JPH02267158A - Refractory for metallurgy - Google Patents

Refractory for metallurgy

Info

Publication number
JPH02267158A
JPH02267158A JP1086577A JP8657789A JPH02267158A JP H02267158 A JPH02267158 A JP H02267158A JP 1086577 A JP1086577 A JP 1086577A JP 8657789 A JP8657789 A JP 8657789A JP H02267158 A JPH02267158 A JP H02267158A
Authority
JP
Japan
Prior art keywords
cao
mgo
refractory
melting point
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086577A
Other languages
Japanese (ja)
Inventor
Yuji Narita
成田 雄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1086577A priority Critical patent/JPH02267158A/en
Publication of JPH02267158A publication Critical patent/JPH02267158A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an MgO-CaO refractory for metallurgy having excellent corrosion resistance and digestion resistance by calcining a composition composed of an MgO-CaO refractory aggregate having a specific composition and a calcium compound having a specific melting point. CONSTITUTION:The objective refractory can be produced by calcining a composition composed of an MgO-CaO refractory aggregate having an MgO/CaO molar ratio of 100/0 to 60/40 and one or more kinds of calcium compounds having a melting point of <=1500 deg.C. The calcium compound is e.g. CaF2, CaCN2, CaCl2 or Ca(NO3)2 and its amount is preferably about 0.05-0.3 mol per 1mol of the MgO in the aggregate particle. The particle size of the compound is smaller the better. The calcination is carried out preferably by heat-treating the composition at a temperature near the melting point of the compounded calcium compound and then calcining at <=1800 deg.C or thereabout. A dense MgO-CaO metallurgical refractory having excellent corrosion resistance and digestion resistance can be produced by this process. When a carbon component is added to the clinker produced by the above heat-treatment, an MgO-CaO-C metallurgical refractory capable of suppressing the MgO-C reaction can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MgO−CaO系またはMgO−Ca0−C
系の冶金用耐火物に関し、詳細には、ミクロ組織中にC
aOが富化された、耐食性および耐消化性に優れた精錬
炉内張り用等に使用する冶金用耐火物に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to MgO-CaO system or MgO-CaO-C
Regarding metallurgical refractories of
The present invention relates to a metallurgical refractory that is enriched with aO and has excellent corrosion resistance and digestion resistance, and is used for lining a refining furnace.

(従来の技術) 精錬炉、特に転炉用の内張り祠としては、従来からマグ
ネシア−ドロマイト系耐火物が使用されてきた。しかし
、近年、操業条件が苛酷化し、鋼の清浄化の要求が高ま
ると共に、従来より優れた耐食性を有する耐火物の開発
が望まれ、種々の提案がなされてきた。
(Prior Art) Magnesia-dolomite-based refractories have conventionally been used as linings for smelting furnaces, especially converters. However, in recent years, as operating conditions have become more severe and demands for steel cleaning have increased, there has been a desire to develop refractories with better corrosion resistance than before, and various proposals have been made.

例えば、特開昭58−74564号公報では、MgOに
微細化したCaOを添加した焼成耐火物が提案されてい
る。これは、MgOをマトリックスとして微細なCaO
を均一に分散させることにより、MgOが耐スポーリン
グ性を付与し、CaOがスラグを高融点化することで耐
火物内へのスラグの浸透を防止している。しかし、この
耐火物は微細なCaOを含有しているため、耐消化性に
劣り、組織の脆弱化が著しい。そのため、取扱い難いと
いう問題点があった。
For example, JP-A-58-74564 proposes a fired refractory in which finely divided CaO is added to MgO. This is fine CaO using MgO as a matrix.
By uniformly dispersing the slag, MgO imparts spalling resistance, and CaO increases the melting point of the slag, thereby preventing the slag from penetrating into the refractory. However, since this refractory contains fine CaO, it has poor digestion resistance and its structure is significantly weakened. Therefore, there was a problem that it was difficult to handle.

また、CaOクリンカー中に、100p以下のMgO結
晶を焼結作用によって生成させると同時に、微小クラン
クを形成させることにより、耐スポーリング性を付与し
た耐火物が開発されている。しかし、この耐火物は、前
記焼結時の温度(1800〜2500’C)を低下させ
るために焼結助剤を通常含有するため、安定した耐食性
を得ることが難しい。さらに、形成された微小クシツク
の存在は、結果的にはCaOクリンカーの比表面積を増
大させることになり、CaOの消化作用を助長するため
好ましくない。
In addition, a refractory has been developed in which spalling resistance is imparted by generating MgO crystals of 100p or less in CaO clinker by sintering and at the same time forming microcranks. However, since this refractory usually contains a sintering aid to lower the temperature (1800 to 2500'C) during sintering, it is difficult to obtain stable corrosion resistance. Furthermore, the presence of the formed microcrystals results in an increase in the specific surface area of the CaO clinker, which is undesirable because it promotes the digestive action of CaO.

一方、上記焼成耐火物の短所を根本的に改善し、高い耐
食性を示す耐火物として、高純度のMg0−C系不焼成
煉瓦が開発されている。この煉瓦はCaOを含まないた
め、CaOの消化に伴う組織の脆弱化の心配がなく、通
常の転炉操業においては画期的な効果を示すものである
が、使用条件によってはMg0−C反応による組織劣化
が生しる。特に、ステンレス鋼の溶製においてこの煉瓦
を使用すると、低塩基度のスラグに対する耐食性が劣る
ことが判明した。さらにCrzOsを含むスラグの場合
には、配合カーボンが酸化されるため、煉瓦組織の脆弱
化が著しく、従来のMgO−CaO系焼成耐火物より耐
食性が劣る場合もある。
On the other hand, high-purity Mg0-C-based unfired bricks have been developed as refractories that fundamentally improve the disadvantages of the above-mentioned fired refractories and exhibit high corrosion resistance. Since this brick does not contain CaO, there is no need to worry about weakening of the structure due to CaO digestion, and it shows a revolutionary effect in normal converter operation. However, depending on the usage conditions, Mg0-C reaction may occur. This results in tissue deterioration. In particular, it has been found that when this brick is used in the melting of stainless steel, its corrosion resistance against low basicity slag is poor. Furthermore, in the case of slag containing CrzOs, the blended carbon is oxidized, so the brick structure is significantly weakened, and the corrosion resistance may be inferior to that of conventional fired MgO--CaO-based refractories.

このよ・うな状況下に、最近では、不焼成のMg0Ca
O−C系耐火物の開発が行われてきた。
Under these circumstances, recently unfired Mg0Ca
OC-based refractories have been developed.

特公昭61−27349号公報には、Fe2O3含有量
0.1%以下、MgO/CaO比が10/90〜90/
10の組成を有し、かつ粒度が0.2 mm以」二の電
融MgO−CaOクリンカーを主素材として含有する耐
火物について記載されている。この耐火物は第二成分と
してカーボン質原料を含む。しかし、この耐火物は電融
の門gOCaOクリンカーを用いているため、クリンカ
ーの製造は、Fe2O3等の助剤を添加した場合でも2
000℃を超える裔温で行う必要があるため、製造コス
トが高くつく。また、このクリンカーは、MgOとCa
Oとが固溶体をつくる組成範囲が狭(、融点の差が大き
い(MgO:2800°c、 cao:2570’c)
ため、電融後の凝固過程において分別結晶作用が働き、
Mg。
Japanese Patent Publication No. 61-27349 states that the Fe2O3 content is 0.1% or less and the MgO/CaO ratio is 10/90 to 90/
It describes a refractory mainly containing electrofused MgO--CaO clinker having a composition of 10 and a particle size of 0.2 mm or more. The refractory includes a carbonaceous material as a second component. However, since this refractory uses electrofused gOCaO clinker, clinker production is difficult even when auxiliary agents such as Fe2O3 are added.
Since it is necessary to carry out the process at a temperature exceeding 000°C, the manufacturing cost is high. In addition, this clinker contains MgO and Ca.
The composition range in which O forms a solid solution is narrow (and the difference in melting point is large (MgO: 2800°C, cao: 2570'C)
Therefore, the fractional crystallization action works in the solidification process after electric melting,
Mg.

粒、Ca0粒の生成と粗大化が生し易い。そのため、C
aOとMgOとが均一に分散された状態にあるクリンカ
ーの回収率が低く、この点からも製造コストが高くなる
ため、工業的実用化は困難である。
The formation and coarsening of Ca0 grains are likely to occur. Therefore, C
The recovery rate of clinker in which aO and MgO are uniformly dispersed is low, and this also increases the production cost, making it difficult to put it into practical use on an industrial scale.

(発明が解決しようとする課題) 上述したように、MgO−CaO系あるいはMgO−C
a0C系の耐火物は、そのミクロ組織中にCaOを均一
に分散させる(CaO富化する)ことによって、耐食性
が改善されることが判明しているにもかかわらず、Ca
O富化のために耐火物中へCaOを供給する最適な方法
が見い出されていないというのが現状である。特に、炭
素分を含有する煉瓦に関しては、Mg0−C反応の抑制
手段でもあるCaO富化が可能な、低価格で安定した製
造方法が確立されていない。
(Problem to be solved by the invention) As mentioned above, MgO-CaO system or MgO-C
Although it is known that the corrosion resistance of a0C-based refractories is improved by uniformly dispersing CaO (CaO enrichment) in the microstructure, Ca
The current situation is that an optimal method for supplying CaO into refractories for O enrichment has not been found. In particular, with regard to bricks containing carbon, a low-cost and stable manufacturing method that enables CaO enrichment, which is also a means of suppressing the Mg0-C reaction, has not been established.

このような現状は、酸化物原料が高融点のMgOとCa
Oとの組合せであることに起因している。前記従来の耐
火物に対するCaO富化法の欠点を以下にまとめる。
The current situation is that the oxide raw materials are MgO and Ca, both of which have high melting points.
This is due to the combination with O. The disadvantages of the CaO enrichment method for the conventional refractories are summarized below.

■微細化C,a Oの添加による方法では、耐消化性に
劣るため組織が脆化し易い。
■Refined C, a In the method of adding O, the structure tends to become brittle due to poor digestion resistance.

■MgOとCaOとの焼結によりCaOの均一分散粒を
製造する方法においては、クリンカーの製造温度を下げ
るため焼結助剤の配合量を多くするが、それに伴い耐食
性の性能自体が低下することになる。
■In the method of producing uniformly dispersed particles of CaO by sintering MgO and CaO, the amount of sintering aid added is increased in order to lower the clinker production temperature, but the corrosion resistance performance itself decreases accordingly. become.

■電融MgO−CaOクリンカーによる方法では、Ca
Oの均一分散粒が得られ難いため、製造コストが高く、
工業的実用性が低い。
■In the method using electrofused MgO-CaO clinker, Ca
Because it is difficult to obtain uniformly dispersed particles of O, the manufacturing cost is high;
Industrial practicality is low.

また、これらのいずれの方法も、MgO−CaO系クリ
ンカーに炭素分を配合して得られるMgO−CaO−C
系耐火物に対して、M、0−C反応を抑制するための十
分なCaO富化を行うことができず、前記従来法は製造
上の安定性に欠けるものである。
In addition, in any of these methods, MgO-CaO-C obtained by blending carbon content with MgO-CaO-based clinker
It is not possible to sufficiently enrich the refractory with CaO to suppress the M, 0-C reaction, and the conventional method lacks manufacturing stability.

本発明の目的は、上記従来技術の問題点を有しない、耐
食性と耐消化性とに優れたMgO−CaO系耐火物、お
よびMg0−C反応の抑制が可能なMgO−Ca0−C
系耐火物を提供することである。
The object of the present invention is to provide an MgO-CaO-based refractory that does not have the problems of the above-mentioned prior art and has excellent corrosion resistance and digestion resistance, and an MgO-CaO-C refractory that can suppress the Mg0-C reaction.
The purpose of the present invention is to provide refractories based on refractories.

(課題を解決するだめの手段) 本発明者らは、上記目的を達成するために種々検討を重
ねた結果、従来は、耐火物マI・リックス中にCaO富
化を行うために高融点のCaOをそのまま、またはこれ
を微細化したものを供給していたが、これに代えてCa
Oより、融点の低いカルシウム化合物を骨材表面に供給
することにより比較的低温度でCaO冨化を好都合に行
うことができることを見い出し、本発明を完成させた。
(Means for solving the problem) As a result of various studies to achieve the above object, the present inventors have found that conventionally, in order to enrich CaO in a refractory matrix, high melting point Previously, CaO was supplied as it is or as a finely divided version of CaO, but instead of CaO,
The present invention was completed based on the discovery that CaO enrichment can be advantageously carried out at a relatively low temperature by supplying a calcium compound with a lower melting point than O to the surface of the aggregate.

ここに本発明は、MgO/CaOがモル比で]0010
〜60/40であるMgO−CaO系耐火骨材と、15
00’C以下の融点を有するカルシウム化合物の1種も
しくは2種以上とを含有する配合物を焼成して得たMg
OCaO系の冶金用耐火物である。
Herein, the present invention provides that MgO/CaO has a molar ratio of ]0010
~60/40 MgO-CaO-based refractory aggregate, and 15
Mg obtained by firing a compound containing one or more calcium compounds having a melting point of 00'C or less
It is an OCaO-based metallurgical refractory.

また、別の面からは本発明は、MgO/CaOがモル比
で10010〜60/40であるMgO−CaO系耐火
骨材と、1500℃以下の融点を有するカルシウム化合
物の1種もしくは2種以上とを含有する配合物を上記カ
ルシウム化合物の融点の±10%の温度域で熱処理する
ことにより得たMgO−CaO系クリンカーに、炭素分
を配合して成る、MgO−Ca0−C系の冶金用耐火物
である。
In addition, from another aspect, the present invention provides an MgO-CaO refractory aggregate with a molar ratio of MgO/CaO of 10010 to 60/40, and one or more calcium compounds having a melting point of 1500°C or less. MgO-CaO-C metallurgical use, which is made by blending a carbon component into an MgO-CaO-based clinker obtained by heat-treating a compound containing the above at a temperature range of ±10% of the melting point of the calcium compound. It is refractory.

(作用) 次に、本発明において耐火物組成を上述のように限定し
た理由を詳述する。
(Function) Next, the reason why the refractory composition is limited as described above in the present invention will be explained in detail.

本発明の耐火物においては、耐火骨材として、MgO/
CaOがモル比で10010〜60/40の範囲にある
組成のMgO−CaOクリンカーを使用する。すなわち
F′1goクリンカー単独、あるいは、例えばMgO−
CaOクリンカーとCaOクリンカーとを配合して、M
gO/CaO比が前記の範囲(即ち、CaO含有が骨材
全体の40モル%以下)となるようにした配合物を骨相
として用いる。使用するMgO−CaO系骨材中のCa
Oの含有量が40モル%を超えると、精錬炉川内張り材
としての耐食性および熱間強度が低下するため、好まし
くない。これはCaO系耐火物そのものの焼結性の良否
とは無関係である。この耐火骨材粒子の粒度は、粒径が
0.05mm以上であることが好ましい。粒径0.05
mm未満の粒子が存在すると、この微粒子がスラグに含
まれる5iO7と反応して低融点化合物を生成し、マト
リックスを脆弱化することになる。
In the refractory of the present invention, MgO/
An MgO-CaO clinker having a composition in which CaO is in a molar ratio of 10010 to 60/40 is used. That is, F'1go clinker alone or, for example, MgO-
By blending CaO clinker and CaO clinker, M
A blend having a gO/CaO ratio within the above range (ie, CaO content of 40 mol% or less of the total aggregate) is used as the bone phase. Ca in the MgO-CaO aggregate used
If the content of O exceeds 40 mol%, the corrosion resistance and hot strength as a smelting furnace lining material will decrease, which is not preferable. This has nothing to do with the quality of the sinterability of the CaO-based refractory itself. The particle size of the refractory aggregate particles is preferably 0.05 mm or more. Particle size 0.05
If particles smaller than mm are present, these fine particles will react with 5iO7 contained in the slag to produce a low melting point compound and weaken the matrix.

本発明にかかる冶金用耐火物は、前記骨材に1500℃
以下の融点を有するカルシウム化合物を含有させたもの
から得られる。このカルシウム化合物の例としては、C
aFz (融点:1373℃) 、CaCNz(同:1
300℃) 、CaCQz(同ニア74°c)、および
Ca(N。
The metallurgical refractory according to the present invention has a temperature of 1500°C for the aggregate.
It is obtained by containing a calcium compound having the following melting point. Examples of this calcium compound include C
aFz (melting point: 1373°C), CaCNz (melting point: 1
300°C), CaCQz (74°C), and Ca(N.

3)2(同:561℃)が挙げられる。これらの1種も
しくは2種以上を前記骨材中に配合する。このような比
較的低融点のカルシウム化合物を骨材中に配合し、カル
シウム化合物の融点付近の温度で熱処理を行うと、配合
したカルシウム化合物が骨材粒子表面で溶融し、Caイ
オンが骨材粒子内部に拡散するとともに、Caに化合し
ていた反応性の部位はガス化して大気中に放出され、一
方過剰なCaイオンは骨材粒子表面をCaOとして被覆
して堆積することを確認した。このときに、骨材粒子の
内部および表面におけるCaの分布は均一であり、した
がって従来より低温でCaO冨化を行うことができる。
3) 2 (same: 561°C). One or more of these may be blended into the aggregate. When such a relatively low melting point calcium compound is blended into aggregate and heat treated at a temperature near the melting point of the calcium compound, the blended calcium compound melts on the surface of the aggregate particles, and Ca ions are absorbed into the aggregate particles. It was confirmed that while diffusing inside, the reactive sites combined with Ca were gasified and released into the atmosphere, while excessive Ca ions coated the aggregate particle surfaces as CaO and were deposited. At this time, the distribution of Ca inside and on the surface of the aggregate particles is uniform, and therefore CaO enrichment can be performed at a lower temperature than conventionally.

融点が1500℃を超えるカルシウム化合物の場合には
、MgO等の酸化物骨材内部へのCaイオンの拡散をす
みやかに行うことができない。したがって、融点が25
00℃を超えるCaOは除外される。また、Ca003
等のように、常圧下1500℃以下の温度で熱分解する
化合物も使用できない。さらに、金属CaあるいはCa
合金についても、反応性が著しく高いために取扱いが困
難であること、また、合金中に含まれるCa以外の成分
(例えばSi、、Fe)による酸化物が煉瓦の融点を低
下させることになることから耐食性に問題があるため使
用できない。
In the case of a calcium compound whose melting point exceeds 1500° C., Ca ions cannot be quickly diffused into the oxide aggregate such as MgO. Therefore, the melting point is 25
CaO above 00°C is excluded. Also, Ca003
Compounds that thermally decompose at temperatures below 1500° C. under normal pressure, such as the following, cannot be used. Furthermore, metal Ca or Ca
The alloy is also difficult to handle due to its extremely high reactivity, and the oxides of components other than Ca (e.g. Si, Fe) contained in the alloy lower the melting point of the brick. Cannot be used due to problems with corrosion resistance.

カルシウム化合物の耐火骨材に対する配合量は、骨材粒
子中のMgO1モルに対して0.05〜0.3モルであ
ることが好ましい。0.05モル未満の場合、Caイオ
ンが骨材粒子内部に拡散する量の不足により、カルシウ
ム化合物の配合に伴う作用のうち、Mg0CaO−C系
耐火物におけるMg0−C反応の抑制を充分に行うこと
ができない。0.3モルより多い場合には、骨材粒子表
面に生成する活性に冨んだCaO被覆が過剰となり、焼
結性はよくなるが、耐消化性は著しく悪くなる。
The amount of calcium compound added to the refractory aggregate is preferably 0.05 to 0.3 mol per mol of MgO in the aggregate particles. If the amount is less than 0.05 mol, the amount of Ca ions diffused into the aggregate particles is insufficient, and the Mg0-C reaction in the Mg0CaO-C refractory, which is one of the effects associated with the addition of calcium compounds, is sufficiently suppressed. I can't. If the amount is more than 0.3 mol, the active CaO coating formed on the surface of the aggregate particles will be excessive, and the sinterability will be improved, but the digestion resistance will be significantly deteriorated.

配合するカルシウム化合物の粒度は、配合量である骨材
粒子の粒度により変化させる。骨材粒子の粒径をdとす
ると、421mm(粗粒)の場合には粒径1mm以下の
、0.15mm≦d<1mm(中粒)の場合には粒径0
.15mm以下の、0.05mm≦d <0.15mm
(微粒)の場合には0.05mm以下のカルシウム化合
物を配合する。すなわち、骨材粒子より常に粒度の低い
配合カルシウム化合物粒子を配合する。配合するCa化
合物の粒度が骨材粒子と同じか、それより大きい場合に
はCaO主体の粒子塊を形成してしまい、活性に冨む多
結晶のCa0粒の生成や偏析という不都合がある。また
、骨材中に均一にCaO富化を行うためには、配合させ
るカルシウム化合物は微粉である程好ましい。
The particle size of the calcium compound to be blended is changed depending on the particle size of the aggregate particles, which is the blended amount. If the particle size of the aggregate particles is d, the particle size is 1 mm or less in the case of 421 mm (coarse particles), and 0 in the case of 0.15 mm≦d<1 mm (medium particles).
.. 15mm or less, 0.05mm≦d<0.15mm
(Fine particles), a calcium compound of 0.05 mm or less is blended. That is, the blended calcium compound particles are always blended with a particle size lower than that of the aggregate particles. If the particle size of the Ca compound to be blended is the same as or larger than the aggregate particles, particle agglomerates mainly composed of CaO will be formed, resulting in the inconvenience of generation and segregation of polycrystalline Ca0 particles rich in activity. Furthermore, in order to uniformly enrich CaO in the aggregate, it is preferable that the calcium compound to be blended be in the form of a fine powder.

本発明にかかる冶金用耐火物のうちの1つは、前記の耐
火骨材に融点が1500℃以下のカルシウム化合物を添
加して得た配合物に対して、従来の焼成耐火物と同様に
、常用の有機系バインダー等を添加して成形、焼成する
ことにより得られる。従来のMgO−CaO系焼成耐火
物において、整粒した骨材を1800℃以下で焼成した
ものは緻密な組織を形成することが知られているが、本
発明の焼成耐火物の場合にも、同程度の温度で焼成する
ことにより緻密な組織を形成している骨材粒子の表面に
活性に冨むCaO被覆が形成された耐火物が得られる。
One of the metallurgical refractories according to the present invention is a compound obtained by adding a calcium compound having a melting point of 1500°C or less to the above-mentioned refractory aggregate, and, like conventional fired refractories, It can be obtained by adding a commonly used organic binder, molding and firing. In conventional MgO-CaO-based fired refractories, it is known that sized aggregates fired at 1800°C or lower form a dense structure, but in the case of the fired refractories of the present invention, By firing at a similar temperature, a refractory can be obtained in which an active CaO coating is formed on the surface of aggregate particles forming a dense structure.

また、組織の緻密化をいっそう高めるために、配合させ
たカルシウム化合物の融点近傍の温度に一旦保持した後
に焼成温度まで昇温しで焼成することが好ましい。この
場合も、配合化合物の良焼結性を勘案すると、1800
℃を超える温度での焼成は不必要である。
Further, in order to further increase the densification of the structure, it is preferable to once maintain the temperature near the melting point of the blended calcium compound and then raise the temperature to the firing temperature and fire it. In this case as well, taking into account the good sinterability of the blended compound, 1800
Calcining at temperatures above 0.degree. C. is unnecessary.

本発明の別の耐火物は、前記耐火骨材に融点が1500
℃以下のカルシウム化合物を配合させたものに、常用の
有機系バインダー等を添加して成形したものを熱処理す
ることによりMgO−CaO系クリンカーを得、これに
炭素分を配合し、さらにフェノール樹脂等の常用の結合
剤を添加することにより得られる。
Another refractory of the present invention is characterized in that the refractory aggregate has a melting point of 1500.
A MgO-CaO clinker is obtained by heat-treating a mixture of a calcium compound at ℃ or less, adding a commonly used organic binder, etc., and molding the mixture, and then adding a carbon component to this, and then adding a phenol resin, etc. by adding a customary binder.

ここに「熱処理」とはカルシウム化合物の融点近傍に加
熱する操作であり、カルシウム化合物の溶融、分解、カ
ルシウムイオンの拡散、そしてCaOによる被覆が行わ
れる加熱操作をいうものである。
Here, "heat treatment" refers to an operation of heating near the melting point of the calcium compound, which involves melting and decomposition of the calcium compound, diffusion of calcium ions, and coating with CaO.

なお、このときの熱処理温度は配合カルシウム化合物の
融点の+10%の温度であることが好ましく、+10%
を超えた温度で熱処理するとCaO被覆の生成速度が急
速になり、骨材中におけるCaO富化が不均一となる。
The heat treatment temperature at this time is preferably +10% of the melting point of the blended calcium compound;
Heat treatment at a temperature exceeding 100% increases the rate of formation of a CaO coating, resulting in non-uniform CaO enrichment in the aggregate.

−10%未満の温度では、熱処理時間が長くなり効率が
悪い。また、この熱処理温度は、骨材粒子の大きさによ
っても変化する。
If the temperature is less than -10%, the heat treatment time becomes long and the efficiency is poor. The heat treatment temperature also changes depending on the size of the aggregate particles.

上記「炭素分」としては黒鉛が例示される。Graphite is exemplified as the above-mentioned "carbon component".

なお、本発明に云う「冶金用j耐大物は金属精錬用装置
の内張り材として使用される耐火物一般を指称するもの
であり、特定的には製鋼用転炉の内張り材であるが、そ
のような具体的用途にのみ制限されるものではない。
In addition, the term "large metallurgical materials" used in the present invention refers to refractories used as lining materials for metal refining equipment in general, and specifically refers to refractories used as lining materials for steelmaking converters. It is not limited to such specific uses.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

111例」− 耐火骨材である粒径2〜0.05mmのFIgoクリン
カーおよびMgO−CaOクリンカー、ならびに粒径1
〜0.1mmの各低融点カルシウム化合物を、第1表に
示す割合で配合した。この混合物100部に対してポリ
プロピレン系バインダーを3.5%になるように配合し
、加熱・混練した。これを800 kg/cm2で直径
100 mm、高さ100 mmの形状に成形したもの
を、1200℃で2時間保持した後、1600℃で2時
間焼成した。また、比較例として、低融点カルシウム化
合物を配合しない耐火骨材を同様に成形した後、160
0℃で5時間焼成した。
Example 111 - FIgo clinker and MgO-CaO clinker with particle size 2-0.05 mm as refractory aggregates and particle size 1
~0.1 mm of each low melting point calcium compound was blended in the proportions shown in Table 1. A polypropylene binder was added in an amount of 3.5% to 100 parts of this mixture, and the mixture was heated and kneaded. This was molded at 800 kg/cm2 into a shape of 100 mm in diameter and 100 mm in height, held at 1200°C for 2 hours, and then fired at 1600°C for 2 hours. In addition, as a comparative example, a refractory aggregate without a low melting point calcium compound was molded in the same manner, and then
It was baked at 0°C for 5 hours.

得られた各耐火物中のCaO、MgO含有率を調べた。The CaO and MgO contents in each of the obtained refractories were examined.

また、各耐火物について、熱間強度と侵食性に対する試
験を行った。熱間強度は3点曲げ試験法により測定した
。侵食性の試験は、得られた耐火物の中心部を抜きとり
、内径60mmのルツボとしたものをサンプルとして行
った。このルツボの中にc/s=1.2 、FezOz
 5%のスラグと18−8ステンレス鋼(スラグ/メタ
ル比、0.2)とを入れ、1750℃で60分間保持し
、スラグ−メタル界面での侵食深さを求めた。比較例N
o、 1の侵食量を100としたときの指数で各侵食量
を示した。結果を第1表に示す。
Each refractory was also tested for hot strength and erosion resistance. Hot strength was measured by a three-point bending test method. The erodibility test was conducted by taking out the center of the obtained refractory and using it as a sample in a crucible with an inner diameter of 60 mm. In this crucible, c/s=1.2, FezOz
5% slag and 18-8 stainless steel (slag/metal ratio, 0.2) were placed and held at 1750°C for 60 minutes, and the depth of erosion at the slag-metal interface was determined. Comparative example N
Each amount of erosion was expressed as an index when the amount of erosion of o, 1 was set as 100. The results are shown in Table 1.

第  1  表 純度99%のMgO−CaOクリンカーを粗粒(粒径1
mm以上)、中粒(0,15≦粒径<1mm)、微粒(
0,05≦粒径<0.15)に分けた。同じ粒度のクリ
ンカー同士を第2表に示す割合で配合した混合物中に、
粗粒に対して100p、中粒に対して100/JI11
、微粒に対して50IIJ]nの粒度のCaNzを、含
有するMgOに対する割合で10%ずつ配合した。これ
に、ポリプロピレンバインダーを5重量%になるように
添加して混合したものを、それぞれステンレス鋼製容器
に入れて1000℃で熱処理した。得られたものを、は
じめの各混合クリンカーと同様の粒度区分で整粒して、
粗粒のものをクリンカー(八)、中粒のものをクリンカ
ー(B)、微粒のものをクリンカー(C)とした。この
熱処理された各クリンカーを第2表の割合で配合し、さ
らに人造黒鉛と適当量のフェノール樹脂とを加え、加熱
混練して実施例1と同様の形状に成形することにより、
Mg075%、Ca015%、C10%の組成の不焼成
MgO−Ca0−C煉瓦を製造した。なお、CaO量を
15%とするため中粒の電融クリンカーを用いた。比較
例として、前記熱処理クリンカーを含まず、前記MgO
−CaOクリンカーおよびCaO電融クリンカーを第2
表に示す割合で配合し製造した。得られた各耐火物につ
いて、実施例1と同様にして侵食量を調べた。結果を第
2表に示す。
Table 1 MgO-CaO clinker with a purity of 99% is coarsely granulated (particle size 1
mm or more), medium grains (0,15≦particle size <1 mm), fine grains (
0.05≦particle size<0.15). In a mixture of clinkers of the same particle size in the proportions shown in Table 2,
100p for coarse grains, 100/JI11 for medium grains
, CaNz having a particle size of 50IIJ]n was added to the fine particles at a ratio of 10% to the contained MgO. A polypropylene binder was added to the mixture at a concentration of 5% by weight, and the mixture was placed in a stainless steel container and heat-treated at 1000°C. The obtained product is sized in the same particle size classification as each mixed clinker at the beginning,
The coarse grained material was designated as clinker (8), the medium grained material was designated as clinker (B), and the fine grained material was designated as clinker (C). By blending each of the heat-treated clinkers in the proportions shown in Table 2, further adding artificial graphite and an appropriate amount of phenol resin, heating and kneading and molding into the same shape as in Example 1,
An unfired MgO-Ca0-C brick having a composition of 75% Mg, 15% Ca, and 10% C was produced. In addition, in order to set the amount of CaO to 15%, medium-sized electrofused clinker was used. As a comparative example, the heat-treated clinker was not included, and the MgO
- CaO clinker and CaO electrofused clinker
It was manufactured by blending in the proportions shown in the table. For each of the obtained refractories, the amount of erosion was investigated in the same manner as in Example 1. The results are shown in Table 2.

第  2  表 1に とにより、骨材組織中にCaOが富化されたものである
ため、耐食性とに優れ、さらに製造コス1〜も低い、工
業的に有用な耐火物である。また、 h。
As shown in Table 2, since CaO is enriched in the aggregate structure, it is an industrially useful refractory with excellent corrosion resistance and low manufacturing cost. Also, h.

Ca0−C系不焼成耐火物としては、従来の炭素含有塩
基性耐火物において問題であったMg0−C反応を抑制
することができる、優れた耐火物である。
As a Ca0-C-based unfired refractory, it is an excellent refractory that can suppress the Mg0-C reaction, which was a problem in conventional carbon-containing basic refractories.

Claims (2)

【特許請求の範囲】[Claims] (1)MgO/CaOがモル比で100/0〜60/4
0であるMgO−CaO系耐火骨材と、1500℃以下
の融点を有するカルシウム化合物の1種もしくは2種以
上とを含有する配合物を焼成して得たMgO−CaO系
の冶金用耐火物。
(1) MgO/CaO molar ratio is 100/0 to 60/4
An MgO-CaO metallurgical refractory obtained by firing a blend containing an MgO-CaO-based refractory aggregate having a melting point of 1,500° C. or less and one or more calcium compounds having a melting point of 1,500° C. or less.
(2)MgO/CaOがモル比で100/0〜60/4
0であるMgO−CaO系耐火骨材と、1500℃以下
の融点を有するカルシウム化合物の1種もしくは2種以
上とを含有する配合物を上記カルシウム化合物の融点の
±10%の温度域で熱処理することにより得たMgO−
CaO系クリンカーに、炭素分を配合して成る、MgO
−CaO−C系の冶金用耐火物。
(2) MgO/CaO molar ratio is 100/0 to 60/4
A mixture containing an MgO-CaO-based refractory aggregate having a temperature of 0.0 °C and one or more calcium compounds having a melting point of 1500°C or less is heat-treated in a temperature range of ±10% of the melting point of the calcium compound. MgO-
MgO made by blending carbon content with CaO-based clinker
-CaO-C based metallurgical refractory.
JP1086577A 1989-04-05 1989-04-05 Refractory for metallurgy Pending JPH02267158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086577A JPH02267158A (en) 1989-04-05 1989-04-05 Refractory for metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086577A JPH02267158A (en) 1989-04-05 1989-04-05 Refractory for metallurgy

Publications (1)

Publication Number Publication Date
JPH02267158A true JPH02267158A (en) 1990-10-31

Family

ID=13890863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086577A Pending JPH02267158A (en) 1989-04-05 1989-04-05 Refractory for metallurgy

Country Status (1)

Country Link
JP (1) JPH02267158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126064A (en) * 1993-10-27 1995-05-16 Kyushu Refract Co Ltd Magnesia-carbon-based refractories
CN110668833A (en) * 2019-10-28 2020-01-10 刘晓慧 Preparation method of magnesium-calcium-carbon composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126064A (en) * 1993-10-27 1995-05-16 Kyushu Refract Co Ltd Magnesia-carbon-based refractories
CN110668833A (en) * 2019-10-28 2020-01-10 刘晓慧 Preparation method of magnesium-calcium-carbon composite material

Similar Documents

Publication Publication Date Title
JPH0729847B2 (en) Magnesite-Carbon refractory
WO2007129752A1 (en) Process for production of alumina cement and prepared unshaped refractories
JPH0753600B2 (en) Molten steel container
JPH02267158A (en) Refractory for metallurgy
JP4388173B2 (en) Magnesia-carbonaceous unfired brick for lining of molten steel vacuum degassing equipment
JP3609245B2 (en) Manufacturing method of refractory raw materials
CN115335347A (en) Dephosphorization slag
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JPH09295857A (en) Carbon-containing brick containing aluminum oxycarbide
JPH0733513A (en) Magnesia-carbon brick and its production
JPH0317782B2 (en)
JP3121442B2 (en) Refractory
JP3853271B2 (en) Silicon iron nitride-containing powder and refractory
JPH0649610B2 (en) Method for producing digestion-resistant calcia clinker
JPS61266345A (en) Carbon-containing basic refractory brick
RU2223247C2 (en) Method of production of high-strength carbon- containing refractory material
JPS6024072B2 (en) Blast furnace gutter material
JPH03205362A (en) Graphite-silicon carbide refractory brick and production thereof
JP2962927B2 (en) Carbon-containing irregular refractories
JP2003128457A (en) Calcia clinker and refractory product obtained using the same
JP2516187B2 (en) Refractory for molten steel container
JPS647027B2 (en)
JPH01108158A (en) Refractory brick for refining molten metal
JPS62168629A (en) Casting mold
JPS63139063A (en) Molten ceramic particle and manufacture