JPH02268289A - Fuel assembly - Google Patents

Fuel assembly

Info

Publication number
JPH02268289A
JPH02268289A JP1090255A JP9025589A JPH02268289A JP H02268289 A JPH02268289 A JP H02268289A JP 1090255 A JP1090255 A JP 1090255A JP 9025589 A JP9025589 A JP 9025589A JP H02268289 A JPH02268289 A JP H02268289A
Authority
JP
Japan
Prior art keywords
water
cooling water
flow rate
rod
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1090255A
Other languages
Japanese (ja)
Inventor
Yoshiro Kudo
工藤 義朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1090255A priority Critical patent/JPH02268289A/en
Publication of JPH02268289A publication Critical patent/JPH02268289A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To improve a characteristic of a spectrum shift operation by providing, at a cooling water inlet part of a water rod, a regulation mechanism to regulate a flowing-in rate of a cooling water at an inlet, according to a flow rate of a cooling water which flows through a channel box. CONSTITUTION:In case that a flow rate in an assembly of a cooling water is less than 100% of a rating one, a cylindrical body 14 is pushed downwardly and an inlet 17 goes down to a lower part of a long hole 11 of a water rod, because a flow resistance of a barrier plate 13 is much larger than an elastic force of a spring mechanism 15, and a flowing-in rate of the cooling water to the water rod decreases substantially. When the flow rate in the assembly exceeds 100% of the rating one, the flow resistance becomes smaller than the elastic force of the spring mechanism 15 and therefore the cylindrical body 14 is pushed upwardly, whole part of the inlet 17 rises into the long hole 11 and the flowing-in rate of the cooling water to the water rod, increases. In this situation, when a core flow rate is smaller compared to a rating one, no cooling water flows in the water rod and therefore an inside of the water rod turns almost into a void to decrease an average water density of the assembly. Otherwise, when the core flow rate is close to the rating one, no void is generated and the average water density of the assembly increases.

Description

【発明の詳細な説明】 [発明のl」的] (産業上の利用分野) 本発明は燃料集合体に係り、特に沸騰水型原子炉の燃料
集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objectives of the Invention] (Industrial Application Field) The present invention relates to a fuel assembly, and particularly to a fuel assembly for a boiling water nuclear reactor.

(従来の技術) 近年、水減速炉、特に主流である軽水減速型原子炉にお
いては、原子カプラントの運転コスト低減のため、長期
サイクル運転とこれを実現するための経済的燃焼が可能
な燃料集合体が検討されている。
(Prior art) In recent years, in water-moderated reactors, especially light water-moderated reactors, which are mainstream, fuel assemblies capable of long-term cycle operation and economical combustion have been developed in order to reduce the operating costs of nuclear couplants. The body is being examined.

第3図は従来より沸騰水型原子炉(以下BWRと称する
)に用いられている燃料集合体の構成を示す図で、燃料
集合体1は、四角筒のチャンネルボックス2と、このチ
ャンネルボックス2内に複数例えば8行×8列の製法格
子形状に配列された燃料棒3と、チャンネルボックス2
内の水平断面中央部に配置された2本の水ロッド4とか
ら構成されている。
FIG. 3 is a diagram showing the configuration of a fuel assembly conventionally used in a boiling water reactor (hereinafter referred to as BWR). There are a plurality of fuel rods 3 arranged in a manufacturing grid shape, for example, 8 rows x 8 columns, and a channel box 2.
It consists of two water rods 4 arranged at the center of the horizontal cross section.

この水ロッド4は、中性子の効果的な減速を促進させ、
中性子束分布を平坦化させるためのもので、その内部に
は冷却水を貫流させている。
This water rod 4 promotes effective moderation of neutrons,
It is designed to flatten the neutron flux distribution, and cooling water flows through it.

この水ロッド4の構成は、第4図に示すように下方が絞
込まれた形状をなしており、水ロッド4内部を貫流する
冷却水は、下方から上方へと流れる。このような水ロッ
ド4では、冷却水は水ロツド4下方の細管部4aの下端
に穿設された流入孔5から水ロッド4内部へと流入し、
水ロツド4上方の大管部4bの上端に穿設された流出孔
6から水ロッド4外部へと流出して燃料棒冷却後の2相
水と混合し、炉心外に流出する。このとき、水ロツド4
内を流れる冷却水は、水ロツド管壁を通じて外部からの
伝熱や、水中および管材内における中性子、γ線による
発熱等によって加熱されるが、その加熱量が小さいため
沸騰せずに単相流のまま水ロツド4外に流出する。
As shown in FIG. 4, the water rod 4 has a shape that is narrowed at the bottom, and the cooling water flowing through the water rod 4 flows from the bottom to the top. In such a water rod 4, cooling water flows into the inside of the water rod 4 from the inlet hole 5 bored at the lower end of the thin tube portion 4a below the water rod 4.
The water flows out of the water rod 4 from an outflow hole 6 formed at the upper end of the large pipe portion 4b above the water rod 4, mixes with the two-phase water after cooling the fuel rods, and flows out of the core. At this time, water rod 4
The cooling water flowing inside the water rod is heated by heat transfer from the outside through the water rod pipe wall and by heat generation due to neutrons and gamma rays in the water and inside the pipe material, but because the amount of heating is small, it does not boil and becomes a single-phase flow. The water flows out of Rod 4.

水ロッド4の流入孔5、流出孔6は、炉心の各運転状態
の中で最も熱的に厳しい状態においても、内部の冷却水
が沸騰しない最小に近い流量を維持するようにその径が
定められている。従来のBWRの通常運転条件下では、
ウラン原子に対する水素原子の数が多いほど反応度が高
く、このような密度の高い冷却水を有する水ロッドを使
用することで燃料経済性を高めることができる。
The diameters of the inflow holes 5 and outflow holes 6 of the water rods 4 are determined so as to maintain a flow rate close to the minimum at which the internal cooling water does not boil even under the most thermally severe operating conditions of the reactor core. It is being Under normal operating conditions of a conventional BWR,
The greater the number of hydrogen atoms relative to uranium atoms, the higher the reactivity, and the use of water rods with such dense cooling water can improve fuel economy.

さらに燃料経済性を向上させる手段として、燃料の無限
増倍率の高いサイクル初期から中期にかけては炉心流量
を少なめに流し、集合体内ボイド率を高めて中性子スペ
クトルを硬化させ、核分裂性物質であるプルトニウム2
39を蓄積する。一方、反応度の低下するサイクル末期
では炉心流量を増加させ、集合体内ボイド率を下げて反
応度を稼ぐと同時にスペクトル軟化によって蓄積された
プルトニウムを燃焼させて、さらに反応度を向上させる
運転法(以下、スペクトルシフト運転と称する)も考え
られている。
Furthermore, as a means to improve fuel economy, the core flow rate is reduced from the early to middle stages of the cycle when the infinite fuel multiplication factor is high, increasing the void ratio within the assembly and hardening the neutron spectrum.
Accumulate 39. On the other hand, at the end of the cycle when the reactivity decreases, the core flow rate is increased to lower the void ratio within the assembly to increase the reactivity, and at the same time, the plutonium accumulated due to spectrum softening is burnt to further improve the reactivity. (hereinafter referred to as spectral shift operation) is also being considered.

(発明が解決しようとする課題) しかしながら、従来の燃料集合体に対するスペクトルシ
フト運転では、流m変化に1fう水密度の差異が小さく
、十分な燃料経済性の向上が必ずしも図れない可能性が
あった。即ち、燃料集合体の熱的健全性および燃料炉心
に対する安定性上の観点から炉心流量の下限が制限され
、一方、炉心流量を循環させるポンプの揚程から上限が
課されるため、定格炉心出力状態の下では、炉心流量が
80−120%定格流量程度の変化にとどまるので、水
密度の変化はボイド率に換算して数%程度に過ぎない。
(Problem to be Solved by the Invention) However, in the conventional spectrum shift operation for fuel assemblies, the difference in water density caused by 1 f for a change in flow m is small, and there is a possibility that sufficient improvement in fuel economy cannot necessarily be achieved. Ta. In other words, the lower limit of the core flow rate is limited from the viewpoint of the thermal integrity of the fuel assembly and the stability of the fuel core, while the upper limit is imposed by the head of the pump that circulates the core flow rate, so the rated core power state Under , the change in core flow rate remains at about 80-120% of the rated flow rate, so the change in water density is only about a few percent in terms of void fraction.

より大きな水密度の変化を達成してスペクトルシフト運
転による燃料経済性を向上させるためには、出力分布の
平坦化のため集合体内に配置されている水ロッドに水密
度を炉心の燃焼状態に応じて調整させる機能を付加する
のが有効な手段の一つとなる。
In order to achieve larger changes in water density and improve fuel economy through spectral shift operation, the water density can be adjusted according to the combustion state of the core in water rods located within the assembly to flatten the power distribution. One effective means is to add a function to adjust the

本発明は、上述した従来の事情に鑑みてなされたもので
、水ロツド内を流れる冷却水流量を炉心流量に応じて変
化させ、内部のボイド発生量を調整することにより、燃
料集合体平均水密度を炉心のサイクル末期前までは少な
い状態に保ち、一方、サイクル末期に至って炉心流量が
増加すると水密度を増加させ、スペクトルシフト運転性
能を向上させて燃料経済性を一層改善できる燃料集合体
を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned conventional circumstances, and by changing the flow rate of cooling water flowing in the water rod according to the core flow rate and adjusting the amount of internal void generation, the average water content of the fuel assembly is improved. We have created a fuel assembly that maintains the core density at a low level until the end of the cycle, but increases the water density when the core flow rate increases towards the end of the cycle, improving spectrum shift operation performance and further improving fuel economy. The purpose is to provide

[発明の構成] (課題を解決するための手段) 本発明の燃料集合体は、チャンネルボックス内に多数収
容された燃料棒と、これら燃料棒群の中に配置され下方
に前記チャンネルボックス内の冷却水を導入するための
流入孔を有し上方にこれを流出する流出孔を有した水ロ
ッドを備えた燃料集合体において、前記水ロッドの冷却
水流入孔部に前記チャンネルボックス内を流れる冷却水
の冷却水流量に応じて前記流入孔の冷却水流入量を調整
する調整機構を設けたことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The fuel assembly of the present invention includes a large number of fuel rods housed in a channel box, and a fuel rod arranged in the group of fuel rods and arranged downwardly in the channel box. In a fuel assembly equipped with a water rod having an inflow hole for introducing cooling water and an outflow hole for flowing it upward, the cooling water flowing inside the channel box is provided at the cooling water inflow hole portion of the water rod. The present invention is characterized in that an adjustment mechanism is provided that adjusts the amount of cooling water flowing into the inflow hole in accordance with the flow rate of the cooling water.

(作 用) 水ロツド内のボイド発生量の調整により、サイクル末期
までの低流量期間に一層の高ボイド状態を実現してプル
トニウム239を生成蓄積し、反応度の低下するサイク
ル末期の高流量時の低ボイド率状態の下でプルトニウム
239を燃焼させることにより、反応度を稼いで燃料経
済性を向上させることが可能となる。
(Function) By adjusting the amount of voids generated in the water rod, a higher void state is realized during the low flow period until the end of the cycle, and plutonium-239 is generated and accumulated, and during the high flow period at the end of the cycle when the reactivity decreases. By burning plutonium-239 under low void ratio conditions, it is possible to increase reactivity and improve fuel economy.

(実施例) 以下、本発明の一実施例について図を参照して説明する
。尚、第3図および第4図と同一部分には同一符号を付
して重複する部分の説明を省略する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. Incidentally, the same parts as in FIGS. 3 and 4 are given the same reference numerals, and the explanation of the overlapping parts will be omitted.

第1図は、実施例の水ロッドの構成を示す図で、水ロッ
ド4下部の絞込まれた細管部4aの周壁には軸方向に長
い一対の長孔11が穿設されており、この長孔11の内
外周部に流体素子12が配設されている。
FIG. 1 is a diagram showing the configuration of a water rod according to an embodiment, in which a pair of elongated holes 11 that are long in the axial direction are bored in the circumferential wall of the narrowed narrow tube portion 4a at the bottom of the water rod 4. Fluid elements 12 are arranged on the inner and outer peripheries of the elongated hole 11 .

この流体素子12は、第2図に示すように流路にほぼ垂
直に近い角度で細管部4a外周とわずかな間隙を保持し
て配設されたリング体である抵抗板13と、水ロッド細
管部4a内に昇降自在に挿入された円筒体14と、この
円筒体14下端に設けられた弾性機構例えばバネ機構1
5等から主要部分が構成されている。
As shown in FIG. 2, this fluid element 12 consists of a resistance plate 13, which is a ring body, which is disposed at an angle almost perpendicular to the flow path with a slight gap from the outer periphery of the thin tube portion 4a, and a water rod thin tube. A cylindrical body 14 is inserted into the portion 4a so that it can be raised and lowered, and an elastic mechanism, such as a spring mechanism 1, is provided at the lower end of the cylindrical body 14.
The main part consists of 5th magnitude.

上記抵抗板13は半円リング13a、13bを組合わせ
た2分割構造となっており、各抵抗板13a、13bは
、円筒体14外周から長孔11を通して放射状に立設さ
れた支持棒16にネジ止め等により固定されている。
The resistance plate 13 has a two-part structure in which semicircular rings 13a and 13b are combined, and each resistance plate 13a and 13b is connected to a support rod 16 radially erected from the outer periphery of the cylindrical body 14 through a long hole 11. It is fixed with screws, etc.

また、円筒体14下方の長孔11に対応する位置には、
冷却水を導入するための冷却水流入孔17が複数例えば
軸方向に2個穿設されている。この円筒体14と細管部
4a内壁とは、円筒体14上下端部に夫々設けられたO
リング等のシール部材18a、18bにより水密を保持
されている。
Further, at a position corresponding to the elongated hole 11 below the cylindrical body 14,
A plurality of cooling water inlet holes 17 for introducing cooling water are provided, for example, two in the axial direction. This cylindrical body 14 and the inner wall of the thin tube part 4a are connected to O
Watertightness is maintained by seal members 18a and 18b such as rings.

下段シール部材18b下方の円管体壁には、一対の切欠
き部19が対称の位置に設けられており、これら切欠き
部19と細管部内周に設けられた図示を省略した凸部と
が嵌合して円筒体14の回転防止が可能なように構成さ
れている。
A pair of notches 19 are provided at symmetrical positions in the wall of the circular tube body below the lower seal member 18b, and these notches 19 and a convex portion (not shown) provided on the inner periphery of the narrow tube portion are connected to each other. They are configured so that rotation of the cylindrical body 14 can be prevented by fitting.

また、バネ機構15の下端は、水ロツド下端の端栓に固
定されており、そのバネ定数は、集合体内流量が定格の
100%近くまでは抵抗板13の流動抵抗に抗して円筒
体14の流入孔17が水ロッドの長孔11下端より上に
出ないように最小値を設定し、一方集合体内流量が10
0%を越える場合には、流入孔17の全てが長孔11中
に収まるように円筒体14が上昇するような最大値を設
定する。さらにバネ部材としては、放射線の照射により
材料特性の劣化が少ないものを選ぶが、バネ位置が炉心
下部に近く中性子束が相対的に小さいこと、中性子の熱
化が進んでいることから照射による影響が小さく、さら
に中性子吸収への影響を考慮する必要が小さいため、選
択できる材料の幅は広い。また抵抗板の形状、大きさお
よびバネ定数は実験、解析により最適に決定される。尚
、バネ機構15は、冷却水の影響を受けないようにする
ことが好ましく、本実施例では、円筒体のシール部材に
よりバネ機構15への冷却水の流入を防止した。
The lower end of the spring mechanism 15 is fixed to the end plug at the lower end of the water rod, and its spring constant is such that the cylindrical body 14 resists the flow resistance of the resistance plate 13 until the flow rate in the assembly approaches 100% of the rated value. The minimum value is set so that the inflow hole 17 does not protrude above the lower end of the long hole 11 of the water rod, while the flow rate in the aggregate is
If it exceeds 0%, the maximum value is set so that the cylindrical body 14 rises so that all of the inlet holes 17 are accommodated in the elongated holes 11. Furthermore, spring members are selected that have material properties that are less likely to deteriorate due to radiation irradiation, but since the spring is located near the bottom of the reactor core and the neutron flux is relatively small, and neutrons are thermalized, irradiation will have an effect. is small, and there is little need to consider the effect on neutron absorption, so there is a wide range of materials to choose from. Furthermore, the shape, size, and spring constant of the resistance plate are optimally determined through experiment and analysis. It is preferable that the spring mechanism 15 is not affected by cooling water, and in this embodiment, a cylindrical seal member prevents cooling water from flowing into the spring mechanism 15.

このような構成の流体索子12では、冷却水の集合体内
流量が定格の100%以下の場合には、抵抗板13の流
動抵抗がバネ機構15の弾性力よりも大きいため円筒体
14が下方へと押圧され、流入孔17が水ロッドの長孔
11下方へと下降し水ロツド内への冷却水の流入は著し
く低下する。
In the fluid cord 12 having such a configuration, when the flow rate in the cooling water assembly is 100% or less of the rated value, the flow resistance of the resistance plate 13 is greater than the elastic force of the spring mechanism 15, so that the cylindrical body 14 is moved downward. The inflow hole 17 descends below the elongated hole 11 of the water rod, and the flow of cooling water into the water rod is significantly reduced.

また、冷却水の集合体内流量が100%を越えるに伴い
、流動抵抗がバネ機構15の弾性力よりも小さくなるた
め円筒体14が上方へと押圧され、流入孔17の全てが
長孔11中へと上昇し水ロツド内への冷却水の流入量が
増加する。
Additionally, as the flow rate within the cooling water assembly exceeds 100%, the flow resistance becomes smaller than the elastic force of the spring mechanism 15, so the cylindrical body 14 is pressed upward, and all of the inflow holes 17 are filled into the elongated holes 11. The amount of cooling water flowing into the water rod increases.

このように、本実施例によれば、炉心流量が定格と比較
して小さい場合には水ロツド内を殆ど冷却水が流れない
ため、内部は加熱により殆どボイドと化し、集合体平均
水密度を下げ、一方、炉心流量が定格近傍に至った場合
には水ロツド内を十分な冷却水が流れるため、内部にボ
イドが発生せず、集合体平均水密度を上げることができ
る。
In this way, according to this example, when the core flow rate is small compared to the rated value, almost no cooling water flows through the water rod, so the interior becomes almost void due to heating, and the aggregate average water density decreases. On the other hand, when the core flow rate approaches the rated value, sufficient cooling water flows through the water rods, so no voids are generated inside, and the aggregate average water density can be increased.

また、本実施例では冷却水流入孔17を2個としたが、
さらに多数の流入孔を円筒体14の軸方向に列設するこ
とにより、より精密な流入量の調整が可能となる。
Further, in this embodiment, there are two cooling water inlet holes 17, but
Furthermore, by arranging a large number of inflow holes in the axial direction of the cylindrical body 14, more precise adjustment of the inflow amount becomes possible.

ところで、本実施例の流入孔17の径および数は従来の
同径の水ロッドと同じか少なめに設定する。このように
設定できるのは、従来水ロッド2が低炉心流量、高出力
時にもロッド内でボイドが発生しない最小の流量を確保
するように余裕をもって流入孔径が設定されていたのに
対し、本実施例では高流量状態のみボイド発生を妨げれ
ばよいので、水ロッド内流量をより小さくできるからで
ある。この作用により、副次的な効果として燃料冷却水
が増加し、燃料集合体の限界出力を向上させることかで
きる。太径ないしは超人径の水ロッドを採用する場合、
水ロッド内流量は集合体内冷却水総流量の10%近くに
達する場合もあるので、炉心流量の20%の余裕が生ま
れるとすると、集合体内流量に対し2%程度の増量が見
込める。これは限界出力に換算して1%強の改善に相当
する。
Incidentally, the diameter and number of the inlet holes 17 in this embodiment are set to be the same or smaller than those of a conventional water rod having the same diameter. This setting is possible because the inflow hole diameter of the water rod 2 was previously set with a margin to ensure the minimum flow rate that would not cause voids in the rod even at low core flow rates and high power. This is because in the embodiment, since it is necessary to prevent the generation of voids only in the high flow rate state, the flow rate in the water rod can be made smaller. As a side effect, this action increases the amount of fuel cooling water, thereby improving the limit output of the fuel assembly. When using a large diameter or super diameter water rod,
The flow rate in the water rod can reach nearly 10% of the total flow rate of cooling water in the assembly, so if a margin of 20% of the core flow rate is created, it is expected that the flow rate in the assembly will increase by about 2%. This corresponds to an improvement of over 1% in terms of marginal output.

[発明の効果] 以上説明したように、本発明の燃料集合体によれば、水
ロツド内を流れる冷却水流量を炉心流量に応じて変化さ
せ、内部のボイド発生量を調整することにより、燃料集
合体平均水密度を炉心のサイクル末期前までは少ない状
態に保ち、サイクル末期に至って炉心流量が増加すると
水密度を増加させ、スペクトルシフト運転性能を向上さ
せて燃料経済性を一層改善することができ、また限界出
力の向上も図れるので燃料の熱的余裕を改善し、原子炉
の経済性、安全性の向上に大きく寄与することができる
[Effects of the Invention] As explained above, according to the fuel assembly of the present invention, the flow rate of the cooling water flowing in the water rod is changed according to the core flow rate, and the amount of internal void generation is adjusted. It is possible to keep the aggregate average water density low until the end of the core cycle, and then increase the water density when the core flow rate increases towards the end of the cycle, improving spectral shift operational performance and further improving fuel economy. Moreover, since it is possible to improve the critical output, the thermal margin of the fuel can be improved, and this can greatly contribute to improving the economic efficiency and safety of the nuclear reactor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の燃料集合体の水ロッドの構成を示す図
、第2図は第1図の流体素子の構成を示す図、第3図は
従来の燃料集合体の構成を示す平断面図、第4図は従来
の水ウッドの構成を示す図である。 1・・・・・・・・・燃料集合体 3・・・・・・・・・燃料棒 4・・・・・・・・・水ロヅド 11・・・・・・・・・長孔 12・・・・・・・・・流動素子 13・・・・・・・・・抵抗板 14・・・・・・・・・円筒体 15・・・・・・・・・バネ機構 17・・・・・・・・・流入孔 18・・・・・・・・・シール部材 出願人      日本原子力事業株式会社同    
   株式会社 東芝
Fig. 1 is a diagram showing the configuration of the water rod of the fuel assembly of the embodiment, Fig. 2 is a diagram showing the configuration of the fluid element in Fig. 1, and Fig. 3 is a plan cross section showing the configuration of the conventional fuel assembly. 4 are diagrams showing the structure of a conventional water wood. 1...Fuel assembly 3...Fuel rod 4...Water rod 11...Long hole 12 ......Flow element 13...Resistance plate 14...Cylindrical body 15...Spring mechanism 17...・・・・・・Inflow hole 18・・・・・・Seal member applicant Japan Atomic Energy Corporation
Toshiba Corporation

Claims (1)

【特許請求の範囲】 チャンネルボックス内に多数収容された燃料棒と、これ
ら燃料棒群の中に配置され下方に前記チャンネルボック
ス内の冷却水を導入するための流入孔を有し上方にこれ
を流出する流出孔を有する水ロッドを備えた燃料集合体
において、 前記水ロッドの冷却水流入孔部に前記チャンネルボック
ス内を流れる冷却水の冷却水流量に応じて前記流入孔の
冷却水流入量を調整する調整機構を設けたことを特徴と
する燃料集合体。
[Scope of Claims] A large number of fuel rods are housed in a channel box, and an inflow hole is arranged in the group of fuel rods at the bottom to introduce the cooling water in the channel box, and the inflow hole is arranged at the bottom to introduce the cooling water in the channel box. In a fuel assembly equipped with a water rod having an outflow hole, the cooling water inflow amount of the cooling water inflow hole of the water rod is adjusted according to the flow rate of cooling water flowing in the channel box. A fuel assembly characterized by being provided with an adjustment mechanism for adjustment.
JP1090255A 1989-04-10 1989-04-10 Fuel assembly Pending JPH02268289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090255A JPH02268289A (en) 1989-04-10 1989-04-10 Fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090255A JPH02268289A (en) 1989-04-10 1989-04-10 Fuel assembly

Publications (1)

Publication Number Publication Date
JPH02268289A true JPH02268289A (en) 1990-11-01

Family

ID=13993386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090255A Pending JPH02268289A (en) 1989-04-10 1989-04-10 Fuel assembly

Country Status (1)

Country Link
JP (1) JPH02268289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405443A1 (en) * 2010-07-06 2012-01-11 Areva NP BWR nuclear fuel assembly with snap-in sleeve spring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405443A1 (en) * 2010-07-06 2012-01-11 Areva NP BWR nuclear fuel assembly with snap-in sleeve spring
WO2012004305A3 (en) * 2010-07-06 2012-03-08 Areva Np Bwr nuclear fuel assembly with snap-in sleeve spring
US9715946B2 (en) 2010-07-06 2017-07-25 Areva Np BWR nuclear fuel assembly with snap-in sleeve spring

Similar Documents

Publication Publication Date Title
EP0691657B1 (en) Nuclear reactor core and fuel assembly for a light water cooled nuclear reactor ,
US5388132A (en) Nuclear fuel assembly and core
SE505166C2 (en) Fuel cartridge comprising coolant flow channels as well as fuel cartridge assembly and reactor core including such fuel cartridges
US5192496A (en) Fuel assembly and upper tie plate thereof
JP2009042110A (en) Reactor core
TWI450278B (en) Fuel rods for nuclear reactor fuel assemblies
JPH0378599B2 (en)
JPH02268289A (en) Fuel assembly
JP3160341B2 (en) Fuel assembly
JP2791077B2 (en) Fuel assembly
JP2543930B2 (en) Reactor
JP4028088B2 (en) Fuel assembly
JPH0382993A (en) Fuel assembly of boiling water reactor
JPH01229997A (en) Fuel assembly
JP2563492B2 (en) Fuel assembly
JPS61256282A (en) Fuel aggregate
JP2002071862A (en) Reactor core of boiling water nuclear reactor
JPH01250789A (en) Boiling water reactor and its operating method
JP2509671B2 (en) How to operate a nuclear reactor
JPH04113296A (en) Nuclear reactor and fuel assembly
JPH02249995A (en) Fuel assembly
JPH026786A (en) Fuel rod and fuel assembly for boiling water reactor
JPH04113098U (en) fuel assembly
JP2550125B2 (en) Fuel assembly
JPH0452429B2 (en)