JPH0226746B2 - - Google Patents

Info

Publication number
JPH0226746B2
JPH0226746B2 JP8645581A JP8645581A JPH0226746B2 JP H0226746 B2 JPH0226746 B2 JP H0226746B2 JP 8645581 A JP8645581 A JP 8645581A JP 8645581 A JP8645581 A JP 8645581A JP H0226746 B2 JPH0226746 B2 JP H0226746B2
Authority
JP
Japan
Prior art keywords
frequency
vector
channels
detector
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8645581A
Other languages
Japanese (ja)
Other versions
JPS57200870A (en
Inventor
Tomoteru Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8645581A priority Critical patent/JPS57200870A/en
Publication of JPS57200870A publication Critical patent/JPS57200870A/en
Publication of JPH0226746B2 publication Critical patent/JPH0226746B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • G01R25/02Arrangements for measuring phase angle between a voltage and a current or between voltages or currents in circuits having distributed constants

Description

【発明の詳細な説明】 この発明は、分布定数回路のブリツヂ2チヤネ
ル間の位相差を検出する装置に関するものであ
る。従来、分布定数回路のブリツジで2チヤネル
間の位相差検出方法として、たとえば一方のチヤ
ネルの電気信号に位相変調を施し、両信号の合
成、検波出力中の位相変調周波数振幅の大きさと
位相差の関係を利用する方法があるが、この方法
ではマイクロ波以上の周波数帯で広帯域に使用す
る場合、位相変調を寄生する振幅変調の非対称成
分を抑えることが困難であるため、検波出力と位
相差の関係が両信号の振幅比に依存するという欠
点がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting a phase difference between two bridge channels of a distributed constant circuit. Conventionally, as a method for detecting a phase difference between two channels using a bridge of a distributed constant circuit, for example, phase modulation is applied to the electrical signal of one channel, the synthesis of both signals, and the magnitude of the phase modulation frequency amplitude in the detection output and the phase difference are performed. There is a method that uses the relationship between the detection output and the phase difference, but when using this method over a wide range of frequencies above microwave, it is difficult to suppress the asymmetric component of amplitude modulation that parasiticizes phase modulation. The disadvantage is that the relationship depends on the amplitude ratio of both signals.

この発明は、ブリツヂ回路の2チヤネルの正弦
波信号の振幅比に依存せず、かつ広帯域に両信号
の位相差を検出する装置を提供することを目的と
している。
An object of the present invention is to provide a device that does not depend on the amplitude ratio of two channels of sine wave signals of a bridge circuit and detects the phase difference between both signals over a wide band.

以下、この発明を図示の実施例に基づいて説明
する。
The present invention will be explained below based on illustrated embodiments.

第1図は、発振器1からの出力信号において、
チヤネル3とチヤネル4を通つた両信号の位相差
を検出する実施例である。
FIG. 1 shows that in the output signal from the oscillator 1,
This is an embodiment in which the phase difference between both signals passing through channel 3 and channel 4 is detected.

この実施例では、発振器1にはこの出力信号に
対して周期Tの出力正弦波で小さな周波数偏移の
周波数変調を施す低周波発振器2が付設され、ま
たチヤネル4には発振器1の出力信号の中心周波
数に共振している共振器5が設置し、更にチヤネ
ル3と4が合流する出力側に検波器6が設けら
れ、また検波器6には同期検波器7が接続され
る。
In this embodiment, the oscillator 1 is equipped with a low frequency oscillator 2 which performs frequency modulation of the output signal with a small frequency deviation using an output sine wave with a period T, and the channel 4 is connected to the output signal of the oscillator 1. A resonator 5 resonating at the center frequency is installed, and a detector 6 is provided on the output side where channels 3 and 4 join, and a synchronous detector 7 is connected to the detector 6.

上記構成において、発振器1の出力信号は低周
波発振器2の出力正弦波によつて周波数変調され
てチヤネル3と4に送られる。検波器6にはチヤ
ネル3から信号(ベクトル8)と、チヤネル4か
ら共振器5を通つて信号(ベクトル9)が入力
し、ここで合成、検波される。
In the above configuration, the output signal of the oscillator 1 is frequency modulated by the output sine wave of the low frequency oscillator 2 and sent to channels 3 and 4. A signal (vector 8) from the channel 3 and a signal (vector 9) from the channel 4 through the resonator 5 are input to the detector 6, where they are combined and detected.

ここで、ベクトル8の信号経路とベクトル9の
信号経路における伝播特性の周波数依存性は中心
周波数近傍で非常に異なつている。即ち、ベクト
ル8に関する方はチヤネル3の線路などの緩慢な
周波数対位相特性であるのに対し、ベクトル9に
関する方は共振器5のため共振周波数付近(=中
心周波数付近)で急峻な周波数対位相特性を持
つ。このため、上述のように発振器1の出力周波
数を周期Tの正弦波で周波数変調すると、ベクト
ル9の位相はベクトル8の位相に比較して急激に
変化する。そこで、ベクトル8を基準にしたと
き、ベクトル9は第2図のベクトル図の点線のよ
うに変化する。
Here, the frequency dependencies of the propagation characteristics in the signal path of vector 8 and the signal path of vector 9 are very different in the vicinity of the center frequency. In other words, the one related to vector 8 has a slow frequency versus phase characteristic such as the line of channel 3, whereas the one related to vector 9 has a steep frequency versus phase characteristic near the resonance frequency (=near the center frequency) due to the resonator 5. have characteristics. Therefore, when the output frequency of the oscillator 1 is frequency-modulated by a sine wave with a period T as described above, the phase of the vector 9 changes rapidly compared to the phase of the vector 8. Therefore, when vector 8 is used as a reference, vector 9 changes as shown by the dotted line in the vector diagram of FIG.

同上のベクトル図において、θは発振器の出力
周波数が共振周波数に等しい(第2図の例ではt
=T/4または3T/4)ときのベクトル8,9
の位相差であり、第2図aはθ≠0度のときの様
子、第2図bはθ=0度のときの様子を示す。
In the vector diagram above, θ is equal to the resonant frequency of the oscillator (in the example of Fig. 2, t
= T/4 or 3T/4), vectors 8, 9
FIG. 2a shows the situation when θ≠0 degrees, and FIG. 2b shows the situation when θ=0 degrees.

ところで、検波器6の出力はベクトル8,9の
合成ベクトルの振幅のみに依存するが、その出力
波形は第2図aとbでは異なつたものとなる。即
ち、第2図aのときは周期Tの間にベクトル9は
ベクトル8に対してベクトル図に示すように変化
するので、検波器6の出力周期は第2図aに示す
ようにTとなる。
By the way, the output of the wave detector 6 depends only on the amplitude of the composite vector of the vectors 8 and 9, but the output waveforms are different in FIGS. 2a and 2b. That is, in the case of Fig. 2a, the vector 9 changes with respect to the vector 8 during the period T as shown in the vector diagram, so the output period of the detector 6 becomes T as shown in Fig. 2a. .

これに対して、θ=0度のときは、ベクトル図
に示すように、ベクトル9は周期Tの間にベクト
ル8に対して左右対称に変化するので、検波器6
の出力周期は第2図bに示すようにT/2とな
る。即ち、第2図bでは変調周波数成分(周期
T)がなくなる。この関係はベクトル8,9の大
きさに関係なく成立し、またθ=180度について
も同様な関係が成立する。
On the other hand, when θ=0 degrees, as shown in the vector diagram, the vector 9 changes symmetrically with respect to the vector 8 during the period T, so the detector 6
The output period is T/2 as shown in FIG. 2b. That is, in FIG. 2b, the modulation frequency component (period T) disappears. This relationship holds true regardless of the magnitude of vectors 8 and 9, and a similar relationship holds true for θ=180 degrees.

したがつて、同期検波器7で検波器6の出力成
分中の変調周波数成分(周期T)の0を観測する
ことにより、θ=0度または180度の検出ができ
る。
Therefore, by observing 0 of the modulation frequency component (period T) in the output component of the detector 6 with the synchronous detector 7, it is possible to detect θ=0 degrees or 180 degrees.

即ち、この発明によれば、チヤネル3,4の両
信号の振幅比に無関係に変調周波数成分の観測に
より位相差θ=0度または180度の検出ができる。
That is, according to the present invention, a phase difference θ=0 degrees or 180 degrees can be detected by observing the modulation frequency component regardless of the amplitude ratio of both signals of channels 3 and 4.

以下、順次実施例について説明する。第3図
は、リアクシヨン形共振器を用いた実施例で、サ
ーキユレータ13とリアクシヨン形共振器14で
第1図の共振器5を形成している。この実施例で
は共振器の通過特性と周波数変調を利用して、発
振器1の周波数制御も行うこの実施例は標準移相
器16と被測定移相器17の移相量比較を行う。
第4図は、ホモダイン検波を用いた減衰量測定装
置での実施例である。減衰量測定では、2チヤネ
ル間の位相差を0度または180度に常に移相器1
6を使つて合せる必要がある。この実施例では共
振器5を使い、同期検波器7で変調周波数成分の
有無を検出し、モータ25を使用し標準移相器1
6を自動的に調整する。
Examples will be sequentially described below. FIG. 3 shows an embodiment using a reaction type resonator, in which the circulator 13 and the reaction type resonator 14 form the resonator 5 of FIG. In this embodiment, the frequency of the oscillator 1 is also controlled by utilizing the pass characteristics and frequency modulation of the resonator.In this embodiment, the amount of phase shift between the standard phase shifter 16 and the phase shifter 17 to be measured is compared.
FIG. 4 shows an example of an attenuation measuring device using homodyne detection. When measuring attenuation, always use phase shifter 1 to set the phase difference between the two channels to 0 degrees or 180 degrees.
You need to use 6 to match. In this embodiment, a resonator 5 is used, a synchronous detector 7 detects the presence or absence of a modulated frequency component, a motor 25 is used, and a standard phase shifter 1 is used.
6 will be automatically adjusted.

第5図は、減衰量移相量同時測定装置への実施
例である。高周波回路の構成は第4図と同じこの
装置では、被測定器28のチヤネルの電気信号の
振幅を|E|、両チヤネルの位相差をθとしたと
き、|E|cosθと|E|sinθに比例した信号が必
要であるが、この実施例では、周波数変調の周波
数成分が|E|sinθに比例し、振幅変調用発振器
23による振幅変調周波成分が|E|cosθbに比
例することを利用している。第6図は、マヂツク
Tを使い反射係数の振幅と位相を測定する回路で
ある。
FIG. 5 shows an example of an apparatus for simultaneously measuring attenuation and phase shift. In this device, the configuration of the high frequency circuit is the same as that shown in FIG. 4. When the amplitude of the electrical signal of the channel of the device under test 28 is |E|, and the phase difference between both channels is θ, |E|cosθ and |E|sinθ However, in this embodiment, the frequency component of frequency modulation is proportional to |E|sinθ, and the frequency component of amplitude modulation by the amplitude modulation oscillator 23 is proportional to |E|cosθb. are doing. FIG. 6 shows a circuit for measuring the amplitude and phase of the reflection coefficient using a Magic T.

以上述べたように、この発明は、分布定数回路
のブリツヂ回路の2チヤネル間の位相差を検出す
るため、周波数変調と共振器を利用した装置で、
2つの電気信号の振幅比に依存せず、位相差が検
出でき、かつ共振器は周波数制御にも容易に併用
きるので、特にマイクロ波、ミリ波相対で、この
発明による、位相差検出を簡単に、かつ広帯域に
行うことが可能とする効果は極めて大きい。
As described above, the present invention is a device that uses frequency modulation and a resonator to detect the phase difference between two channels of a bridge circuit of a distributed constant circuit.
Since the phase difference can be detected without depending on the amplitude ratio of two electrical signals, and the resonator can also be easily used for frequency control, this invention makes it easy to detect the phase difference, especially in microwave and millimeter waves. The effect of being able to perform this over a wide range of time and over a wide band is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回路構成概略図、第2図a,bは2信
号のベクトル関係と検波器出力波形図、第3図は
移相器の測定への応用図、第4図は減衰量測定へ
の応用図、第5図は減衰量移相量測定への応用
図、第6図はマジツク回路図である。 図中、1は発振器、2は低周波発振器、3,4
は分岐線路(チヤネル)、5は共振器、6は検波
器、7は同期検波器、8はチヤネル3の信号ベク
トル、9はチヤネル4の信号ベクトル、12は整
合用単向管、13はサーキユレータ、14はリア
クシヨン形共振器、15は整合用減衰器、16は
標準移相器、17は被測定移相器、19は狭域増
幅器(中心周波数は2と同じ)、21は狭帯域増
幅器(中心周波数は23と同じ)、23は振幅変
調用低周波発振器、24は被測定減衰器、25は
移相器駆動用モータ、26は低周波減衰量測定装
置、27は振幅変調器、28は被測定器、29は
振幅位相表示装置(XYレコーダなど)、30は
マジツクT、31は被測定反射器である。
Figure 1 is a schematic diagram of the circuit configuration, Figure 2 a and b is a diagram of the vector relationship between two signals and the detector output waveform, Figure 3 is an application diagram for phase shifter measurement, and Figure 4 is for attenuation measurement. FIG. 5 is an application diagram of attenuation and phase shift measurement, and FIG. 6 is a magic circuit diagram. In the figure, 1 is an oscillator, 2 is a low frequency oscillator, 3, 4
is a branch line (channel), 5 is a resonator, 6 is a wave detector, 7 is a synchronous detector, 8 is a signal vector of channel 3, 9 is a signal vector of channel 4, 12 is a matching unidirectional tube, 13 is a circulator , 14 is a reaction type resonator, 15 is a matching attenuator, 16 is a standard phase shifter, 17 is a phase shifter to be measured, 19 is a narrow band amplifier (center frequency is the same as 2), 21 is a narrow band amplifier ( 23 is a low frequency oscillator for amplitude modulation, 24 is an attenuator to be measured, 25 is a motor for driving a phase shifter, 26 is a low frequency attenuation measurement device, 27 is an amplitude modulator, 28 is a 29 is an amplitude phase display device (such as an XY recorder); 30 is a magic T; and 31 is a reflector to be measured.

Claims (1)

【特許請求の範囲】[Claims] 1 電源信号に対して2個のチヤネルを有する分
布定数回路のブリツジで上記チヤネル間の位相差
を検出する装置において、上記電源信号に対して
周期関数の信号で周波数変調を施す手段を設け、
また上記一方のチヤネルには上記電源信号の中心
周波数に共振する共振器を設置し、更に上記両チ
ヤネルの信号を合成、検波する検波器と、該検波
器の出力中の変調周波数成分を検出する同期検出
器とを設けたことを特徴とする位相差検出装置。
1. A device for detecting the phase difference between the channels using a bridge of a distributed constant circuit having two channels for a power supply signal, comprising means for frequency modulating the power supply signal with a periodic function signal,
Further, a resonator that resonates at the center frequency of the power signal is installed in one of the channels, and a detector that combines and detects the signals of both channels and detects the modulated frequency component in the output of the detector. A phase difference detection device characterized by comprising a synchronous detector.
JP8645581A 1981-06-05 1981-06-05 Phase difference detector Granted JPS57200870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8645581A JPS57200870A (en) 1981-06-05 1981-06-05 Phase difference detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8645581A JPS57200870A (en) 1981-06-05 1981-06-05 Phase difference detector

Publications (2)

Publication Number Publication Date
JPS57200870A JPS57200870A (en) 1982-12-09
JPH0226746B2 true JPH0226746B2 (en) 1990-06-12

Family

ID=13887410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8645581A Granted JPS57200870A (en) 1981-06-05 1981-06-05 Phase difference detector

Country Status (1)

Country Link
JP (1) JPS57200870A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597547B2 (en) * 1986-03-18 1997-04-09 株式会社東芝 Element fluctuation value detection circuit
CN101726664B (en) * 2008-10-27 2013-03-20 华为技术有限公司 Method, device and system for measuring signal phase difference

Also Published As

Publication number Publication date
JPS57200870A (en) 1982-12-09

Similar Documents

Publication Publication Date Title
CA1333633C (en) Radar noise test set
US4481519A (en) Radio frequency signal direction finding apparatus
DE3465400D1 (en) Receiver for rf signals comprising a pair of parallel signal paths
Robertson A method of measuring phase at microwave frequencies
JPH0226746B2 (en)
JPH09218130A (en) Method and circuit for detecting frequency sweep error, optical frequency sweep light source, and optical frequency area reflection measuring circuit
US2499000A (en) Frequency modulation system for locating impedance irregularities
Richmond Measurement of time-quadrature components of microwave signals
JPH0452586A (en) Distance measuring apparatus
US2681998A (en) Microwave oscillator frequency control system
US2745060A (en) Microwave radio frequency converter systems
JPS6025456A (en) Automatic tracking type electric field intensity measuring device
US2748384A (en) Automatic frequency control circuit
SU124014A1 (en) Method for measuring complex reflection coefficient on microwave using phase modulation
US3500193A (en) System for measuring noise spectra adjacent to a carrier signal
Schiek et al. A modulated subcarrier technique with instantaneous amplitude and phase information
JPH04315979A (en) Method and device for mesuring distance using microwave
US2853704A (en) Radio direction finders
US3838336A (en) Apparatus for measuring the group propagation time in a quadripole
SU1167542A1 (en) Device for automatic measuring and recording of phase characteristics of radiating apertures
JPH02280011A (en) Ultrasonic sensor
Ostwald et al. Network analysis by a digital phase sampling technique
Das et al. A surface acoustic wave sonobuoy
JPH0414757B2 (en)
RU2099726C1 (en) Process measuring gain factor of object on frequency of electromagnetic radiation