JPH02267444A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH02267444A
JPH02267444A JP1086390A JP8639089A JPH02267444A JP H02267444 A JPH02267444 A JP H02267444A JP 1086390 A JP1086390 A JP 1086390A JP 8639089 A JP8639089 A JP 8639089A JP H02267444 A JPH02267444 A JP H02267444A
Authority
JP
Japan
Prior art keywords
heating
cooling
temperature
capacity
cooling capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086390A
Other languages
Japanese (ja)
Inventor
Sakuo Sugawara
菅原 作雄
Masanori Hara
原 正規
Takane Suzuki
鈴木 たかね
Shigeki Onishi
茂樹 大西
Yuka Maeda
前田 由佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1086390A priority Critical patent/JPH02267444A/en
Publication of JPH02267444A publication Critical patent/JPH02267444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide a pleasant and comfortable environment compared to the environment where room temp. is controlled at a constant state by a method wherein the maximum space cooling and heating capacity and the minimum one are changed so that the room temp. is varied between the high and low temp. set values near a set temp. and also with the condition that the max. rising and falling time are not exceeded. CONSTITUTION:As for a space cooling and heating capacity, a variable means (d) varies the capacity of a generating means (a) for a space cooling and heating capacity from the output of an arithmetic means (c) for cooling and heating capacity which determines the cooling and heating capacity based on the input from a room temp. detector (b). A shifting arithmetic means e (g) changes the operation into the maximum cooling (minimum heating) capacity operation when the operation temp. reaches a high temp. set value which is higher by about 0.5 or 1.5 (deg) during the temp. rising period of the cooling (heating) operation and changes the operation into the minimum cooling (the maximum heating) capacity operation when the operating temp. reaches a low temp. set value lower by about 0.5 to 1.5 deg.C during the temp. falling period of the cooling (heating) operation. When the respective operation periods of the maximum and minimum cooling (heating) capacity reach a fixed time, a switching arithmetic means f(h) changes the maximum cooling (heating) capacity operation with the minimum cooling (heating) capacity operation before the high temp. set value or the prescribed low temp. set value is reached.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、空気調和機に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an air conditioner.

(従来の技術〕 第4図は第1従来例である初期の空気調和機における電
気回路図、第5図は第4図の空気調和機の動作を説明す
るフローチャート、第6図は第4図の空気調和機の制御
特性図、第7図は第2従来例であり、例えば三菱ルーム
エアコンカタログ(昭和59年9月作成)に示された空
気調和機における電気回路図、第8図は第7図の第2従
来例の動作を制御するフローチャート、第9図は第7図
の従来例のslJ御特性図である。まず第4図の電気回
路図に示される空気調和機について説明する。図面第4
図において、1は電源スィッチ、2はサーミスタやそれ
に類似するものからなる室温を検知するための温度検出
器、3はA/D変換装置、4は設定温度等を設定するス
イッチ部である。5はマイクロコンピュータであり、入
力回路8、CPU9.メモリ10.出力回路11を有し
ている。入力回路8にはスイッチ部4の出力と、温度検
出器2からの出力が、A/D変換装置3を介して入力さ
れる。冷暖房能力発停装置12は、出力回路11からの
出力により、圧縮機6のオンオフを制御する。
(Prior art) Fig. 4 is an electric circuit diagram of an early air conditioner which is the first conventional example, Fig. 5 is a flowchart explaining the operation of the air conditioner shown in Fig. 4, and Fig. 6 is a diagram of the air conditioner shown in Fig. 4. The control characteristic diagram of the air conditioner shown in Figure 7 is the second conventional example, and for example, the electrical circuit diagram of the air conditioner shown in the Mitsubishi room air conditioner catalog (created in September 1982), and Figure 8 is the second conventional example. FIG. 7 is a flowchart for controlling the operation of the second conventional example, and FIG. 9 is a slJ control characteristic diagram of the conventional example shown in FIG. 7. First, the air conditioner shown in the electrical circuit diagram of FIG. 4 will be described. Drawing 4th
In the figure, 1 is a power switch, 2 is a temperature detector made of a thermistor or something similar to detect the room temperature, 3 is an A/D converter, and 4 is a switch section for setting a set temperature, etc. 5 is a microcomputer, which includes an input circuit 8, a CPU 9. Memory 10. It has an output circuit 11. The output of the switch section 4 and the output from the temperature detector 2 are input to the input circuit 8 via the A/D converter 3. The heating and cooling capacity start/stop device 12 controls the on/off of the compressor 6 based on the output from the output circuit 11 .

次に上記空気調和機の動作について第5図のフローチャ
ートを用いて、冷房運転の場合について説明する。電源
スィッチ1がオンされると運転が開始する。ステップ5
aで設定温度Tsが設定され、ステップ5bで、温度検
出器2から検出された室温Trが人力される。次にステ
ップ5cで設定温度と室温から温度差(ΔT)が演算さ
れ、ステップ5dで室温Trが設定温度Tsを越えてい
なければ、ステップ5eで冷暖房能力発停装置12によ
り圧縮機6の運転が行われる。ステップ5dで室温が設
定温度を越えていると、ステップ5fで冷暖房能力発停
装置12により圧縮機6がオフされる。このようにして
、温度Trが設定温度Tsの近傍に保たれるように冷房
運転が行われる。第6図にこの場合の制御特性図を示す
Next, the operation of the air conditioner will be described in the case of cooling operation using the flowchart shown in FIG. When the power switch 1 is turned on, operation starts. Step 5
In step a, the set temperature Ts is set, and in step 5b, the room temperature Tr detected by the temperature detector 2 is input manually. Next, in step 5c, the temperature difference (ΔT) is calculated from the set temperature and the room temperature, and if the room temperature Tr does not exceed the set temperature Ts in step 5d, the operation of the compressor 6 is stopped by the cooling/heating capacity start/stop device 12 in step 5e. It will be done. If the room temperature exceeds the set temperature in step 5d, the compressor 6 is turned off by the cooling/heating capacity start/stop device 12 in step 5f. In this way, the cooling operation is performed so that the temperature Tr is maintained near the set temperature Ts. FIG. 6 shows a control characteristic diagram in this case.

第6図に示すように温度検出器に時間遅れがあるために
、オンオフの制御幅が存在する、−度オフすると一定時
間は再起動できない等の理由により、空気調和機がオフ
すると室温が下がりすぎ、図中aの部分では、居住者が
寒さを感じ、再びオンすると室温が上がりすぎ、図中す
の部分では、居住者が暑さを感じるという問題点があっ
た。
As shown in Figure 6, there is a time delay in the temperature sensor, so there is a control range for on/off, and when the air conditioner is turned off, it cannot be restarted for a certain period of time.When the air conditioner is turned off, the room temperature drops. In the part a of the figure, the occupants felt cold, and when they turned it on again, the room temperature rose too much, and in the part a of the figure, the occupants felt hot.

この問題点を解決するために開発されたのが、圧縮機6
の回転数を変え冷暖房能力を可変しようとするもので、
室温が設定温度になるように冷暖房能力を制御するので
、室温は設定温度と等しく制御できる。第7図は第2従
来例の冷暖房能力可変型の空気調和機の電気回路図であ
る。図面第7図において、前記第4図と同一符号は同−
又は相当部分を示す。また、5は温度検出器2で検知さ
れた室温に応じて冷暖房能力を算出するための冷暖房能
力演算手段を備えたマイクロコンピュータであり、入力
回路8.CPU9.メモリ10、出力回路11を有して
いる。入力回路8にはスイッチ部4の出力と、温度検出
器2からの出力が、A/D変換装置3を介して入力され
る。冷暖房能力可変装置12は、出力回路11h)らの
出力により、圧縮機6の回転数を制御する。
The compressor 6 was developed to solve this problem.
It attempts to vary the cooling and heating capacity by changing the rotation speed of the
Since the heating and cooling capacity is controlled so that the room temperature reaches the set temperature, the room temperature can be controlled to be equal to the set temperature. FIG. 7 is an electrical circuit diagram of a second conventional air conditioner with variable heating and cooling capacity. In Figure 7 of the drawing, the same symbols as in Figure 4 are the same.
or a corresponding portion. Further, reference numeral 5 denotes a microcomputer equipped with a heating and cooling capacity calculation means for calculating the heating and cooling capacity according to the room temperature detected by the temperature detector 2, and an input circuit 8. CPU9. It has a memory 10 and an output circuit 11. The output of the switch section 4 and the output from the temperature detector 2 are input to the input circuit 8 via the A/D converter 3. The heating and cooling capacity variable device 12 controls the rotation speed of the compressor 6 based on the output from the output circuit 11h).

次に、この第2従来例の空気調和機の動作について第8
図のフローチャートを用いて、冷房運転の場合について
説明する。電源スィッチ1がオンされると運転が開始す
る。ステップ8aで設定温度Tsが設定され、ステップ
8bで温度検出器2から検出された室温Trが入力され
る。次にステップ8cで設定温度Tsと室温Trから温
度差(ΔT)が算出され、ステップ8dで室温Trが設
定温度Tsを越えていれば、ステップ8eに進み、温度
差(ΔT)により、室温Trが設定温度Tsに近付きつ
つある時、徐々に冷房能力を下げ、室温が設定温度Ts
を中心とする一定範囲より高くなったとき、冷房能力を
上げると′いうように、冷房能力を算出する。この算出
された冷房能力にしたがい、ステップ8fで冷暖房能力
可変装置12により圧縮機6の回転数を制御する。この
制御により、第9図の制御特性図に示されるように、室
温が設定温度と等しくなるように室温制御が行われる。
Next, we will discuss the operation of the second conventional air conditioner in the eighth section.
The case of cooling operation will be explained using the flowchart shown in the figure. When the power switch 1 is turned on, operation starts. In step 8a, the set temperature Ts is set, and in step 8b, the room temperature Tr detected by the temperature detector 2 is input. Next, in step 8c, the temperature difference (ΔT) is calculated from the set temperature Ts and the room temperature Tr, and in step 8d, if the room temperature Tr exceeds the set temperature Ts, the process proceeds to step 8e, and the room temperature Tr is calculated from the temperature difference (ΔT). is approaching the set temperature Ts, the cooling capacity is gradually lowered and the room temperature reaches the set temperature Ts.
The cooling capacity is calculated such that when the temperature rises above a certain range centered on , the cooling capacity is increased. According to this calculated cooling capacity, the rotation speed of the compressor 6 is controlled by the cooling/heating capacity variable device 12 in step 8f. Through this control, room temperature control is performed so that the room temperature becomes equal to the set temperature, as shown in the control characteristic diagram of FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように、従来例の空気調和機において、常に居住
者が快適とする設定温度になるように、室温を一定に制
御していた。空気調和機を使用する目的は、暑さや寒さ
から逃れ、暑くも寒くもない環境を作ることであった。
As described above, in conventional air conditioners, the room temperature is always controlled to a set temperature that is comfortable for the occupants. The purpose of using an air conditioner was to escape from heat and cold, and to create an environment that was neither hot nor cold.

しかし、現在では、この暑くも寒くもない環境から一歩
進んで、快適であるということが求められている。人が
暑いと感じたり寒いと感じるのは、人の産′熱量と放熱
量が等しくないときに体温を適正な値に維持する為の体
温調節機能が働いた際に生じると言われている。中庸な
環境では、人の産熱量と放熱量が等しくなり、体温が適
正な値に維持され体温調節機能が働くことがないので、
人は寒い暑い等の感覚を持たない。第10図は、感覚実
験の結果を示すものである。通常、「快適1r不快j等
の快適感は温度に対して、中庸な温度で快適感が高くな
る2次関数的関係になる。しかし、図の温度範囲Xに示
すように、人の快適感のバラツキYも中庸な温度で大き
くなる傾向にある。また、そのレベルも低く、決して快
適にならないことがわかる。
However, nowadays there is a need for a comfortable environment that goes one step further than this neither hot nor cold environment. It is said that people feel hot or cold when the body's body temperature regulation function works to maintain body temperature at an appropriate level when the amount of heat produced and the amount of heat released are not equal. In a moderate environment, the amount of heat produced and the amount of heat dissipated by a person are equal, the body temperature is maintained at an appropriate value, and the body temperature regulation function does not work.
Humans have no sense of cold or heat. FIG. 10 shows the results of the sensory experiment. Normally, a person's sense of comfort, such as ``comfortable 1r unpleasant j,'' has a quadratic relationship with temperature, with the sense of comfort increasing at a moderate temperature.However, as shown in the temperature range X in the figure, a person's sense of comfort The variation Y also tends to increase at moderate temperatures.It is also seen that the level is low and it is never comfortable.

このように従来の空気調和機では、寒くも暑くもない環
境を創造することができても、快適な環境を創造するこ
とができないという問題点があった。
As described above, conventional air conditioners have the problem that although they can create an environment that is neither cold nor hot, they cannot create a comfortable environment.

この発明は5上記のような従来例の問題点を解消するた
めになされたもので、室温を設定温度の近傍の高温設定
値と低温設定値の間でしかも最大上昇下降時間を越える
ことなく変化するように最大冷暖房能力と最小冷暖房能
力を切換えることにより、設定温度を暖房のときは低め
に、冷房のときは高めにでき、経済的であると同時に使
用者の生理機能や大脳に刺激を与えることができ、これ
までの室温を一定に制御する環境に比較して、心地良い
快適な環境を提供することを目的とする。
This invention was made in order to solve the problems of the conventional example as described in 5. It is possible to change the room temperature between a high temperature set value and a low temperature set value in the vicinity of the set temperature without exceeding the maximum rise and fall time. By switching between the maximum cooling and heating capacity and the minimum heating and cooling capacity, the set temperature can be set lower for heating and higher for cooling, which is economical and at the same time stimulates the user's physiological functions and cerebrum. The aim is to provide a more pleasant and comfortable environment compared to conventional environments where the room temperature is controlled at a constant level.

〔3題を解決するための手段) このため、この発明においては、冷暖房能力を発生し、
その能力が可変できる冷暖房能力発生手段と、室温を検
出する室温検出手段と、上記室温検出手段からの入力に
より冷暖房能力を決定する冷暖房能力演算手段と、上記
冷暖房能力演算手段からの出力により、前記冷暖房能力
発生手段の能力を変化させる冷暖房能力可変手段と、冷
房運転の温度上昇中、設定温度よりおよそ0.5ないし
1.5 (deg)高い高温設定値に達したとき、最大
冷房能力運転とし、前記冷房運転の温度下降中、設定温
度よりおよそ0.5ないし1.5〔deg〕低い低温設
定値に達したとき、最小冷房能力運転に切換える切換演
算手段と、前記最大、最小それぞれの冷房能力運転時間
が一定時間に達した場合、前記高温設定値もしくは前記
低温設定値になる以前に最大冷房能力運転と最小冷房能
力運転を切換える切換演算手段と、暖房運転の温度上昇
中、設定温度より右よそ0.5ないし1.5 (deg
)高い高温設定値に達したとき、最小暖房能°力運転と
し、前記暖房運転の温度下降中、設定温度よりおよそ0
.5ないし1.5〔deg〕低い低温設定値に達したと
き、最大暖房能力運転に切換える切換演算手段と、前記
最大、最小それぞれの暖房能力運転時間が一定時間に達
した場合、前記高温設定値もしくは前記低温設定値にな
る以前に最大暖房能力運転と最小暖房能力運転を切換え
る切換演算手段とを具備して成る空気調和機により前記
目的を達成しようとするものである。
[Means for solving the three problems] Therefore, in this invention, the heating and cooling capacity is generated,
A heating and cooling capacity generation means whose capacity can be varied; a room temperature detection means for detecting the room temperature; a heating and cooling capacity calculation means for determining the heating and cooling capacity based on the input from the room temperature detection means; and an output from the heating and cooling capacity calculation means. The cooling/heating capacity variable means changes the capacity of the cooling/heating capacity generation means, and when the temperature reaches a high temperature set value approximately 0.5 to 1.5 (deg) higher than the set temperature during the temperature rise during cooling operation, the maximum cooling capacity operation is performed. , switching calculation means for switching to minimum cooling capacity operation when a low temperature setting value approximately 0.5 to 1.5 [deg] lower than the set temperature is reached during the temperature drop in the cooling operation, and each of the maximum and minimum cooling switching calculation means for switching between maximum cooling capacity operation and minimum cooling capacity operation before reaching the high temperature setting value or the low temperature setting value when the capacity operation time reaches a certain time; 0.5 to 1.5 (deg
) When a high high temperature set value is reached, the minimum heating capacity operation is started, and during the temperature decrease in the heating operation, the temperature is lowered to approximately 0 below the set temperature.
.. 5 to 1.5 [deg] switching calculation means for switching to maximum heating capacity operation when a lower low temperature set value is reached; and when each of the maximum and minimum heating capacity operation times reaches a certain time, the high temperature set value Alternatively, the above objective is achieved by an air conditioner comprising switching calculation means for switching between maximum heating capacity operation and minimum heating capacity operation before the low temperature setting value is reached.

〔作用〕[Effect]

この発明における空気調和機は、冷暖房能力発生手段で
冷暖房能力を発生し、室温検出手段で室温を検出し、冷
暖房能力演算手段で、前記室温の入力により冷暖房能力
を決定し、冷暖房能力可変手段で前記冷暖房能力演算手
段からの出力により、冷暖房能力発生手段の能力を変化
させ、切換演算手段(ホ)により、冷房運転の温度上昇
中、設定温度よりおよそ0.5ないし1.5〔deg〕
高い高温設定値に達したとき、最大冷房能力運転とし、
冷房運転の下降中、設定温度よ90.5ないし1.5 
(deg)低い低温設定値に達したとき、最小冷房能力
運転に切換え、また、切換演算手段くべ)により、前記
最大、最小それぞれの冷房能力運転時間か一定時間に達
した場合、前記高温設定値もしくは前記低温設定値にな
る以前に最大冷房能力運転と最小冷房能力運転を切換え
、一方、暖房運転の温度上昇中、設定温度よりおよそ0
.5ないし1.5 (deg)高い高温設定値に達した
とき、切換演算手段(ト)により、最小暖房能力運転と
し、前記暖房運転の温度下降中、設定温度よりおよそ0
.5ないし1.5〔deg〕低い低温設定値に達したと
き、切換演算手段(ト)により、最大暖房能力運転に切
換える。また、最大、最小それぞれの暖房能力運転時間
が一定時間に達した場合、切換演算手段(チ)により、
高温設定値もしくは低温設定値になる以前に最大暖房能
力運転と最小暖房運転を切換える。
In the air conditioner according to the present invention, the heating and cooling capacity generation means generates the heating and cooling capacity, the room temperature detection means detects the room temperature, the heating and cooling capacity calculating means determines the heating and cooling capacity based on the input of the room temperature, and the heating and cooling capacity variable means determines the heating and cooling capacity. The capacity of the cooling/heating capacity generating means is changed based on the output from the cooling/heating capacity calculating means, and the switching calculating means (e) adjusts the temperature by approximately 0.5 to 1.5 [deg] from the set temperature during the temperature rise during cooling operation.
When the high temperature setting value is reached, the maximum cooling capacity operation is performed.
During cooling operation down, the set temperature is 90.5 to 1.5
(deg) When a low low temperature set value is reached, the operation is switched to the minimum cooling capacity operation, and when the maximum and minimum cooling capacity operation time reaches a certain time, the high temperature set value is set. Or, switch between maximum cooling capacity operation and minimum cooling capacity operation before the low temperature setting value is reached, and on the other hand, while the temperature is rising during heating operation, the temperature decreases to about 0 below the set temperature.
.. 5 to 1.5 (deg) When the high temperature set value is reached, the switching calculation means (g) sets the minimum heating capacity operation, and during the temperature decrease in the heating operation, the temperature is lowered to about 0 from the set temperature.
.. When a low temperature setting value of 5 to 1.5 degrees is reached, the switching calculation means (g) switches to the maximum heating capacity operation. In addition, when the maximum and minimum heating capacity operation time reaches a certain time, the switching calculation means (H)
Switch between maximum heating capacity operation and minimum heating operation before the high temperature set value or low temperature set value is reached.

(実施例〕 以下この発明の一実施例を図面に基づいて説明する。第
1図は、この発明による空気調和機の一実施例を示す電
気回路図であり、図は従来の電気回路図(第7図)と同
様である。また、第2図はこの実施例の動作を制御する
フローチャート、第3図はこの実施例の制御特性図であ
る。図面第1図において、1は電源スィッチであり、2
は室温検出手段(ロ)を構成するサーミスタやそれに類
似するものからなる室温を検知するための温度検知器、
3はA/D変換装置、4は運転モード等のスイッチ部、
5はマイクロコンピュータであり、このマイクロコンピ
ュータ5は室温検出手段(ロ)からの人力により冷暖房
能力を決定する冷暖房能力演算手段(ハ)と、冷暖房能
力演算手段(ハ)からの出力により、冷暖房能力発生手
段(イ)の能力を変化させる冷暖房能力可変手段(ニ)
と、冷房運転の温度上昇中、設定温度よりおよそ0.5
ないし1.5 (deg)高い高温設定値に達したとき
、最大冷房能力運転とし、冷房運転の温度下降中、設定
温度よりおよそ0.5ないし1.5 (deg)低い低
温設定値に達したとき、最小冷房能力運転に切換える切
換演算手段(ホ)と、前記最大、最小それぞれの冷房能
力運転時間が一定時間に達した場合、前記高温設定値も
しくは前記低温設定値になる以前に最大冷房能力運転と
最小冷房能力運転を切換える切換演算手段(へ)と、暖
房運転の温度上昇中、設定温度よりおよそ0.5ないし
1.5 (deg)高い高温設定値に達したとき、最小
暖房能力運転とし、前記暖房運転の温度下降中、設定温
度よりおよそ0.5ないし1.5 (deg)低い低温
設定値に達したとき、最大暖房能力運転に切換える切換
演算手段(ト)と、前記最大、最小それぞれの暖房能力
運転時間が一定時間に達した場合、前記高温設定値もし
くは前記低温設定値になる以前に最大暖房能力運転と最
小暖房能力運転を切換える切換演算手段(チ)とのそれ
ぞれの手段を含み、入力回路7と、CPU8と、メモリ
9と出力回路10とで構成されている。また前記入力回
路7には、設定温度や運転モード等を設定するスイッチ
部4と、温度検出器2により検出された室温が、A/D
変換装置3を介して入力される。冷暖房能力可変手段(
ロ)である冷暖房能力可変装置11は出力回路10から
の出力により圧縮機6の回転数を変え、冷暖房能力が制
御される。
(Embodiment) An embodiment of the present invention will be described below based on the drawings. Fig. 1 is an electric circuit diagram showing an embodiment of an air conditioner according to the present invention, and the figure is a conventional electric circuit diagram ( (Fig. 7).Furthermore, Fig. 2 is a flowchart for controlling the operation of this embodiment, and Fig. 3 is a control characteristic diagram of this embodiment.In Fig. 1, 1 is a power switch. Yes, 2
is a temperature detector for detecting room temperature consisting of a thermistor or something similar that constitutes the room temperature detection means (b),
3 is an A/D converter, 4 is a switch section for operating modes, etc.
Reference numeral 5 denotes a microcomputer, and this microcomputer 5 determines the heating and cooling capacity using the output from the heating and cooling capacity calculating means (c), which determines the heating and cooling capacity manually from the room temperature detection means (b), and the heating and cooling capacity calculation means (c). Cooling and heating capacity variable means (d) that changes the capacity of the generation means (a)
When the temperature is rising during cooling operation, the temperature is approximately 0.5 below the set temperature.
When the high temperature set point that is between 1.5 and 1.5 (deg) higher is reached, the maximum cooling capacity operation is started, and during the cooling operation, the low temperature set point that is approximately 0.5 to 1.5 (deg) lower than the set temperature is reached. When the operating time of each of the maximum and minimum cooling capacities reaches a certain time, the switching calculation means (e) switches to the minimum cooling capacity operation, and when the maximum and minimum cooling capacity operation times reach a certain time, the maximum cooling capacity is switched to the maximum cooling capacity before the high temperature setting value or the low temperature setting value is reached. A switching calculation means (to) for switching between operation and minimum cooling capacity operation, and when the temperature reaches a high temperature set value approximately 0.5 to 1.5 (deg) higher than the set temperature during heating operation, the minimum heating capacity operation is activated. and a switching calculation means (g) for switching to the maximum heating capacity operation when a low temperature set value approximately 0.5 to 1.5 (deg) lower than the set temperature is reached during the temperature decrease in the heating operation; switching calculation means (H) for switching between the maximum heating capacity operation and the minimum heating capacity operation before the high temperature set value or the low temperature set value is reached when each minimum heating capacity operation time reaches a certain time; It is composed of an input circuit 7, a CPU 8, a memory 9, and an output circuit 10. In addition, the input circuit 7 includes a switch section 4 for setting a set temperature, an operation mode, etc., and a room temperature detected by the temperature detector 2, which is connected to an A/D converter.
It is input via the conversion device 3. Heating and cooling capacity variable means (
(b) The heating and cooling capacity variable device 11 changes the rotational speed of the compressor 6 based on the output from the output circuit 10, thereby controlling the heating and cooling capacity.

次に、この実施例の動作を、冷房運転について、第1図
、第2図および第3図を用いて説明する。
Next, the operation of this embodiment will be explained with reference to FIGS. 1, 2, and 3 regarding cooling operation.

第2図はマイクロコンピュータ5に記憶された冷暖房能
力演算手段等を含むフローチャートである。まず電源ス
ィッチ1(第1図)をオンすると、第2図に示すフロー
チャートがスタートする。ステップ2aで設定温度Ts
が設定される。
FIG. 2 is a flowchart including the heating and cooling capacity calculation means stored in the microcomputer 5. First, when the power switch 1 (FIG. 1) is turned on, the flowchart shown in FIG. 2 starts. Set temperature Ts in step 2a
is set.

ステップ2bで積算時間tをリセットし、ステップ2c
で最大冷房能力の設定と変化モードのための初期設定を
行う。続いてステップ2dで温度検出器2より検出され
た室温が入力されステップ2fで、通常モードの場合は
、ステップ2eで設定温度と室温の差から冷房能力の算
出と運転を行い、設定温度になるよう機器を制御する。
In step 2b, the cumulative time t is reset, and in step 2c
Make initial settings for maximum cooling capacity and change modes. Next, in step 2d, the room temperature detected by the temperature detector 2 is input, and in step 2f, if the mode is normal, in step 2e, the cooling capacity is calculated and operated from the difference between the set temperature and the room temperature, and the set temperature is reached. to control equipment.

ここまでは、従来例と全く同一である。次にスイッチ4
で運転モードを変化モードにした場合に特徴があるこの
実施例について説明する。ステップ2fで運転モードが
変化モートであワてもステップ2gで室温が高温設定値
Thより1 (deg)以上高いと、ステップ2eで通
常モードと同じ運転を行う。高温設定値Thとは、設定
温度より0.5〜1.5 (deg)高い温度である。
Everything up to this point is completely the same as the conventional example. Next switch 4
This embodiment, which has a characteristic when the operation mode is set to the change mode, will be described below. Even if the operation mode is in the change mode in step 2f, if the room temperature is higher than the high temperature set value Th by 1 (deg) or more in step 2g, the same operation as in the normal mode is performed in step 2e. The high temperature set value Th is a temperature 0.5 to 1.5 (deg) higher than the set temperature.

ステップ2gで判断するのは、設定温度より極端に高温
であると、快適域に入らないことがあるためである。運
転モードが変化モード、しかも、室温がTh+1より低
温になると、変化モードになり、ステップ2hに進む。
The reason why the determination is made in step 2g is that if the temperature is extremely higher than the set temperature, it may not fall within the comfortable range. When the operation mode is the change mode and the room temperature becomes lower than Th+1, the operation mode becomes the change mode and the process proceeds to step 2h.

ステップ2hでは、冷房能力の判断を行い、最大冷房能
力の場合はステップ21に、最小冷房能力の場合はステ
ップ2pに進む。この実施例では変化モードの初期にお
いて、ステシブ2cで最大冷房能力の初期設定を行って
いるので、ステップ21に進む。ステップ21で運転時
間の積算を行い、ステップ2jで室温Trが低温設定値
TJ2より高く、しかもステップ2にで運転時間tが一
定時間toより小さい場合、ステップ2I1.に進み、
最大冷房能力運転を行い、ステップ2jに戻る。従って
、室温Trが低温設定値T2より高く、しかも運転時間
tが一定時間内の場合、最大冷房能力運転を持続する。
In step 2h, the cooling capacity is determined. If the cooling capacity is the maximum, the process proceeds to step 21, and if the cooling capacity is the minimum, the process proceeds to step 2p. In this embodiment, in the initial stage of the change mode, the maximum cooling capacity is initialized in the static system 2c, so the process proceeds to step 21. In step 21, the operation time is integrated, and in step 2j, if the room temperature Tr is higher than the low temperature set value TJ2, and in step 2, the operation time t is smaller than the fixed time to, step 2I1. Proceed to
Maximum cooling capacity operation is performed and the process returns to step 2j. Therefore, when the room temperature Tr is higher than the low temperature set value T2 and the operating time t is within a certain period of time, the maximum cooling capacity operation is continued.

室温Trが低温設定値T1と等しいか低くなった場合(
ステップ2j)で、運転時間tが一定時間toより長く
なるとステップ2にで、分岐され、ステップ2mで最小
冷房能力に設定し、ステップ2nで稙ヰする運転時間t
のリセットを行い、ステップ2dに戻る。次に初期設定
が最小冷房能力である場合には、ステップ2fで運転モ
ードが変化モードであり、ステップ2gで室温もTh+
1より低温でありステップ2hで、最小冷房能力に設定
されているからステップ2pに進む。ステップ2pで運
転時間tの積算を行い、ステップ2qで室温Trが高温
設定値Thより低く、しかもステップ2rで運転時間t
が一定時間toより小さい場合、ステップ2Sに進み、
最小冷房能力運転を行い。
When the room temperature Tr becomes equal to or lower than the low temperature setting value T1 (
In step 2j), when the operating time t becomes longer than the certain time to, the process branches to step 2, the minimum cooling capacity is set in step 2m, and the operating time t is increased in step 2n.
is reset, and the process returns to step 2d. Next, if the initial setting is the minimum cooling capacity, the operation mode is set to change mode in step 2f, and the room temperature is set to Th+ in step 2g.
Since the temperature is lower than 1 and the minimum cooling capacity is set in step 2h, the process proceeds to step 2p. In step 2p, the operating time t is integrated, and in step 2q, the room temperature Tr is lower than the high temperature set value Th, and in step 2r, the operating time t is
If is smaller than the fixed time to, proceed to step 2S,
Perform minimum cooling capacity operation.

ステップ2pに戻る。従って、室4Trが高温設定値T
hより低く、しかも運転時間tが一定時間to内の場合
、最小冷房能力運転を持続する。
Return to step 2p. Therefore, the temperature setting value T of chamber 4Tr is
h, and when the operating time t is within the fixed time to, the minimum cooling capacity operation is continued.

室温Trが高温設定値Thと等しいか高くなった場合(
ステップ2q)で、運転時間tが一定時間toより長く
なるとステップ2rで分岐され、ステップ2tで最大冷
房能力に設定し、ステップ2nで積算する運転時間tの
リセットを行い、ステップ2dに戻る。これにより、室
A T rは高温設定値Thと低温設定値TJ2の間を
一定時間to内で上昇と下降を緑返し変化する。しかも
、この変化は冷房時の温度下降時と暖房時(暖房の場合
)の温度上昇時に大きく、冷房時の温度上昇時と暖房時
の温度下降時に小さい。
When the room temperature Tr is equal to or higher than the high temperature set value Th (
In step 2q), when the operating time t becomes longer than the fixed time to, the process branches to step 2r, sets the maximum cooling capacity in step 2t, resets the integrated operating time t in step 2n, and returns to step 2d. As a result, the chamber ATr changes between the high temperature set value Th and the low temperature set value TJ2, rising and falling within a certain period of time to. Moreover, this change is large when the temperature drops during cooling and when the temperature rises during heating (in the case of heating), and small when the temperature rises during cooling and when the temperature falls during heating.

次にこの実施例の動作側m<冷房運転)のときの特性に
ついて第3図を用いて説明する。
Next, the characteristics of this embodiment when the operating side m<cooling operation) will be explained using FIG. 3.

第3図は、この実施例にもとすき冷房運転させた場合の
制御特性図である。横軸は時間であり、縦軸は温度と冷
房能力である。運転モードを通常モードにし、時間t1
に空気調和機の運転が開始されると、室温Trは破線で
示した設定温度Tsに向って下降する。設定温度Tsと
室温Trの差から冷房能力を決めるので、冷房能力は室
温が下降するに従い低下し、やがて室温Trは、設定温
度Tsとの差が小さくなり、冷房能力とともに安定する
。時間t2に変化モードにすると、時間t2に最大冷房
能力運転になり、低温設定値TIl。
FIG. 3 is a control characteristic diagram when this embodiment is also operated in a cooling mode. The horizontal axis is time, and the vertical axis is temperature and cooling capacity. Set the operation mode to normal mode and start at time t1.
When the air conditioner starts operating, the room temperature Tr decreases toward the set temperature Ts shown by the broken line. Since the cooling capacity is determined from the difference between the set temperature Ts and the room temperature Tr, the cooling capacity decreases as the room temperature decreases, and eventually the difference between the room temperature Tr and the set temperature Ts becomes smaller and becomes stable along with the cooling capacity. When the change mode is set at time t2, the maximum cooling capacity operation is performed at time t2, and the low temperature set value TI1 is set.

まで下降する。時間T3に室温Trが低温設定値TJ2
になると、最小冷房能力運転になり、高温設定Thまで
上昇する。時間t4に室温Trが高温設定値Thになる
と、最大冷房能力運転になり、室温Trは再び低温設定
値TJlを目指し下降する。また、時間t8.tllの
ように、高温設定値Thあるいは低温設定値T1に達し
なくとも一定時間toが経過すると冷房能力が切替わり
運転を続ける。このように、室温Trを検出しながら上
昇下降時間の最大値toを越えることなく最大冷房能力
と最小冷房能力を繰返すので、室温Trは設定温度の近
傍の温度設定値Thと低温設定値TI1.の間でしかも
最大上昇下降時間内で変化する。この室温Trの変化は
、使用者の皮膚の温度受容機能を刺激し、人の体温調節
機能が働く。体温調整機能が働くことは、使用者の生理
機能や大脳の活動レベルが活性化されると考えることが
できる。高温設定値Th、低温設定値TILを、使用者
が不快にならないように選択することで、室温Trが変
化しても不快になることはなく、室温Trを一定に制御
する通常モードに比較して快適で心地良い健康的な環境
になる。この室温の変化は、冷房の場合、温度下降時が
温度上昇時より大きく、暖房の場合、温度上昇時が温度
下降時より大きくなっている。このように、冷房の温度
下降時と暖房の温度上昇時の大きい温度変化を使用者は
明確な快適感と感じることができ、機器使用感が大幅に
上昇する。第11図は、冷房運転の場合の人の温冷感(
暑い寒いという感覚)と室温Trの関係をいくつかの実
験から求めたものである。曲線Aの室温が一定の場合に
比べ、室温を変化させた曲線Bの場合、同じ温度でも涼
しく感じていることがわかる。室温Trを変化させた場
合は、変化させない場合に比べ、設定温度が高めでも同
じ温冷感を得ることができるということであり、経済的
にも有効である。
descend to. At time T3, the room temperature Tr changes to the low temperature set value TJ2
When this happens, the minimum cooling capacity operation starts and the temperature rises to the high temperature setting Th. When the room temperature Tr reaches the high temperature set value Th at time t4, maximum cooling capacity operation is started, and the room temperature Tr again decreases toward the low temperature set value TJl. Also, time t8. Like tll, even if the high temperature set value Th or the low temperature set value T1 is not reached, the cooling capacity is switched and operation continues after a certain period of time to has elapsed. In this way, while detecting the room temperature Tr, the maximum cooling capacity and the minimum cooling capacity are repeated without exceeding the maximum value to of the rise/fall time, so the room temperature Tr is determined by the temperature set value Th near the set temperature and the low temperature set value TI1. and within the maximum rise and fall time. This change in room temperature Tr stimulates the temperature-receptive function of the user's skin, and the human body temperature regulating function works. The functioning of the body temperature regulation function can be thought of as activating the user's physiological functions and cerebral activity level. By selecting the high temperature set value Th and low temperature set value TIL so as not to make the user uncomfortable, the user will not feel uncomfortable even if the room temperature Tr changes, and compared to the normal mode where the room temperature Tr is controlled to be constant. creating a comfortable, cozy and healthy environment. In the case of cooling, this change in room temperature is larger when the temperature drops than when the temperature rises, and in the case of heating, the change is larger when the temperature rises than when the temperature falls. In this way, the user can feel a clear sense of comfort due to the large temperature change when the cooling temperature drops and when the heating temperature rises, greatly improving the user experience of the device. Figure 11 shows the human thermal sensation (
The relationship between the sensation of hot and cold) and room temperature Tr was determined from several experiments. It can be seen that compared to curve A where the room temperature is constant, curve B where the room temperature is changed makes the user feel cooler even at the same temperature. When the room temperature Tr is changed, the same thermal sensation can be obtained even if the set temperature is higher than when the room temperature Tr is not changed, which is economically effective.

なお、上記実施例は通常モートと変化モードの選択スイ
ッチがある場合について述べたが、選択スイッチがなく
常に変化モードに入っても良い。
Although the above embodiment has been described with a selection switch between the normal mode and the change mode, it is also possible to always enter the change mode without a selection switch.

また、以上は、全て冷房運転について述べたが、暖房運
転の場合も同様であり、前記冷房運転の場合の構成を暖
房運転の構成に変えることにより同様に暖房運転として
作用し、暖房としての同様の効果を奏することができる
。また、冷暖房能力を可変できる全ての空気調和機にお
いて同様の効果を得ることができる。
In addition, although all of the above has been described about cooling operation, the same applies to heating operation, and by changing the configuration for cooling operation to the configuration for heating operation, it similarly acts as heating operation, and the same applies to heating operation. It is possible to achieve the following effects. Further, similar effects can be obtained in all air conditioners whose cooling and heating capacities can be varied.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明では、室温を設定温度の近傍の高
温設定値と低温設定値の間でしかも最大上昇下降時間を
越えることなく変化するように最大冷暖房能力と最小冷
暖房能力を切換えることにより、設定温度を暖房の時は
低めに、冷房の時は高めにでき、経済的であると同時に
使用者の生理機能や大脳に刺激を与えることができるの
で、これまでの室温を一定に制御する環境に比較して、
心地良い快適な環境を提供することができる効果がある
As described above, in this invention, by switching the maximum cooling and heating capacity and the minimum heating and cooling capacity so that the room temperature changes between a high temperature set value and a low temperature set value near the set temperature and without exceeding the maximum rise and fall time, The temperature can be set lower for heating and higher for cooling, which is economical and at the same time stimulates the user's physiological functions and cerebrum, creating an environment where the room temperature is controlled at a constant level. compared to
It has the effect of providing a pleasant and comfortable environment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による空気調和機の一実施例の電気回
路図、第2図は第1図の動作を示すフローチャート、第
3図はこの実施例の制御特性図、第4図は初期の空気調
和機の第1従来例の電気回路図、第5図は第4図の動作
を制御するフローチャート、第6図はこの従来例の制御
特性図、第7図は従来の空気調和機の第2従来例の電気
回路図、第8図は第7図の第2従来例の動作を制御する
フローチャート、第9図はその制御特性図、第10図は
快適感の実験結果を示す特性図、第11図は温冷感と室
温の関係を示す特性図である。 (イ>−−−−−冷暖房能力発生手段 (ロ)・・・・・・室温検出手段 (ハ)・・・・・・冷暖房能力演算手段(ニ)−−−−
−−冷暖房能力可変手段2−−−−−−温度検出器 4−−−−−−スイッチ部 5−−−−−マイクロコンピュータ 6・・・・・・圧縮機 11・・・・・・冷暖房能力(発生)可変装置図中、同
一符号は同−又は相当部分を示す。
Fig. 1 is an electric circuit diagram of an embodiment of an air conditioner according to the present invention, Fig. 2 is a flowchart showing the operation of Fig. 1, Fig. 3 is a control characteristic diagram of this embodiment, and Fig. 4 is an initial An electric circuit diagram of the first conventional example of an air conditioner, FIG. 5 is a flowchart for controlling the operation shown in FIG. 4, FIG. 6 is a control characteristic diagram of this conventional example, and FIG. 7 is a diagram of the conventional air conditioner. 2. An electric circuit diagram of the conventional example, FIG. 8 is a flowchart for controlling the operation of the second conventional example shown in FIG. 7, FIG. 9 is a control characteristic diagram thereof, and FIG. FIG. 11 is a characteristic diagram showing the relationship between thermal sensation and room temperature. (A>--Heating and cooling capacity generating means (B)...Room temperature detection means (C)...Cooling and heating capacity calculation means (D)----
--- Air conditioning capacity variable means 2 --- Temperature detector 4 --- Switch section 5 --- Microcomputer 6 --- Compressor 11 --- Air conditioning In the drawings of the capacity (generation) variable device, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 下記の(イ)ないし(チ)の手段を具備して成ることを
特徴とする空気調和機。 (イ)冷暖房能力を発生し、その能力が可変できる冷暖
房能力発生手段。 (ロ)室温を検出する室温検出手段。 (ハ)上記室温検出手段からの入力により冷暖房能力を
決定する冷暖房能力演算手段。 (ニ)上記冷暖房能力演算手段からの出力により、前記
冷暖房能力発生手段の能力を変化させる冷暖房能力可変
手段。 (ホ)冷房運転の温度上昇中、設定温度よりおよそ0.
5ないし1.5〔deg〕高い高温設定値に達したとき
、最大冷房能力運転とし、前記冷房運転の温度下降中、
設定温度よりおよそ0.5ないし1.5〔deg〕低い
低温設定値に達したとき、最小冷房能力運転に切換える
切換演算手段。 (へ)前記最大、最小それぞれの冷房能力運転時間が一
定時間に達した場合、前記高温設定値もしくは前記低温
設定値になる以前に最大冷房能力運転と最小冷房能力運
転を切換える切換演算手段。 (ト)暖房運転の温度上昇中、設定温度よりおよそ0.
5ないし1.5〔deg〕高い高温設定値に達したとき
、最小暖房能力運転とし、前記暖房運転の温度下降中、
設定温度よりおよそ0.5ないし1.5〔deg〕低い
低温設定値に達したとき、最大暖房能力運転に切換える
切換演算手段。 (チ)前記最大、最小それぞれの暖房能力運転時間が一
定時間に達した場合、前記高温設定値もしくは前記低温
設定値になる以前に最大暖房能力運転と最小暖房能力運
転を切換える切換演算手段。
[Scope of Claims] An air conditioner characterized by comprising the following means (a) to (h). (a) Cooling and heating capacity generation means that generates heating and cooling capacity and whose capacity can be varied. (b) Room temperature detection means for detecting room temperature. (c) Heating and cooling capacity calculation means for determining the heating and cooling capacity based on the input from the room temperature detection means. (d) A heating and cooling capacity variable means for changing the capacity of the heating and cooling capacity generating means based on the output from the heating and cooling capacity calculation means. (E) During the temperature rise during cooling operation, approximately 0.0% below the set temperature.
When a high temperature setting value of 5 to 1.5 [deg] is reached, maximum cooling capacity operation is performed, and while the temperature is decreasing during the cooling operation,
A switching calculation means that switches to minimum cooling capacity operation when a low temperature set value approximately 0.5 to 1.5 [deg] lower than the set temperature is reached. (f) A switching calculation means for switching between the maximum cooling capacity operation and the minimum cooling capacity operation before the high temperature setting value or the low temperature setting value is reached when the respective maximum and minimum cooling capacity operation times reach a certain time. (G) During the temperature rise during heating operation, approximately 0.0% below the set temperature.
When a high temperature setting value of 5 to 1.5 [deg] is reached, the minimum heating capacity operation is started, and while the temperature is decreasing during the heating operation,
A switching calculation means that switches to maximum heating capacity operation when a low temperature set value approximately 0.5 to 1.5 [deg] lower than the set temperature is reached. (H) A switching calculation means for switching between the maximum heating capacity operation and the minimum heating capacity operation before the high temperature set value or the low temperature set value is reached when the respective maximum and minimum heating capacity operation times reach a certain time.
JP1086390A 1989-04-05 1989-04-05 Air conditioner Pending JPH02267444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086390A JPH02267444A (en) 1989-04-05 1989-04-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086390A JPH02267444A (en) 1989-04-05 1989-04-05 Air conditioner

Publications (1)

Publication Number Publication Date
JPH02267444A true JPH02267444A (en) 1990-11-01

Family

ID=13885548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086390A Pending JPH02267444A (en) 1989-04-05 1989-04-05 Air conditioner

Country Status (1)

Country Link
JP (1) JPH02267444A (en)

Similar Documents

Publication Publication Date Title
JPH048621A (en) Air-conditioning control device
JP3189410B2 (en) Air conditioning
JPH0886486A (en) Air conditioner
JPS6291735A (en) Air-conditioning machine
JPH02267444A (en) Air conditioner
JP2002039596A (en) Air-conditioning controller
JPH02267445A (en) Air conditioner
EP0326431B1 (en) Control device for an air conditioner
JPH02238240A (en) Air-conditioner
JPH0842900A (en) Control device for air-conditioner
JPH02157550A (en) Air conditioner
JPH02302548A (en) Air-conditioner
JP3635784B2 (en) Control device for hot air heater
JP2513064B2 (en) Air conditioner
JPH02287037A (en) Air-conditioner
JPH09318135A (en) Air conditioner
JPH03156242A (en) Air conditioner
JP2658276B2 (en) Physical quantity control device
JP2941910B2 (en) Air conditioner
JPS63273749A (en) Room cooling and heating device
JPH0351649A (en) Air conditioner
JPS6291737A (en) Air-conditioning machine
JPH02247440A (en) Air conditioner
JPH0726638B2 (en) Air conditioner
JP3213381B2 (en) Control device for air conditioner