JPH0226722A - Injection apparatus of injection molding machine - Google Patents
Injection apparatus of injection molding machineInfo
- Publication number
- JPH0226722A JPH0226722A JP17712988A JP17712988A JPH0226722A JP H0226722 A JPH0226722 A JP H0226722A JP 17712988 A JP17712988 A JP 17712988A JP 17712988 A JP17712988 A JP 17712988A JP H0226722 A JPH0226722 A JP H0226722A
- Authority
- JP
- Japan
- Prior art keywords
- screw
- resin material
- resin
- heating cylinder
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002347 injection Methods 0.000 title claims description 24
- 239000007924 injection Substances 0.000 title claims description 24
- 238000001746 injection moulding Methods 0.000 title claims description 11
- 239000011347 resin Substances 0.000 claims abstract description 43
- 229920005989 resin Polymers 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 25
- 238000004898 kneading Methods 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 241000555745 Sciuridae Species 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/47—Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
- B29C45/50—Axially movable screw
- B29C45/5008—Drive means therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/58—Details
- B29C45/585—Vibration means for the injection unit or parts thereof
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、射出成形機におけるスクリュー式の射出装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a screw-type injection device for an injection molding machine.
[従来の技術]
この種スクリュー式の射出装置においては、公知のよう
に、ホッパーから加熱シリンダ内へ供給された樹脂材料
は、加熱シリンダ内部のスクリューの一方向回転によっ
て混練されながらスクリュー溝に沿って加熱シリンダの
先端部に送られる。[Prior Art] In this type of screw-type injection device, as is well known, the resin material supplied from the hopper into the heating cylinder is kneaded by the unidirectional rotation of the screw inside the heating cylinder while being kneaded along the screw groove. and is sent to the tip of the heating cylinder.
そして、樹脂材料はバンドヒータで加熱された加熱シリ
ンダから伝達される熱と、スクリューの混練作用による
、樹脂材料間並びに樹脂材料−金屈表面間の摩擦発熱に
よって昇温し、可塑化溶融されるようになっている。Then, the temperature of the resin material increases due to the heat transferred from the heating cylinder heated by the band heater and the frictional heat generated between the resin materials and between the resin material and the metal surface due to the kneading action of the screw, and the resin material is plasticized and melted. It looks like this.
[発明が解決しようとする課Ill
ところで、上述したような外部加熱とスクリューの単純
な一方向回転による樹脂の可塑化メカニズムでは、可塑
化条件の変更(スクリュー回転数、外部加熱温度、背圧
)だけでは多種の樹脂材料縁べてにわたって均一に可塑
化することが困雅であった。このため細かい要望に対応
するには、スクリューデザインの変更、例えば、L/D
(スクリュー有効長さ/スクリュー径)、P/D(ス
クリューネジ溝のピッチ/スクリュー径)、スクリュー
における供給部、圧縮部、計量部の配分比、スクリュー
各部のネジ溝の深さ等の変更を行って、均一可塑化を図
ることを予価なくされていた。[Problems to be Solved by the Invention] By the way, in the plasticizing mechanism of the resin using external heating and simple unidirectional rotation of the screw as described above, it is necessary to change the plasticizing conditions (screw rotation speed, external heating temperature, back pressure). It has been difficult to uniformly plasticize the edges of various resin materials by using only plasticizing methods. Therefore, in order to respond to detailed requests, it is necessary to change the screw design, for example, L/D
(Screw effective length/screw diameter), P/D (screw thread groove pitch/screw diameter), distribution ratio of the supply section, compression section, and metering section of the screw, depth of the thread groove of each part of the screw, etc. However, there was no consideration given to going to the factory to achieve uniform plasticization.
[発明が解決しようとする課題]
しかしながら、同一スクリューによって広範囲の樹脂材
料の混練・可塑化できることが望まれるこの種射出成形
機の射出装置にあって、上記したようにスクリューデザ
インの異なるスクリューを多数用意しておくということ
は、経済性及び取替え作業性等の点で問題がある上、ス
クリューデザインの変更のみではより高均一な可塑化を
達成するには限界のあるものであった。[Problems to be Solved by the Invention] However, in the injection device of this type of injection molding machine, which is desired to be able to knead and plasticize a wide range of resin materials with the same screw, it is necessary to use a large number of screws with different screw designs as described above. Preparing them in advance poses problems in terms of economy and replacement workability, and there is a limit to achieving more uniform plasticization simply by changing the screw design.
従って、本発明の解決すべき技術的課題は上記した従来
技術のもつ問題点を解消することにあり、その目的とす
るところは、スクリューデザインの変更を行なわなくて
も、一種類のスクリューで比較的広範な樹脂材料を高均
一に可塑化可能な射出成形機の射出装置を提供すること
にある。Therefore, the technical problem to be solved by the present invention is to solve the above-mentioned problems of the prior art. An object of the present invention is to provide an injection device for an injection molding machine that can highly uniformly plasticize a wide range of resin materials.
[課題を解決するための手段]
本発明の上記した目的は、加熱シリンダ内のスクリュー
の回転によって樹脂材料を混練・可塑化すると共に、射
出シリンダによって前記スクリューを急速前進させて溶
融樹脂を金型内へ射出する射出成形機の射出装置におい
て、前記スクリューの回転中に、該スクリューと前記加
熱シリンダとを軸方向に相対振動させて、樹脂材料を混
練・可塑化(チャージ)するようになすことによって達
成される。[Means for Solving the Problems] The above-mentioned object of the present invention is to knead and plasticize a resin material by rotating a screw in a heating cylinder, and to rapidly advance the screw by an injection cylinder to inject the molten resin into a mold. In an injection device of an injection molding machine that injects inward, the screw and the heating cylinder are relatively vibrated in the axial direction while the screw is rotating to knead and plasticize (charge) the resin material. achieved by.
[作用コ
本発明は上記したように、スクリューの回転中に、スク
リューもしくは加熱シリンダを軸方向に振動させて、樹
脂材料を混練・可塑化するようにしているので、加熱シ
リンダ内壁とスクリュー外周部との間の溶融プールゾー
ン(流動域)における樹脂(溶融樹脂と未溶融樹脂)は
、効果的に振動して、高均一に可塑化溶融される。[Operation] As described above, the present invention vibrates the screw or the heating cylinder in the axial direction while the screw is rotating to knead and plasticize the resin material, so that the inner wall of the heating cylinder and the outer periphery of the screw are vibrated in the axial direction. The resin (molten resin and unmelted resin) in the melt pool zone (flow zone) between the two is effectively vibrated and plasticized and melted highly uniformly.
即ち、樹脂材料の流動域における挙動の詳細な解析は困
難であるが、スクリューが第2図の矢印X方向に回転(
正回転)している時、スクリューの回転輸送作用に基づ
くノズル方向Yに向う推進流Qlと、スクリュー前後部
の圧力差に基づく反ノズル方向に向う背圧流Q2とが発
生し、両者Q1、Q2の複合作用でスクリューの山に略
直角な面に横流れQ3を生じ、また、もれ流れQ4も発
生するとされている。そして、実際にはこれら4種類の
流れは別個に発生するのではなく、合成された複雑な流
れとなって混練・可塑化が行われる。In other words, although detailed analysis of the behavior of the resin material in the flow region is difficult, the screw rotates in the direction of arrow X in Fig. 2 (
(forward rotation), a propelling flow Ql toward the nozzle direction Y based on the rotary transport action of the screw and a back pressure flow Q2 toward the nozzle direction based on the pressure difference between the front and rear of the screw are generated, and both Q1 and Q2 It is said that due to the combined effect of the above, a lateral flow Q3 is generated in a plane substantially perpendicular to the thread of the screw, and a leakage flow Q4 is also generated. In reality, these four types of flows do not occur separately, but are combined into a complex flow for kneading and plasticization.
ところで、本発明においてはスクリューの回転中にスク
リューと加熱シリンダとを相対的に軸方向に振動させて
いるので1、この振動エネルギーを与えられた樹脂材料
はより一層複雑な多方向からの力を受け、溶融樹脂はよ
り効果的に高均一に混練されることが確認された。なお
、第2図における左側の領域における矢印は、樹脂材料
がA、B。By the way, in the present invention, the screw and the heating cylinder are vibrated relative to each other in the axial direction while the screw is rotating, so the resin material that has been given this vibrational energy receives even more complex forces from multiple directions. It was confirmed that the molten resin can be kneaded more effectively and with high uniformity. Note that the arrows in the left region in FIG. 2 indicate resin materials A and B.
0部(全域)で振動していることヲ極めて模式的に示し
ており、実際には、第2図の右側の領域に示した流れと
左側の領域で示した振動とが複合した複雑な混練・流動
・発熱可塑化メカニズムが生成されていると理解された
い。It shows very schematically that the vibration occurs in the 0 part (entire area), and in reality, it is a complex kneading process in which the flow shown in the right area of Figure 2 and the vibration shown in the left area are combined. - It should be understood that a flow/exothermic plasticization mechanism is generated.
[実施例] 以下、本発明を図示した実施例によって説明する。[Example] Hereinafter, the present invention will be explained with reference to illustrated embodiments.
第1図は本発明の1実施例に係る射出成形機の射出装置
を示す説明図である。同図において、1は加熱シリンダ
で、その外周部にはバンドヒータ2が巻装されていると
共に、その先端のシリンダ頭部3にはノズル4が取付け
られている。5は。FIG. 1 is an explanatory diagram showing an injection device of an injection molding machine according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a heating cylinder, and a band heater 2 is wrapped around the outer circumference of the cylinder, and a nozzle 4 is attached to a cylinder head 3 at the tip thereof. 5 is.
加熱シリンダ1の機端部分を保持したヘッドストックで
1図示せぬ射出装置のベース部材と一体化した部材とさ
れていて、図示していないがホッパーから供給される樹
脂材料を加熱シリンダl内へ導くための開孔が設けられ
ている。6は、前記加熱シリンダ1内に回転並びに軸方
向に移動自在であるように配設されたスクリューで、図
示右側から左側に向って公知の如くフィードゾーン、コ
ンプレッションゾーン、メータリングゾーンが形成され
ている。A headstock holding the end portion of the heating cylinder 1 is a member integrated with a base member of an injection device (not shown), and the resin material supplied from a hopper (not shown) is transferred into the heating cylinder 1. A hole is provided for guiding. Reference numeral 6 denotes a screw disposed within the heating cylinder 1 so as to be rotatable and movable in the axial direction, and a feed zone, a compression zone, and a metering zone are formed from the right side to the left side in the figure, as is known in the art. There is.
7は油圧モニタで、その出力軸に前記スクリュー6の後
端部が連結されており、該油圧モータ7の回転でスクリ
ュー6が回転駆動される。8は、前記ヘッドストック5
内に設置された1対の油圧シリンダで、そのピストンロ
ッド9に上記油圧モータ7を取付けた支持体10が連結
されている。Reference numeral 7 denotes a hydraulic pressure monitor, the output shaft of which is connected to the rear end of the screw 6, and the rotation of the hydraulic motor 7 drives the screw 6 to rotate. 8 is the headstock 5
A support body 10 to which the hydraulic motor 7 is attached is connected to a piston rod 9 of a pair of hydraulic cylinders installed inside.
そして、ピストンロッド9の図示左右方向の進退運動に
よって、スクリュー6が油圧モータ7と一体となって図
示の前進位置と図示せぬ後退位置との間を移送されると
共に、ピストンロッド9の高速軸方向微振動によって、
スクリュー6(と油圧モータ7)が軸方向の振動運動を
付与されるようになっている。なお511はモータ回転
検出センサ、12はシリンダ圧力検出センサ、13はス
クリュー位置検出センサである。As the piston rod 9 moves back and forth in the left and right directions shown in the figure, the screw 6 is moved together with the hydraulic motor 7 between the forward position shown and the backward position not shown, and the high-speed axis of the piston rod 9 Due to directional vibration,
The screw 6 (and the hydraulic motor 7) is subjected to an axial vibratory motion. Note that 511 is a motor rotation detection sensor, 12 is a cylinder pressure detection sensor, and 13 is a screw position detection sensor.
14はマイクロコンピュータよりなる演算制御手段で、
各種I10インターフェス、主制御プログラム並びに固
定データ等を格納したROM−各種フラグ並びに入力デ
ータ等を読み書きするRAM、全体の制御を司どるμC
PU (マイクロセントラルプロセッサーユニット)等
を具備しており、後述する如く前記油圧モータ7並びに
油圧シリンダ8を駆動制御する。なお、図示していない
が、演算制御手段14は必要に応じ外部記録手段とデー
タの授受を行い、また同様に必要に応じデイスプレィ等
の表示手段に演算処理結果等を表示させるようになって
いる。14 is an arithmetic control means consisting of a microcomputer;
ROM that stores various I10 interfaces, main control programs and fixed data, etc. - RAM that reads and writes various flags and input data, etc., μC that manages overall control
It is equipped with a PU (micro central processor unit), etc., and drives and controls the hydraulic motor 7 and hydraulic cylinder 8 as described later. Although not shown, the arithmetic control means 14 exchanges data with an external recording means as necessary, and similarly displays arithmetic processing results on a display means such as a display as necessary. .
15はキーボードスイッチ等の入力手段で、該入力手段
15によってオペレータが射出装置の運転前に前記演算
制御手段14に、樹脂材料名、グレードNo、チャージ
完了位置、背圧並びに用いられるスクリュ一種別等の設
定情報を入力するようになっている。演算制御手段14
は、これらの設定情報、並びに自身のROM或いは外部
記憶手段に予めケーススタデイして格納した演算テーブ
ルによって、スクリュー6の回転数と、スクリュー6の
振動数、振幅等を演算する。そして、演算制御手段14
は、この算出結果と、射出装置のセンサ群(例えばモー
タ回転検出センサ11、シリンダ圧力検出センサ12、
スクリュー位置検出センサ13.金型装置側のセンサ群
等々)からの検出情報Sl、S2.・・・・・・SNと
に基づき、D/A変換器16を介してサーボアンプ17
.18に制御信号を送出し、サーボアンプ17からサー
ボバルブ19を介して前記油圧モータ7を、またサーボ
アンプからサーボバルブ20を介し前記油圧シリンダ8
を各々後述の如く駆動する。15 is an input means such as a keyboard switch, and the input means 15 allows the operator to input information such as resin material name, grade number, charge completion position, back pressure, type of screw used, etc. to the calculation control means 14 before operating the injection device. You are now required to enter configuration information. Arithmetic control means 14
calculates the number of revolutions of the screw 6, the frequency of vibration, the amplitude, etc. of the screw 6 using these setting information and a calculation table stored as a case study in advance in its own ROM or external storage means. Then, the calculation control means 14
is based on this calculation result and the sensor group of the injection device (for example, motor rotation detection sensor 11, cylinder pressure detection sensor 12,
Screw position detection sensor 13. Detection information Sl, S2 . ...... Servo amplifier 17 via D/A converter 16 based on SN.
.. 18, the servo amplifier 17 controls the hydraulic motor 7 via the servo valve 19, and the servo amplifier controls the hydraulic cylinder 8 via the servo valve 20.
are each driven as described below.
上記した構成において、運転時の1シヨツトサイクルの
開始時にはスクリュー6は第1図示の前進位置にある。In the above configuration, at the start of one shot cycle during operation, the screw 6 is in the forward position shown in the first figure.
そして、この状態で前記演算制御手段14が油圧モータ
7を所定回転数で一方向に回転駆動してスクリュー6を
一方向に回転させる。In this state, the arithmetic and control means 14 rotates the hydraulic motor 7 in one direction at a predetermined rotational speed to rotate the screw 6 in one direction.
これによって、図示せぬホッパーから供給された樹脂材
料がスクリュー6の溝に沿って混練・溶融されつつスク
リュー6の先端部に送られ、スクリュー6はその先端部
に貯えられ始めた溶融樹脂量に応じて後退を始める。そ
して、この当初のスクノユ−6の微少後退をスクリュー
位置検出センサ13(もしくはシリンダ圧力検出センサ
12)が検出した時点(第3図のT1時点)で、演算制
御手段14はピストンロッド9を微少量だけ高速振動さ
せる。これによってスクリュー6は、例えば振動数10
0〜200Hz、目標背圧に対しピークトウピークで1
〜30%の振幅で振!lJ運動を始める。(なお、スク
リュー6の回転当初からスクリュー6に振動を与えるよ
うにしてもよい・)スクリュー6の回転によってスクリ
ュー先端部に貯えられた溶融樹脂からの反力が所定圧に
達すると(第3図の12時点)、演算制御装置14は油
圧シリンダ8をして上記反力に抗する背圧を一定に保つ
べくスクリュー6の後退速度を制御させつつ、これに複
合してスクリュー6に振動動作を持続させる。そして、
スクリュー6の後退位置が所定位置、換言するならスク
リュー6の先端部に貯えられた溶融樹脂が1ショット分
の分量に達した時点(第3図のT3時点)で、演算制御
装置14はスクリュー6の回転と振動を停止させる。そ
して、このようにしてスクリュー6の先端部に貯えられ
た溶融樹脂は、次のサイクルの型締めが完了した時点で
、油圧シリンダ8をしてスクリュー6を急速前進させる
ことにより、図示せぬ金型装置内へ射出をされるように
なっている。As a result, the resin material supplied from a hopper (not shown) is kneaded and melted along the grooves of the screw 6 and sent to the tip of the screw 6. Start retreating accordingly. Then, at the time when the screw position detection sensor 13 (or cylinder pressure detection sensor 12) detects this initial slight retraction of the squirrel 6 (time T1 in FIG. 3), the arithmetic control means 14 moves the piston rod 9 a slight vibrate at high speed. As a result, the screw 6 has a vibration frequency of 10, for example.
0 to 200Hz, 1 peak to peak for target back pressure
Shake at ~30% amplitude! Start the lJ movement. (Incidentally, vibration may be applied to the screw 6 from the beginning of the rotation of the screw 6.) When the reaction force from the molten resin stored at the tip of the screw due to the rotation of the screw 6 reaches a predetermined pressure (see Fig. 3). 12), the arithmetic and control unit 14 causes the hydraulic cylinder 8 to control the backward speed of the screw 6 in order to keep the back pressure against the reaction force constant, and in combination with this, causes the screw 6 to vibrate. Make it last. and,
When the retracted position of the screw 6 reaches a predetermined position, in other words, when the amount of molten resin stored at the tip of the screw 6 reaches the amount equivalent to one shot (time T3 in FIG. 3), the arithmetic and control device 14 moves the screw 6 stop the rotation and vibration. The molten resin thus stored at the tip of the screw 6 is transferred to a metal (not shown) by rapidly advancing the screw 6 using the hydraulic cylinder 8 when the mold clamping of the next cycle is completed. It is designed to be injected into the mold device.
上述のスクリュー6の回転による混練・可塑化工程時に
は、スクリュー6は回転運動に振動を付加された複合運
動を行っており、第2図を用い前記[作用コの項で述べ
たように、樹脂材料は複雑な多方向からの力を受けて高
均一に混練されると共に、効果的に摩擦自己発熱し、前
記加熱シリンダ1からの外部加熱とも相俟って、むらな
く所望の高均一な溶融可塑化状態をうることが出来るこ
とが確認された。During the kneading and plasticizing process due to the rotation of the screw 6 described above, the screw 6 performs a compound movement in which vibration is added to the rotational movement. The material is kneaded to a high degree of uniformity by receiving complex forces from multiple directions, and also generates frictional self-heating effectively. Combined with the external heating from the heating cylinder 1, the material is melted evenly and with the desired high degree of uniformity. It was confirmed that a plasticized state could be obtained.
第4図は本発明の他の実施例を示しており、該実施例に
おいては、スクリューの回転駆動を電動サーボモータで
、またスクリューの前後進駆動及び振!!1IyjA動
を電動サーボモータでそれぞれ行うようになっており、
同図において前記第1図の構成と対応する部材には同一
符号を付し、その説明は重複を避けるため省略する。FIG. 4 shows another embodiment of the present invention. In this embodiment, the rotation of the screw is driven by an electric servo motor, and the screw is driven forward and backward as well as by vibration. ! Each of the 1IyjA movements is performed by an electric servo motor,
In this figure, members corresponding to those in the structure of FIG. 1 are designated by the same reference numerals, and their explanations will be omitted to avoid duplication.
第4図において、21は図示せぬ射出装置のベース部材
に保持された支持体、22は該支持体21に取付けられ
たチャージ用の第1電動サーボモータ(以下第1モータ
22と称す)、23は同じく支持体21に取付けられた
射出用の第2電動サーボモータ(以下第2モータ23と
称す)で、両モータ22,23には図示していないが回
転検出用のエンコーダが内蔵されている。In FIG. 4, 21 is a support body held on a base member of an injection device (not shown); 22 is a first electric servo motor for charging (hereinafter referred to as the first motor 22) attached to the support body 21; 23 is a second electric servo motor for injection (hereinafter referred to as the second motor 23) which is also attached to the support 21, and both motors 22 and 23 have built-in encoders for rotation detection, although not shown. There is.
上記第1モータ22の回転は、該第1モータ22の出力
軸24に固着されたギヤ25、該ギヤ25と噛み合った
ギヤ26、該ギヤ26と一体回転するボールスプライン
体27に伝えられ、さらに、該ボールスプライン体27
とスプライン軸結合をしたチャージ駆動軸28を介して
、該チャージ駆動軸28にその後端部を固着された前記
スクリュー6に伝達される。即ち、第1モータ22の回
転によって、スクリュー6が回転駆動される。The rotation of the first motor 22 is transmitted to a gear 25 fixed to the output shaft 24 of the first motor 22, a gear 26 that meshes with the gear 25, a ball spline body 27 that rotates integrally with the gear 26, and further , the ball spline body 27
It is transmitted to the screw 6 whose rear end is fixed to the charge drive shaft 28 via the charge drive shaft 28 which is spline-coupled with the charge drive shaft 28 . That is, the screw 6 is rotationally driven by the rotation of the first motor 22.
また、上記第2モータ23の回転は、該第2モータ23
の出力軸29に固着されたギヤ30、該ギヤ30と噛み
合ったギヤ31、該ギヤ31と一体回転するナラ1一体
32に伝達され、さらに該ナツト体32の回転は、ナツ
ト体32とネジ結合した射出駆動軸33の直線運動に変
換され、該射出駆動軸33と結合された連結体34、該
連結体34と結合された駆動体35へと直線運動として
伝達されるようになっている。そして、上記駆動体35
には、前記チャージ駆動軸28が回転のみ自在であるよ
うに保持されていて、駆動体35の図示左右方向の前後
動によって、チャージ駆動軸28#、びに前記スクリュ
ー6が前後に直線運動するようになっている。即ち、第
2モータ23の回転によって、スクリュー6は第4図の
前進射出位置と図示せぬ後退位置との間を移送される共
に、第2モータ23の高速微少量正逆転によって、スク
リュー6は軸方向の振動M!lJを付与されるようにも
なっている。また、この第2モータ23は背圧制御も司
どるようになっている。Further, the rotation of the second motor 23 is controlled by the rotation of the second motor 23.
The rotation of the nut body 32 is transmitted to the gear 30 fixed to the output shaft 29, the gear 31 meshing with the gear 30, and the collar 1 unit 32 that rotates integrally with the gear 31. This is converted into a linear motion of the injection drive shaft 33, and is transmitted as a linear motion to a coupling body 34 coupled to the injection drive shaft 33 and a drive body 35 coupled to the coupling body 34. Then, the driving body 35
, the charge drive shaft 28 is held so as to be rotatable only, and the charge drive shaft 28# and the screw 6 are linearly moved back and forth by the back and forth movement of the drive body 35 in the horizontal direction shown in the figure. It has become. That is, by the rotation of the second motor 23, the screw 6 is moved between the forward injection position shown in FIG. Axial vibration M! It is also now granted lJ. The second motor 23 also controls back pressure.
なお、36は、図示せぬ射出装置のベース部材と一体化
されたヘッドストックで、ホッパー37から供給される
樹脂材料を首記加熱シリンダ1内へ導くための開孔38
が形成されている。なおまた、図示では簡略化しである
が、前記連結体34には射出圧力センサが設けられてい
る。Note that 36 is a headstock integrated with a base member of an injection device (not shown), and has an opening 38 for guiding the resin material supplied from the hopper 37 into the heating cylinder 1.
is formed. Although it is simplified in the drawing, the coupling body 34 is provided with an injection pressure sensor.
前述した如く各種設定情報を予め入力され、また各種セ
ンサ情報の供給を受ける前記演算制御手段14は、D/
A変換器16、ドライバ回路39を介して前記第1モー
タ22を駆動・制御し、また、同じ<D/A変換器16
、ドライバ回路40を介して前記第2モータ23を駆動
・制御する。As mentioned above, the arithmetic control means 14 is inputted with various setting information in advance and is supplied with various sensor information.
The first motor 22 is driven and controlled via the A converter 16 and the driver circuit 39, and the same <D/A converter 16
, drives and controls the second motor 23 via the driver circuit 40.
上記した構成において、運転時の1シヨツトサイクルの
開始時にはスクリュー6は第4図示の前進位置にあり、
この状態で前記演算制御手段14が第1モータ22を所
定回転数で一方向に回転駆動してスクリュー6を一方向
に回転させると共に。In the above configuration, at the start of one shot cycle during operation, the screw 6 is in the forward position shown in FIG.
In this state, the arithmetic and control means 14 rotates the first motor 22 in one direction at a predetermined rotation speed to rotate the screw 6 in one direction.
第2モータ23をしてスクリュー6を振動させる。The second motor 23 is activated to vibrate the screw 6.
これによって、ホッパー37から供給された樹脂材料が
スクリュー6の溝に沿って混練・溶融されつつスクリュ
ー6の先端部に送られる。また、同時に演算制御装置1
4は、第2モータ23をスクリュー6が後退をする方向
へ駆動し、これによって、スクリュー6はその先端部に
貯えられ始めた溶PA樹i量に応じて後退を始める。As a result, the resin material supplied from the hopper 37 is kneaded and melted along the grooves of the screw 6 and sent to the tip of the screw 6. At the same time, the arithmetic and control unit 1
4 drives the second motor 23 in the direction in which the screw 6 retreats, and thereby the screw 6 begins to retreat in accordance with the amount of molten PA tree i that has begun to be stored at its tip.
そして、スクリュー6の振動を伴う回転によってスクリ
ュー先端部に貯えられた溶F71樹脂からの反力が所定
圧に達すると、演算制御装置14は第2モータ23をし
てこの反力に抗する背圧を一定に保つべくスクリュー6
の後退速度を制御させつつ、これに複合してスクリュー
6に振g!jJ!jJ作を持続させる。そして、スクリ
ュー6の後退位置が所定位置、換言するならスクリュー
6の先端部に貯えられた溶融樹脂が1ショット分の分量
に達した時点で、演算制御手段14はスクリュー6の回
転と振動を停止させる。そして、次のサイクルの型締が
完了した時点で、第2モータ23をしてスクリュー6を
急速前進させて、スクリュー6の先端部に貯えられた溶
融樹脂を図示せぬ金型装置内へ射出するようになってい
る。When the reaction force from the molten F71 resin stored at the tip of the screw reaches a predetermined pressure due to the rotation of the screw 6 accompanied by vibration, the arithmetic and control device 14 activates the second motor 23 to act as a backing force to resist this reaction force. Screw 6 to keep the pressure constant
While controlling the backward speed of the g! jJ! Continuing jJ's work. Then, when the retracted position of the screw 6 reaches a predetermined position, in other words, when the amount of molten resin stored at the tip of the screw 6 reaches the amount equivalent to one shot, the calculation control means 14 stops the rotation and vibration of the screw 6. let Then, when the mold clamping of the next cycle is completed, the second motor 23 is activated to rapidly move the screw 6 forward, and the molten resin stored at the tip of the screw 6 is injected into the mold device (not shown). It is supposed to be done.
該実施例においても、混練・可塑化工程時には。Also in this example, during the kneading and plasticizing steps.
スクリュー6は回転運動に振動運動を付加された複合運
動を行っており、前記実施例と同等の効果を奏すること
が出来る。The screw 6 performs a compound motion in which a vibrational motion is added to a rotational motion, and the same effect as in the embodiment described above can be achieved.
なお、上述した両実施例においてはスクリュー6に振動
を与えるようにしているが、前記加熱シリンダ1に振動
を与えるようにしても同等の効果が期待できる。In both of the embodiments described above, the screw 6 is vibrated, but the same effect can be expected even if the heating cylinder 1 is vibrated.
[発明の効果]
叙上のように本発明によれば、一種類のスクリューで比
較的広範な樹脂材料を高均一に可塑化可能な射出成形機
の射出装置を提供でき、その産業的価値は多大である。[Effects of the Invention] As described above, according to the present invention, it is possible to provide an injection device for an injection molding machine that can highly uniformly plasticize a relatively wide range of resin materials with one type of screw, and its industrial value is high. It's a huge amount.
第1図〜第3図は本発明の1実施例に係り、第1図は射
出成形機の射出′!A置の説明図、第2図iよ流動域に
おける樹脂の挙動を模式的に示す説明図、第3図は背圧
とスクリュー位置との関係を示す説明図、第4図は本発
明の他の実施例に係る射出成形機の射出装置の説明図で
ある。
1・・・・・・加熱シリンダ、2 ・・・・バンドヒー
タ、4・・・・・・ノズル、5・・・・・・ヘッドスト
ック、6・・・・・スクリュー、7・・・・・・油圧モ
ータ、8・・・・・・油圧シリンダ、14・・・・・・
演算制御手段、17.18・・・・・・サーボアンプ、
19.20・・・・・サーボバルブ、22・・・・・第
1電動サーボモータ、23・・・・・第2電動サーボモ
ータ、39.40・・・・・ドライバ回路。1 to 3 relate to one embodiment of the present invention, and FIG. 1 shows the injection '! of an injection molding machine! Fig. 2 is an explanatory diagram schematically showing the behavior of the resin in the flow zone, Fig. 3 is an explanatory diagram showing the relationship between back pressure and screw position, and Fig. 4 is an explanatory diagram showing the relationship between back pressure and screw position. FIG. 2 is an explanatory diagram of an injection device of an injection molding machine according to an embodiment of the present invention. 1... Heating cylinder, 2... Band heater, 4... Nozzle, 5... Head stock, 6... Screw, 7... ...Hydraulic motor, 8...Hydraulic cylinder, 14...
Arithmetic control means, 17.18... Servo amplifier,
19.20... Servo valve, 22... First electric servo motor, 23... Second electric servo motor, 39.40... Driver circuit.
Claims (1)
混練・可塑化すると共に、射出シリンダによつて前記ス
クリューを急速前進させて溶融樹脂を金型内へ射出する
射出成形機の射出装置において、前記スクリューの回転
中に、該スクリューと前記加熱シリンダとを軸方向に相
対振動させて、樹脂材料を混練・可塑化(チャージ)す
るようにしたことを特徴とする射出成形機の射出装置。In an injection device of an injection molding machine, the resin material is kneaded and plasticized by rotation of a screw in a heating cylinder, and the screw is rapidly advanced by an injection cylinder to inject the molten resin into a mold. An injection device for an injection molding machine, wherein the screw and the heating cylinder are vibrated relative to each other in the axial direction while the screw is rotating to knead and plasticize (charge) a resin material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17712988A JPH0226722A (en) | 1988-07-18 | 1988-07-18 | Injection apparatus of injection molding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17712988A JPH0226722A (en) | 1988-07-18 | 1988-07-18 | Injection apparatus of injection molding machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0226722A true JPH0226722A (en) | 1990-01-29 |
Family
ID=16025680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17712988A Pending JPH0226722A (en) | 1988-07-18 | 1988-07-18 | Injection apparatus of injection molding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0226722A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2308826A (en) * | 1996-01-02 | 1997-07-09 | Thermold Partners Lp | Process and apparatus for applying an oscillating force to molten material in a mould |
EP0930144A2 (en) * | 1998-01-20 | 1999-07-21 | MANNESMANN Aktiengesellschaft | Injection moulding machine and operating method therefor |
CN1314527C (en) * | 2005-03-08 | 2007-05-09 | 华南理工大学 | Injector screw axial pulse displacement method and apparatus |
JP2008082207A (en) * | 2006-09-26 | 2008-04-10 | Yanmar Co Ltd | Exhaust muffler of engine generation device |
JP2015080898A (en) * | 2013-10-22 | 2015-04-27 | 東芝機械株式会社 | Measurement device, plasticization device, injection device, molding device, and method for producing molded part |
CN109268186A (en) * | 2018-11-26 | 2019-01-25 | 北京理工大学 | A kind of fuel injector test device and test method |
CN111452315A (en) * | 2020-04-13 | 2020-07-28 | 金晓 | Prevent material advancing device for plastic injection molding machine of curtain coating |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50121357A (en) * | 1974-03-11 | 1975-09-23 |
-
1988
- 1988-07-18 JP JP17712988A patent/JPH0226722A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50121357A (en) * | 1974-03-11 | 1975-09-23 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2308826A (en) * | 1996-01-02 | 1997-07-09 | Thermold Partners Lp | Process and apparatus for applying an oscillating force to molten material in a mould |
US5770131A (en) * | 1996-01-02 | 1998-06-23 | Thermold Partners, L.P. | Method and apparatus for applying an oscillating force on a molten material |
GB2308826B (en) * | 1996-01-02 | 2000-03-29 | Thermold Partners Lp | Method and apparatus for applying an oscillating force to molten material in a mold |
EP0930144A2 (en) * | 1998-01-20 | 1999-07-21 | MANNESMANN Aktiengesellschaft | Injection moulding machine and operating method therefor |
EP0930144A3 (en) * | 1998-01-20 | 2000-08-23 | MANNESMANN Aktiengesellschaft | Injection moulding machine and operating method therefor |
CN1314527C (en) * | 2005-03-08 | 2007-05-09 | 华南理工大学 | Injector screw axial pulse displacement method and apparatus |
JP2008082207A (en) * | 2006-09-26 | 2008-04-10 | Yanmar Co Ltd | Exhaust muffler of engine generation device |
JP2015080898A (en) * | 2013-10-22 | 2015-04-27 | 東芝機械株式会社 | Measurement device, plasticization device, injection device, molding device, and method for producing molded part |
CN109268186A (en) * | 2018-11-26 | 2019-01-25 | 北京理工大学 | A kind of fuel injector test device and test method |
CN111452315A (en) * | 2020-04-13 | 2020-07-28 | 金晓 | Prevent material advancing device for plastic injection molding machine of curtain coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60174623A (en) | Injection molding machine | |
KR20100055502A (en) | Injection molding machine | |
JPS61220817A (en) | Measuring and kneading system for injection molding machine | |
JP2022020271A (en) | Injection molding machine, injection molding method of the same, and program | |
JPH0226722A (en) | Injection apparatus of injection molding machine | |
US5028373A (en) | Method for controlling injection unit of injection molding machine | |
JPH0226721A (en) | Injection apparatus of injection molding machine | |
JPH01238917A (en) | Injecting method and apparatus for injection molder | |
JPS60135224A (en) | Kneading method in injection molding machine | |
JP2638626B2 (en) | Feedback control method for injection molding machine | |
JPH0226720A (en) | Purging in injection apparatus of injection molding machine | |
JPH09207180A (en) | Screw preplasticating injection molding machine | |
JP2809347B2 (en) | Injection mechanism of injection molding machine | |
JP5410663B2 (en) | Injection molding machine | |
JPS6110425A (en) | Injection molding machine | |
JPH03247433A (en) | Injection molding machine | |
JPH0439410B2 (en) | ||
JPS645809B2 (en) | ||
EP3222403A1 (en) | Injection unit | |
JP6361787B1 (en) | 2-plate injection system | |
JP4532777B2 (en) | Toggle link type injection molding mechanism | |
JP3366042B2 (en) | Injection control method for servo motor driven injection molding machine and servo motor driven injection molding machine | |
JPS62236714A (en) | Extrusion molding | |
JPS645808B2 (en) | ||
JP2777393B2 (en) | Injection drive mechanism of electric injection molding machine |