is a problem in production of titanium tetrachloride by a fluid chlorination method using a fluid chlorination furnace. Is to provide.

本発明者は流動塩化炉を用いた流動塩化法による四塩化チタンの製造操業に長年従事しており、流動層中の難反応性物質の蓄積による反応性の低下を解消するために、流動塩化炉から抜取られた流動層粒子に着目して調査を行った。流動層粒子を抜き取ると、流動層に蓄積したSiOなどの難反応性物質が炉内から排除されることにより、高い反応性を維持することができるが、それ以外にも、炉外へ抜き取られた難反応性物質粒子の表面にCaClやMgClなどの高沸点塩化物が付着していることが認められたため、高沸点塩化物が炉外へ排出されることによる流動性の改善、これによる反応性の向上も合わせて期待できることが判明した。 The present inventor has been engaged in the production operation of titanium tetrachloride by fluidized chlorination using a fluidized chlorination furnace for many years, and in order to eliminate the decrease in reactivity due to accumulation of hardly reactive substances in the fluidized bed, The investigation was conducted focusing on the fluidized bed particles extracted from the furnace. When the fluidized bed particles are extracted, highly reactive substances such as SiO 2 accumulated in the fluidized bed are excluded from the inside of the furnace, so that high reactivity can be maintained. Since high boiling point chlorides such as CaCl 2 and MgCl 2 were found to adhere to the surface of the hardly reactive material particles, the flowability was improved by discharging the high boiling point chloride out of the furnace. It has been found that this can also be expected to improve the reactivity.

すなわち、流動層粒子の抜き取りは、流動層中の難反応性物質の蓄積による反応性の低下を解消するのに有効なだけでなく、高沸点塩化物の蓄積による流動不良トラブルの解消にも有効なことが判明したのである。   In other words, extraction of fluidized bed particles is not only effective in eliminating the decrease in reactivity due to the accumulation of hardly reactive substances in the fluidized bed, but also effective in eliminating fluid flow troubles due to the accumulation of high boiling point chlorides. It turned out.

しかしながら、流動層粒子の抜き取りは、難反応性物質を選択的に除去できるものではなく、未反応のチタン鉱石粒子及びコークス粒子も同時に除去してしまうため、原料ロスが生じるのを避け得ない。高沸点塩化物の蓄積による流動不良トラブルは、原料調達コストの高騰に伴う原料品質の低級化により顕著化する問題であるため、原料ロスは致命的な問題となる。加えて、流動層中の高沸点塩化物濃度が高い場合は、大量の流動層粒子を短期間で抜取る必要が生じる。この場合、流動層量が減少(すなわち反応領域が減少)することによる未反応塩素の発生リスクが高くなることに加え、もとの流動層量に戻すために常温の原料を大量投入する必要があり、それらを1000〜1100℃まで昇温するためのドライエアや酸素が必要となるため、さらなるコスト悪化を引き起こす。   However, extraction of the fluidized bed particles cannot selectively remove the hardly-reactive substance, and unreacted titanium ore particles and coke particles are also removed at the same time, so it is inevitable that raw material loss occurs. The problem of poor flow due to the accumulation of high-boiling chlorides is a problem that becomes more prominent due to the lowering of raw material quality accompanying the increase in raw material procurement costs, so raw material loss becomes a fatal problem. In addition, when the high boiling point chloride concentration in the fluidized bed is high, it is necessary to extract a large amount of fluidized bed particles in a short period of time. In this case, in addition to the increased risk of unreacted chlorine due to a decrease in the fluidized bed volume (i.e., the reaction zone decreases), it is necessary to add a large amount of raw material at room temperature to restore the original fluidized bed volume. In addition, dry air and oxygen for raising the temperature to 1000 to 1100 ° C. are required, which causes further cost deterioration.

このような事情から、本発明者は流動層粒子の抜き取り、特に難反応性物質粒子の除去が高沸点塩化物の除去に有効なことを念頭に置きつつ、新たな高沸点塩化物の除去法について鋭意検討した。その結果、これまでは炉外への抜き取り対象とされていた難反応性物質粒子を逆に炉内へ投入するのが有効なこと、より詳しくは、難反応性物質粒子のなかでも粒径が小さな微細粒子を流動塩化炉内へ積極的に投入するのが有効なことを本発明者は知見した。   Under such circumstances, the present inventor has taken out a new method for removing high-boiling chlorides while keeping in mind that extraction of fluidized bed particles, particularly removal of hardly reactive substance particles is effective for removal of high-boiling chlorides. We studied earnestly. As a result, it is effective to reversely introduce the hardly reactive material particles that have been targeted for extraction outside the furnace, and more specifically, the particle size of the hardly reactive material particles is the same. The present inventor has found that it is effective to positively introduce small fine particles into the fluidized chlorination furnace.

すなわち、本発明者の調査検討によると、液相の高沸点塩化物は徐々に炉内に蓄積するものの、投入鉱石中のCaO量やMgO量対比で算出すると、その大半が炉外へ排出されていること。難反応性物質粒子についても、流動塩化炉の運転継続に伴って炉内に蓄積するのは事実であるが、炉内に蓄積するのは比較的粒径が大きい粗大粒子であり、粒径が小さい微細粒子は炉外へ排出されていること。そして、炉外へ排出される高沸点塩化物は、同じく炉外へ排出される微細粒子の表面に付着していることから、その微細粒子が高沸点塩化物の効果的なキャリアとなっている事実を本発明者は突き止めた。   That is, according to the investigation by the inventor, the high-boiling-point chloride in the liquid phase gradually accumulates in the furnace. That. Although it is true that hardly reactive substance particles accumulate in the furnace as the operation of the fluid chlorination furnace continues, it is coarse particles that have a relatively large particle diameter and accumulate in the furnace. Small fine particles are discharged outside the furnace. And since the high boiling point chloride discharged | emitted out of a furnace is adhering to the surface of the fine particle discharged | emitted out of a furnace, the fine particle is an effective carrier of high boiling point chloride. The inventor has found the fact.

したがって、流動塩化炉外へ排出されるような微細な難反応性物質粒子を炉内へ積極的に投入すると、それら微細粒子の炉内蓄積がないばかりか、微細粒子表面に液相の高沸点塩化物が付着して微細粒子と共に炉外へ排出されることにより、高沸点塩化物が炉外へ効果的に排出されることになるのである。   Therefore, if fine particles of difficult-to-react material that are discharged to the outside of the fluidized chlorination furnace are positively introduced into the furnace, not only the fine particles will not accumulate in the furnace, but also the high boiling point of the liquid phase on the surface of the fine particles. As the chloride adheres and is discharged to the outside of the furnace together with the fine particles, the high boiling point chloride is effectively discharged to the outside of the furnace.

本発明の四塩化チタン製造方法はかかる知見を基礎として完成されたものであり、流動塩化炉を用いた流動塩化法による四塩化チタンの製造方法において、炉内雰囲気中で難反応性を示す微細粒子を流動塩化炉内の流動層中に直接投入するものである。ここで、炉内雰囲気中で難反応性を示す微細粒子を流動塩化炉内の流動層中に直接投入するとは、前記微細粒子を、前記流動塩化炉内の流動層中に、原料投入経路とは別の専用経路により投入することである。 The titanium tetrachloride production method of the present invention has been completed on the basis of such knowledge, and in the production method of titanium tetrachloride by a fluid chlorination method using a fluid chlorination furnace, a fine process that exhibits poor reactivity in the atmosphere in the furnace. Particles are charged directly into a fluidized bed in a fluidized chlorination furnace. Here, the direct introduction of fine particles that are difficult to react in the furnace atmosphere into the fluidized bed in the fluidized chlorination furnace means that the fine particles are introduced into the fluidized bed in the fluidized chlorination furnace and the raw material introduction path. Is to use another dedicated route.

本発明の四塩化チタン製造方法においては、流動層中に投入された難反応性の微細粒子は難反応性ゆえに分解せず、また微細粒子であるゆえに粒子状態のまま炉外へ排出され、その排出過程で表面に液相の高沸点塩化物を付着させる。これにより、流動層中の高沸点塩化物の炉外への排出が促進され、その高沸点塩化物濃度の上昇が抑制される。また、原料ロスや難反応性微細粒子の炉内蓄積といった二次的弊害がなく、効率が高い。   In the titanium tetrachloride production method of the present invention, the hardly reactive fine particles put into the fluidized bed are not decomposed due to the poor reactivity, and because they are fine particles, they are discharged out of the furnace in the particle state. Liquid phase high-boiling chlorides are deposited on the surface during the discharge process. Thereby, discharge | emission of the high boiling point chloride in a fluidized bed outside a furnace is accelerated | stimulated, and the raise of the high boiling point chloride concentration is suppressed. Moreover, there is no secondary adverse effect such as loss of raw materials or accumulation of hardly reactive fine particles in the furnace, and the efficiency is high.

本発明の四塩化チタン製造方法において重要な因子は、微細粒子の反応性、粒径及び投入形態(投入箇所、投入時期、投入量など)である。以下にこれらの因子について詳述する。   The important factors in the titanium tetrachloride production method of the present invention are the reactivity of fine particles, the particle diameter, and the input form (input location, input timing, input amount, etc.). These factors are described in detail below.

〔反応性〕
流動塩化炉運転中の炉内雰囲気、特に流動層中の雰囲気は温度が1000〜1100℃で、塩素濃度が95%以上という高温高塩素の高反応性雰囲気である。本発明においては、流動層中に投入された微細粒子がこの雰囲気中で出来るだけ分解反応しないことが重要である。流動層中に投入された微細粒子が分解反応を起こすと、高沸点塩化物に対する付着性を失い、キャリアとして機能し難くなるだけでなく、自らも塩化物を生じ、特にCaやMgを含む場合は高沸点塩化物濃度を高める原因となる。
[Reactivity]
The atmosphere in the furnace during the operation of the fluidized chlorination furnace, particularly the atmosphere in the fluidized bed, is a high-temperature and high-chlorine highly reactive atmosphere having a temperature of 1000 to 1100 ° C. and a chlorine concentration of 95% or more. In the present invention, it is important that the fine particles introduced into the fluidized bed do not decompose as much as possible in this atmosphere. When the fine particles thrown into the fluidized bed undergo a decomposition reaction, not only do they lose adhesion to high boiling point chlorides, making them difficult to function as carriers, but they also produce chlorides themselves, especially when they contain Ca or Mg Causes a high boiling point chloride concentration.

流動層雰囲気中での微細粒子の反応性を具体的に示すと、1100℃における塩素との反応においてギブスの自由エネルギーΔGが60J/mol-Cl以上であることが望ましく、70J/mol-Cl以上がより望ましい。この指標ΔGは大きいほどよいので、上限は存在しない。これを満足する粒子物質としては、例えばSiO及びAlがある。ちなみに、これらのΔGはSiOで91J/mol-Cl程度、Alで72J/mol-Cl程度である。 Specifically, the reactivity of fine particles in the fluidized bed atmosphere is preferably such that the Gibbs free energy ΔG is 60 J / mol-Cl 2 or more in the reaction with chlorine at 1100 ° C., and 70 J / mol-Cl Two or more are more desirable. Since this index ΔG is better as it is larger, there is no upper limit. Examples of particulate materials that satisfy this requirement include SiO 2 and Al 2 O 3 . Incidentally, these ΔG is 91J / mol-Cl 2 approximately in SiO 2, a 72J / mol-Cl 2 approximately in Al 2 O 3.

〔粒径〕
流動塩化炉の運転中に投入された微細粒子が高沸点塩化物のキャリアとして機能するためには出来るだけ多く炉外へ排出されることが必要である。この観点から、その微細粒子の粒径は小さいことが必要であり、具体的には平均粒径(Dp=50)で表して100μm以下が好ましく、50μm以下がより好ましい。粒径の下限については、粒径が小さすぎると投入後直ちに流動層上端に達してしまい、高沸点塩化物のキャリアとしての機能を十分に果たすことができなくなってしまうため、平均粒径(Dp=50)で表して10μm以上が好ましく、20μm以上がより好ましい。
〔Particle size〕
In order for the fine particles introduced during the operation of the fluidized chlorination furnace to function as a high boiling point chloride carrier, it is necessary to discharge as much as possible out of the furnace. From this viewpoint, the particle size of the fine particles needs to be small, and specifically, it is preferably 100 μm or less, more preferably 50 μm or less in terms of the average particle size (Dp = 50). As for the lower limit of the particle size, if the particle size is too small, the upper end of the fluidized bed is reached immediately after the addition, and the function as a carrier of high boiling point chloride cannot be sufficiently achieved. = 50) is preferably 10 μm or more, more preferably 20 μm or more.

〔投入形態〕
流動塩化炉の運転中、流動層は炉内下部に形成され、その流動層で生成された四塩化チタンガスが炉内を上昇して炉頂部から炉外へ排出される。流動層より上に微細粒子が投入された場合、その粒子は炉内の上昇気流にのって流動層と接触することなく炉外へ排出されるため、キャリアとして十分に機能しなくなる。このため、その微細粒子は流動層中に直接投入することとし、具体的には、原料投入経路とは別の専用経路により、窒素ガス又はドライエアなどのキャリアガスを用いて流動層中に直接投入を行うこととする
[Input type]
During the operation of the fluidized chlorination furnace, the fluidized bed is formed in the lower part of the furnace, and the titanium tetrachloride gas generated in the fluidized bed rises in the furnace and is discharged from the top of the furnace to the outside of the furnace. When fine particles are introduced above the fluidized bed, the particles are discharged outside the furnace without coming into contact with the fluidized bed on the rising airflow in the furnace, so that they do not function sufficiently as a carrier. Therefore, the fine particles and be introduced directly into the fluidized layer, specifically, by a separate dedicated route the raw material introducing path, directly introduced into the fluidized layer with a carrier gas such as nitrogen gas or dry air to be performed.

また、効率は低下するが、難反応性微細粒子を原料粉末(チタン鉱石粉末及びコークス粉末)と混ぜて原料投入経路により流動層中に投入することも可能である。   In addition, although the efficiency is lowered, it is also possible to mix the hardly reactive fine particles with the raw material powder (titanium ore powder and coke powder) and put it into the fluidized bed through the raw material charging path.

投入時期については、流動層中の高沸点塩化物濃度を指標として、これが検出されたときであればいつでも投入してよい。この投入期間は、例えば数時間から数日間である。   With respect to the charging time, the high boiling point chloride concentration in the fluidized bed may be used as an index, and the charging may be performed whenever it is detected. This charging period is, for example, several hours to several days.

投入期間中の投入量(厳密には投入速度で単位時間あたりの投入量)は、少なすぎると高沸点塩化物濃度を低下させる効果が小さく、多すぎるとチタン鉱石の塩化反応が阻害される懸念が生じるので、原料投入量(チタン鉱石粉末及びコークス粉末の合計投入量)に対する比率(重量比)で表して5〜20%が好ましい。原料投入は通常、連続的であるが、難反応性微細粒子の投入は連続的でも断続的でもよい。投入量に1日あたりの投入時間を乗じ、これに更に投入期間(日数)を乗じたものが投入総量となる。投入総量は、高沸点塩化物の低下させるべき濃度に概ね対応する。   If the input amount during the input period (strictly, the input amount per unit time at the input speed) is too small, the effect of lowering the high boiling point chloride concentration is small, and if it is too large, the chlorination reaction of titanium ore may be inhibited. Therefore, it is preferably 5 to 20% in terms of the ratio (weight ratio) to the raw material input amount (total input amount of titanium ore powder and coke powder). The feed of the raw material is usually continuous, but the feed of the hardly reactive fine particles may be continuous or intermittent. The total input amount is obtained by multiplying the input amount by the input time per day and further by the input period (number of days). The total amount of input generally corresponds to the concentration of high-boiling chloride to be reduced.

本発明の四塩化チタン製造方法は、流動塩化炉を用いた流動塩化法による四塩化チタンの製造操業において、難反応性物質粒子を炉外へ排出されるような微細粒子の形態で流動層中に直接投入することにより、流動層中の高沸点塩化物を、難反応性物質粒子の炉内蓄積を伴うことなく、また原料ロスを伴うことなく炉外へ効率的に排出することができる。したがって、流動層中の高沸点塩化物による流動不良トラブルを効率的に回避でき、操業効率の向上、経済性の向上に有効である。
In the titanium tetrachloride production method of the present invention, in the production operation of titanium tetrachloride by the fluid chlorination method using a fluid chlorination furnace, in the fluidized bed in the form of fine particles such that the hardly reactive substance particles are discharged out of the furnace. By directly charging into the fluidized bed, the high boiling point chloride in the fluidized bed can be efficiently discharged out of the furnace without accumulating the hardly-reactive substance particles in the furnace and without causing loss of raw materials. Therefore, it is possible to efficiently avoid trouble of flow failure due to high boiling point chloride in the fluidized bed, and it is effective for improving operational efficiency and economy.

本発明の一実施形態に用いられる流動塩化炉の概略構成図で縦断立面図である。It is a vertical section elevation with a schematic structure figure of a fluid chlorination furnace used for one embodiment of the present invention.

以下に本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施形態の四塩化チタン製造方法に使用される流動塩化炉は、図1に示すように、円筒形状の炉体1の下部内に向けて原料粉末としてのチタン鉱石粉末をコークス粉末と共に連続投入すると共に、炉底から炉内に塩素ガスを連続的に吹き込むことにより、炉体1の下部内に流動層2を形成する。流動層2では1000〜1100℃の高温下でチタン鉱石が塩化処理されることにより、四塩化チタンガスが生成される。生成した四塩化チタンガスは炉頂から炉外へ逐次排出される。   As shown in FIG. 1, the fluidized chlorination furnace used in the titanium tetrachloride production method of the present embodiment continuously feeds titanium ore powder as raw material powder together with coke powder into the lower part of a cylindrical furnace body 1. In addition, the fluidized bed 2 is formed in the lower part of the furnace body 1 by continuously blowing chlorine gas into the furnace from the furnace bottom. In the fluidized bed 2, the titanium ore is chlorinated at a high temperature of 1000 to 1100 ° C., thereby generating titanium tetrachloride gas. The produced titanium tetrachloride gas is sequentially discharged from the furnace top to the outside of the furnace.

チタン鉱石は不純物としてCaOやMgOなどの金属酸化物を含んでいる。これらの不純物は反応性物質であるため、炉内で塩化されることによりCaClやMgClなどの高沸点塩化物を生じ、これが液相状態で流動層2中に蓄積して流動不良トラブルの原因となることは前述したとおりである。これとは別に、チタン鉱石や炉内耐火物から持ち込まれるSiOやAlなどの難反応性物質粒子も不純物として流動層2中に蓄積する。 Titanium ore contains metal oxides such as CaO and MgO as impurities. Since these impurities are reactive substances, they are chlorinated in the furnace to produce high-boiling chlorides such as CaCl 2 and MgCl 2 , which accumulate in the fluidized bed 2 in the liquid phase and cause troubles in flow failure. As described above, it is the cause. Apart from this, hardly reactive substance particles such as SiO 2 and Al 2 O 3 brought in from titanium ore or refractories in the furnace also accumulate in the fluidized bed 2 as impurities.

本実施形態の四塩化チタン製造方法では、流動塩化炉の運転中、流動層2中の高沸点塩化物濃度をモニターし、ここではCaClの濃度により代表させる。このCaCl濃度の上限が5質量%であり、これを超えると粒子の凝集や焼結により流動不良トラブルが生じることは前述したとおりである。そこでCaCl濃度のモニター値がこの上限に近づくと、炉体1内の流動層2に直結する微細粒子供給管3から、SiOなどの難反応性微細粒子を窒素ガス又はドライエアをキャリアガスとして流動層2中に直接投入する。 The titanium tetrachloride production method of this embodiment, during the operation of the fluidized chlorination furnace to monitor the high-boiling chloride concentration in the fluidized bed 2, here is represented by the concentration of CaCl 2. As described above, the upper limit of the CaCl 2 concentration is 5% by mass, and if it exceeds this, a flow failure trouble occurs due to aggregation or sintering of particles. Therefore, when the monitor value of the CaCl 2 concentration approaches this upper limit, from the fine particle supply pipe 3 directly connected to the fluidized bed 2 in the furnace body 1, hardly reactive fine particles such as SiO 2 are used as nitrogen gas or dry air as the carrier gas. Directly into the fluidized bed 2.

流動層2中に投入された難反応性微細粒子は、分解することなく炉体1内を上昇して四塩化チタンガスと共に炉頂から炉体1外へ排出される。このとき、難反応性微細粒子は流動層2中の高沸点塩化物を表面に付着させて炉体1外へ排出されるので、流動層2中の高沸点塩化物濃度の低下に寄与する。   The hardly reactive fine particles introduced into the fluidized bed 2 rise in the furnace body 1 without being decomposed and are discharged from the furnace top to the outside of the furnace body 1 together with the titanium tetrachloride gas. At this time, the hardly reactive fine particles cause the high boiling point chloride in the fluidized bed 2 to adhere to the surface and are discharged to the outside of the furnace body 1, thereby contributing to the reduction of the high boiling point chloride concentration in the fluidized bed 2.

流動塩化炉の運転中は、炉体1の頂部から延出する四塩化チタン取り出し管において四塩化チタンガス中の塩素ガス濃度をモニターし、塩素ガス濃度のモニター値により流動層2の反応性を監視する。四塩化チタンガス中の塩素ガス濃度が上昇し、流動層2の反応性の悪化が認められると、炉底部のガス供給経路を通して、ドライエア又は酸素ガスなどの酸化促進ガスを流動層2中に直接吹き込むことにより、流動層2中のコークスを燃焼させて流動層2の反応性を改善する。また必要に応じて流動層2を構成する粒子物質を炉体1外へ抜き取ることによって、流動層2の反応性を改善する。   During operation of the fluidized chlorinating furnace, the concentration of chlorine gas in the titanium tetrachloride gas is monitored in the titanium tetrachloride take-out pipe extending from the top of the furnace body 1, and the reactivity of the fluidized bed 2 is determined by the monitored value of the chlorine gas concentration. Monitor. When the chlorine gas concentration in the titanium tetrachloride gas is increased and the reactivity of the fluidized bed 2 is deteriorated, the oxidation promoting gas such as dry air or oxygen gas is directly fed into the fluidized bed 2 through the gas supply path at the bottom of the furnace. By blowing, the coke in the fluidized bed 2 is combusted and the reactivity of the fluidized bed 2 is improved. Moreover, the reactivity of the fluidized bed 2 is improved by extracting the particulate material constituting the fluidized bed 2 to the outside of the furnace body 1 as necessary.

ここにおける流動層2の反応性悪化は、チタン鉱石粉末や炉体1の内壁を構成する耐火物から持ち込まれる粒径の大きい難反応性粗大粒子が流動層2中に蓄積することが主因であり、一方、流動層2中の高沸点塩化物濃度の上昇に起因する流動不良トラブル、これによる流動層2の反応性低下は、流動層2中への難反応性微細粒子の直接投入により効果的に回避される。   The deterioration of the reactivity of the fluidized bed 2 here is mainly due to accumulation of the titanium ore powder and hardly reactive coarse particles having a large particle diameter brought in from the refractory constituting the inner wall of the furnace body 1 in the fluidized bed 2. On the other hand, the flow failure trouble due to the increase in the high-boiling chloride concentration in the fluidized bed 2 and the decrease in the reactivity of the fluidized bed 2 due to this are effective by direct injection of the hardly reactive fine particles into the fluidized bed 2. To be avoided.

次に、上述した四塩化チタン製造方法の有効性、すなわち流動層中へ難反応性微細粒子を直接投入することの効果を実際に調査した結果について説明する。   Next, the effectiveness of the above-described titanium tetrachloride production method, that is, the results of an actual investigation on the effect of directly introducing the hardly reactive fine particles into the fluidized bed will be described.

流動塩化炉を用いた流動塩化法による四塩化チタン製造の実操業において、流動層中の高沸点塩化物濃度としてCaCl濃度をモニターした。流動塩化炉の運転期間が長くなるにつれて、このCaCl濃度が上昇した。CaCl濃度のモニター値が予め設定した対策開始濃度に達すると、流動層中へ難反応性微細粒子として平均粒径(Dp=50)が50μmのSiO粒子を投入した。 In the actual operation of titanium tetrachloride production by the fluid chlorination method using a fluid chlorination furnace, the CaCl 2 concentration was monitored as the high boiling point chloride concentration in the fluidized bed. As the operating period of the fluidized chlorination furnace became longer, the CaCl 2 concentration increased. When the monitored value of the CaCl 2 concentration reached a preset countermeasure starting concentration, SiO 2 particles having an average particle diameter (Dp = 50) of 50 μm were introduced into the fluidized bed as difficult-to-react fine particles.

投入に使用したキャリアガスは窒素ガスである。投入量は原料投入量(チタン鉱石粉末及びコークス粉末の合計投入量)に対する比率(重量比)で10%とした。また投入時間は1日あたり5時間とした。投入期間は3日間として流動層中のCaCl濃度の推移を調査した。対策開始濃度は、数日から10日(ここでは1週間)放置すると上限に達する濃度を目安として設定した。 The carrier gas used for charging is nitrogen gas. The input amount was 10% as a ratio (weight ratio) to the raw material input amount (total input amount of titanium ore powder and coke powder). The charging time was 5 hours per day. The charging period was 3 days, and the transition of CaCl 2 concentration in the fluidized bed was investigated. The concentration at which the countermeasure was started was set with reference to a concentration that reached the upper limit when left for several days to 10 days (here, one week).

平均粒径(Dp=50)が100μmのSiO粒子、及び平均粒径(Dp=50)が50μmのAl粒子についても同様の調査を行った。流動層中のCaCl濃度の推移を、未対策(未投入)の場合も含めて表1に示す。表中のCaCl濃度は、粒子投入開始前の濃度、すなわち対策開始濃度を100とした比率で表されている。 The same investigation was conducted on SiO 2 particles having an average particle diameter (Dp = 50) of 100 μm and Al 2 O 3 particles having an average particle diameter (Dp = 50) of 50 μm. The transition of the CaCl 2 concentration in the fluidized bed is shown in Table 1, including the case where no countermeasure (uncharged) has been taken. The CaCl 2 concentration in the table is expressed as a ratio with the concentration before the start of particle introduction, that is, the countermeasure starting concentration being 100.

Figure 0006211940
Figure 0006211940


未対策(未投入)の場合は流動層中のCaCl濃度が日毎に上昇し、3日後には4割上昇し、1週間後には上限に到達することが予測される。平均粒径(Dp=50)が50μmのSiO粒子を投入した場合は、流動層中のCaCl濃度が低下し、1日後には3割近く、3日後には5割以上低下した。平均粒径(Dp=50)が100μmのSiO粒子を投入した場合もCaCl濃度は低下したが、その程度は平均粒径(Dp=50)が50μmのSiO粒子を投入した場合に比べると小さい。平均粒径(Dp=50)が50μmのAl粒子を投入した場合は、CaCl濃度が低下したものの、その程度は平均粒径(Dp=50)が100μmのSiO粒子を投入した場合よりも更に小さい。 In the case of no countermeasure (uninjected), it is predicted that the CaCl 2 concentration in the fluidized bed increases every day, increases by 40% after 3 days, and reaches the upper limit after 1 week. When SiO 2 particles having an average particle diameter (Dp = 50) of 50 μm were added, the CaCl 2 concentration in the fluidized bed decreased, and after 30 days, the concentration decreased by nearly 30% and after 3 days, it decreased by 50% or more. Even when SiO 2 particles having an average particle diameter (Dp = 50) of 100 μm were added, the CaCl 2 concentration was lowered, but the extent thereof was compared with that when SiO 2 particles having an average particle diameter (Dp = 50) of 50 μm were added. And small. When Al 2 O 3 particles having an average particle diameter (Dp = 50) of 50 μm were added, although the CaCl 2 concentration decreased, SiO 2 particles having an average particle diameter (Dp = 50) of 100 μm were added. Even smaller than the case.

この第1の比較試験からは、難反応性微細粒子の投入は流動層中のCaCl濃度低下に有効であること、難反応性微細粒子の粒径は100μmより50μmの方が望ましいこと、粒子物質としてはAlよりSiOの方が有効であることが分かる。AlよりSiOの方が有効な理由としては、AlはSiOと比べて塩素に対する反応性が高いために、Alの微細粒子の一部が塩素との反応によりAlClとなって揮発したためであると考えられる。 From this first comparative test, it was found that the introduction of hardly reactive fine particles is effective in reducing the CaCl 2 concentration in the fluidized bed, and that the particle size of the hardly reactive fine particles is preferably 50 μm rather than 100 μm, It can be seen that SiO 2 is more effective as a material than Al 2 O 3 . The reason why SiO 2 is more effective than Al 2 O 3 is that Al 2 O 3 is more reactive to chlorine than SiO 2, and therefore some Al 2 O 3 fine particles react with chlorine. This is considered to be because AlCl 3 was volatilized due to the above.

第2の比較試験として、平均粒径(Dp=50)が50μmのSiO粒子を投入するにあたり、投入量(原料投入量に対する重量比率)を5%から20%にわたって種々変更した。投入量(原料投入量に対する重量比率)以外の条件は、第1の比較試験のときと同じである。試験結果を表2に示す。 As a second comparative test, when introducing SiO 2 particles having an average particle diameter (Dp = 50) of 50 μm, the input amount (weight ratio with respect to the raw material input amount) was variously changed from 5% to 20%. The conditions other than the input amount (weight ratio with respect to the raw material input amount) are the same as in the first comparative test. The test results are shown in Table 2.

Figure 0006211940
Figure 0006211940



SiO粒子の投入量(原料投入量に対する重量比率)が5%から20%までの範囲内において、流動層中のCaCl濃度の低下効果が見られる。その効果は投入量が多いほど顕著な傾向を見せるが、20%を超えるとチタン鉱石の塩素化反応が阻害される兆候が見られた。 When the amount of SiO 2 particles input (weight ratio to the amount of raw material input) is in the range of 5% to 20%, an effect of decreasing the CaCl 2 concentration in the fluidized bed is observed. The effect shows a remarkable tendency as the input amount increases, but when it exceeds 20%, there is a sign that the chlorination reaction of titanium ore is inhibited.

第3の比較試験として、SiO粒子の投入量(原料投入量に対する重量比率)を10%として、1日あたりの投入時間を1時間から7時間にわたって種々変更した。他の条件は第1の比較試験及び第2の比較試験のときと同じである。結果を表3に示す。SiO粒子の投入時間が長くなるにつれて投入総量が増加するので、流動層中のCaCl濃度低下が進む傾向があるが、5時間程度で飽和することが分かる。このため、1日あたりの投入時間は5時間以上が好ましいということになるが、極端に長くする必要もないということでもある。 As a third comparative test, the input amount of SiO 2 particles (weight ratio with respect to the input amount of raw material) was 10%, and the input time per day was variously changed from 1 hour to 7 hours. Other conditions are the same as those in the first comparative test and the second comparative test. The results are shown in Table 3. It can be seen that since the total amount of input increases as the input time of the SiO 2 particles becomes longer, the CaCl 2 concentration in the fluidized bed tends to decrease, but it is saturated in about 5 hours. For this reason, the input time per day is preferably 5 hours or more, but it does not need to be extremely long.

Figure 0006211940
Figure 0006211940




1 炉体
2 流動層
3 微細粒子供給管
1 furnace body 2 fluidized bed 3 fine particle supply pipe

Claims (6)

流動塩化炉内にチタン鉱石粉末及びコークス粉末を投入すると共に、炉底から炉内に塩素ガスを吹き込むことにより、炉内下部に流動層を形成して、炉頂部から四塩化チタンガスを取り出す、流動塩化炉を用いた流動塩化法による四塩化チタンの製造方法において、炉内雰囲気中で難反応性を示す微細粒子を、前記流動塩化炉内の流動層中に、前記チタン鉱石粉末及びコークス粉末の投入経路とは別の専用経路により、直接投入する四塩化チタン製造方法。   Titanium ore powder and coke powder are charged into the fluidized chlorination furnace, and by injecting chlorine gas into the furnace from the furnace bottom, a fluidized bed is formed in the lower part of the furnace, and the titanium tetrachloride gas is taken out from the top of the furnace. In a method for producing titanium tetrachloride by a fluidized chlorination method using a fluidized chlorination furnace, fine particles exhibiting poor reactivity in the atmosphere in the furnace are added to the titanium ore powder and coke powder in the fluidized bed in the fluidized chlorination furnace. Titanium tetrachloride production method in which it is introduced directly through a dedicated route different from the input route. 請求項1に記載の四塩化チタン製造方法において、流動層中の高沸点塩化物濃度が安定操業を阻害する危険レベルに接近したときに、流動層中への微細粒子の投入を時限的に行うことにより、流動層中の高沸点塩化物濃度を安定操業レベル内に維持する四塩化チタン製造方法。   The method for producing titanium tetrachloride according to claim 1, wherein fine particles are introduced into the fluidized bed in a timely manner when the high boiling point chloride concentration in the fluidized bed approaches a dangerous level that hinders stable operation. By this, the titanium tetrachloride manufacturing method which maintains the high boiling-point chloride density | concentration in a fluidized bed within the stable operation level. 請求項1又は2に記載の四塩化チタン製造方法において、微細粒子の反応性は、1100℃での塩素との反応におけるギブスの自由エネルギーΔGが60J/mol-Cl 以上である四塩化チタン製造方法。 3. The titanium tetrachloride production method according to claim 1, wherein the reactivity of the fine particles is such that the Gibbs free energy ΔG in the reaction with chlorine at 1100 ° C. is 60 J / mol-Cl 2 or more. Production method. 請求項3に記載の四塩化チタン製造方法において、微細粒子はSiO 粒子又はAl 粒子である四塩化チタン製造方法。 Four in titanium tetrachloride production process, fine particles are SiO 2 particles or Al 2 O 3 of titanium tetrachloride production process is a particle according to claim 3. 請求項1〜4の何れかに記載の四塩化チタン製造方法において、微細粒子の粒径は平均粒径(Dp=50)で表して10〜100μmである四塩化チタン製造方法。   The titanium tetrachloride manufacturing method according to any one of claims 1 to 4, wherein the fine particles have a mean particle size (Dp = 50) of 10 to 100 µm. 請求項1〜5の何れかに記載の四塩化チタン製造方法において、微細粒子の投入量は原料投入量(チタン鉱石粉末及びコークス粉末の合計投入量)に対する比率(重量比)で示して5〜20%である四塩化チタン製造方法。
In the titanium tetrachloride manufacturing method according to any one of claims 1 to 5, the input amount of fine particles is expressed as a ratio (weight ratio) to a raw material input amount (total input amount of titanium ore powder and coke powder), and 5 to 5. The titanium tetrachloride manufacturing method which is 20%.
JP2014012563A 2014-01-27 2014-01-27 Titanium tetrachloride production method Active JP6211940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012563A JP6211940B2 (en) 2014-01-27 2014-01-27 Titanium tetrachloride production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012563A JP6211940B2 (en) 2014-01-27 2014-01-27 Titanium tetrachloride production method

Publications (2)

Publication Number Publication Date
JP2015140268A JP2015140268A (en) 2015-08-03
JP6211940B2 true JP6211940B2 (en) 2017-10-11

Family

ID=53770875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012563A Active JP6211940B2 (en) 2014-01-27 2014-01-27 Titanium tetrachloride production method

Country Status (1)

Country Link
JP (1) JP6211940B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059774B2 (en) 2018-06-28 2021-07-13 Ascend Performance Materials Operations Llc Processes and systems for using silica particles in fluid bed reactor
CN109761270A (en) * 2019-03-14 2019-05-17 攀枝花攀钢集团设计研究院有限公司 Primary first-order equation furnace for low temperature chlorination producing titanium tetrachloride t 5 bx
CN114534643B (en) * 2022-03-16 2022-12-27 东华工程科技股份有限公司 Titanium tetrachloride production system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112499A (en) * 1975-03-28 1976-10-04 Ishihara Sangyo Kaisha Ltd The formation of titanium tetrachloride
JPH0226828A (en) * 1988-07-15 1990-01-29 Osaka Titanium Co Ltd Production of titanium tetrachloride
JP2000109322A (en) * 1998-10-01 2000-04-18 Sumitomo Sitix Amagasaki:Kk Production of titanium tetrachloride
EP2473568B1 (en) * 2009-09-03 2015-04-08 E. I. du Pont de Nemours and Company Titanium bearing material flow control in the manufacture of titanium tetrachloride with silica content monitoring of the titanium product using feedback and feed forward responses

Also Published As

Publication number Publication date
JP2015140268A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6211940B2 (en) Titanium tetrachloride production method
JP4587333B2 (en) Method for roasting inclusions containing at least one of V, Mo and Ni and rotary kiln for roasting
US9656879B2 (en) Method for treating titanium-containing feedstock
WO2012035611A1 (en) Method and apparatus for recovering metal from electric furnace dust
US3074777A (en) Method of chlorinating an agglomerate-free fluid bed of titanium-bearing materials
WO2014125057A1 (en) Process for charging a burden with high zinc content in a blast furnace installation
CN105950889A (en) Electric arc furnace vacuum magnesium smelting system and magnesium smelting method thereof
KR101310036B1 (en) Method for preparing zirconium tetrachloride of high purity and zirconium sponge
JP4749730B2 (en) Si refining method
JP6326405B2 (en) Method for producing titanium tetrachloride
JP6090080B2 (en) Operation method of reduction roasting furnace
JP2015124389A (en) Manufacturing method of zinc oxide ore
JP5481813B2 (en) Hydrochloric acid separation method and hydrochloric acid separation apparatus for separating hydrochloric acid from waste hydrochloric acid solution
JP5257579B2 (en) How to operate the rotary kiln
JP6616756B2 (en) Method for purifying silicon carbide powder
RU2486135C1 (en) Method of processing nonferrous metallurgy wastes containing arsenic and sulphur
JP6402062B2 (en) Dust recycling method
JP6634818B2 (en) Bleeding device and bleeding method
JP6399603B2 (en) Ferronickel smelting method
JPH0226828A (en) Production of titanium tetrachloride
JP5108714B2 (en) Process for producing calcined lime
US2442674A (en) Deleading zinc-lead fume
JP4858934B2 (en) Dust molding for reduction treatment
CN214115596U (en) Short-flow energy-saving casting blast furnace
KR101530439B1 (en) Separating method for zinc of sewage sludge containing zinc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170914

R150 Certificate of patent or registration of utility model

Ref document number: 6211940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250