JPH0226687B2 - - Google Patents

Info

Publication number
JPH0226687B2
JPH0226687B2 JP62190155A JP19015587A JPH0226687B2 JP H0226687 B2 JPH0226687 B2 JP H0226687B2 JP 62190155 A JP62190155 A JP 62190155A JP 19015587 A JP19015587 A JP 19015587A JP H0226687 B2 JPH0226687 B2 JP H0226687B2
Authority
JP
Japan
Prior art keywords
ring
reinforcing material
shaped reinforcing
seal body
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62190155A
Other languages
Japanese (ja)
Other versions
JPS6436913A (en
Inventor
Takashi Maeda
Hiroshi Suda
Takeshi Furukido
Toshuki Nishio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP62190155A priority Critical patent/JPS6436913A/en
Publication of JPS6436913A publication Critical patent/JPS6436913A/en
Publication of JPH0226687B2 publication Critical patent/JPH0226687B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、とくに内燃機関の球面管継手に用い
られるシール体ならびにその製造方法に関するも
のである。 〔従来の技術〕 従来より、内燃機関の排気管に設けられる球面
管継手に用いられるシール体としては、例えば特
公昭58−21144号公報に開示されているように、
ワイヤーメツシユと膨張黒鉛もしくはマイカなど
のシート状耐火材とを重ね合わせ、これを円筒状
に捲回して円筒体を形成したのち、該円筒体の軸
方向に圧縮成形して形成したもの、あるいは特開
昭59−74326号公報に開示されているように、比
較的短い(2mm〜8mm)繊維と黒鉛などの固体潤
滑剤との混合物を圧縮成形して形成したもの、が
ある。 〔発明が解決しようとする問題点〕 上述した特公昭58−21144号公報に開示された
シール体は、耐火材がワイヤーメツシユの目や隙
間のすべてを充填しかつ両者が互いに絡み合つて
構造的一体性を有するため、強度が高いという利
点を有するが、耐火材として用いられる膨張黒鉛
あるいはマイカは、通常の黒鉛のような潤滑性を
示さないため、相手材との摺動において円滑な摺
動が行われ難く往々にして異常音を発生するとい
う欠点がある。 また、特開昭59−74326号公報に開示されたシ
ール体は、前記特公昭58−21144号公報に開示さ
れたシール体よりも相手材との摺動において異常
音の発生が少ないという利点を有するが、該シー
ル体を構成する材料および該シール体の製造上の
問題から、使用時該シール体に強度低下を来し、
部分破壊、欠損等を生じてシール体としての機能
を激減させるという欠点がある。 すなわち、シール体は、内面に貫通孔を備え、
外面に凸球面部を備えた球帯状を呈するため、と
くにシール体の製造時、該シール体の内面貫通孔
の外面凸球面部の小径部(シール体の先端部)に
材料充填の粗密部分を生じ、その後の圧縮成形に
おいても圧力が十分加わらず、当該部分に強度不
足部分を生じるということである。シール体は、
球面管継手に組込まれて常時コイルバネのバネ力
により圧縮荷重が負荷されて使用されるため、シ
ール体に強度不足部分があつた場合、当該強度不
足部分に破壊、欠損等を生じ、排気ガスのガス漏
れを惹起するという重大な問題に発展する。 本発明は、後者のシール体に属するもので、後
者のシール体の有する欠点を解決した球面管継手
用シール体ならびにその製造方法を得ることを目
的とするものである。 〔問題点を解決するための手段〕 本発明は、上述した目的を達成するべく、つぎ
の技術的手段(構成)を採る。 すなわち、内面に貫通孔を備え、外面に凸球面
部を備えた、とくに内燃機関の球面管継手に用い
られるシール体であつて、円筒状に捲回して形成
された金属メツシユからなるリング状補強材と、
黒鉛、二硫化モリブデンなどの固体潤滑剤と直径
10〜200μm、長さ100〜800μmの金属繊維とフエ
ノール樹脂結合材との混合物とから成り、該混合
物は該リング状補強材のメツシユ目を充填しかつ
該リング状補強材を覆つて充填され、該リング状
補強材と混合物とは圧縮成形されて構造的一体化
されてなる球面管継手用シール体である。 上述した構成において、リング状補強材は、円
筒状に捲回された金属メツシユを予め円筒軸方向
に圧縮して形成され、該シール体の内面貫通孔の
外面凸球面部の小径部近傍に圧潰されて配置され
ているか、あるいはリング状補強材は、円筒状に
捲回された金属メツシユからなり、該シール体の
内面貫通孔側にその全長にわたつて圧潰されて配
置されている。 また、球面管継手用シール体の第1の製造方法
は、シート状に形成した金属メツシユを1回乃
至数回円筒状に捲回したのち、予めこれを円筒軸
方向に圧縮してリング状補強材を形成する工程
と、黒鉛、二硫化モリブデンなどの固体潤滑剤
と直径10〜200μm、長さ100〜800μmの金属繊維
とフエノール樹脂結合材とを攪拌混合して、該固
体潤滑剤と金属繊維とフエノール樹脂結合材との
均一な混合物を作成する工程と、貫通孔および
球帯状中空部を備えた金型を用意し、該リング状
補強材を外周面に保持したコアを該金型の貫通孔
に挿通し、該リング状補強材を該金型の球帯状中
空部の小径部側に位置せしめる工程と、該金型
の球帯状中空部内に前記混合物を充填し、該混合
物を成形圧力1〜4トン/cm2で圧縮成形する工程
と、圧縮成形後、該金型から成形物を取り出
し、該成形物を加熱炉内に置いて該フエノール樹
脂結合材を加熱硬化させる工程と、ついで、加
熱炉から成形物を取り出し、内面に貫通孔を備
え、外面に凸球面部を備えるとともに該貫通孔の
外面凸球面部の小径部近傍に圧潰されたリング状
補強材を一体に備えたシール体を得る工程と、以
上乃至の工程からなり、第2の製造方法は、
シート状に形成した金属メツシユを1回乃至数
回円筒状に捲回して該金属メツシユからなるリン
グ状補強材を形成する工程と、黒鉛、二硫化モ
リブデンなどの固体潤滑剤と直径10〜200μm、
長さ100〜200μmの金属繊維とフエノール樹脂結
合材とを攪拌混合して、該固体潤滑剤と金属繊維
とフエノール樹脂結合材との均一な混合物を作成
する工程と、貫通孔および球帯状中空部を備え
た金型を用意し、該リング状補強材を外周面に保
持したコアを該金型の貫通孔に挿通し、該リング
状補強材を該金型の球帯状中空部に位置せしめる
工程と、該金型の球帯状中空部内に前記混合物
を充填し、該混合物を成形圧力1〜4トン/cm2
圧縮成形する工程と、圧縮成形後、該金型から
成形物を取り出し、該成形物を加熱炉内に置いて
該フエノール樹脂結合材を加熱硬化させる工程
と、ついで、加熱炉から成形物を取り出し、内
面に貫通孔を備え、外面に凸球面部を備えるとと
もに該貫通孔側にその全長にわたつて圧潰された
リング状補強材を一体に備えたシール体を得る工
程と、以上乃至の工程からなる。 上述したシール体およびその製造方法におい
て、リング状補強材を形成する金属メツシユは、
ステンレス鋼あるいは鉄の細線を織つたり、編ん
だりして形成される織組もしくは編組金属メツシ
ユ、または金属薄板に連続した網目を備えた、所
謂エキスパンドメタルが使用される。 該金属メツシユとして、織組もしくは編組金属
メツシユを使用する場合は、細線の線径は0.02mm
〜0.32mmのものが使用される。 そして、金属メツシユの網目(メツシユ目)
は、いずれも3〜6mmのものが使用される。 金属繊維は、ビビリ切削法あるいはワイヤー素
線から削ぎ出して形成されるウール状繊維を切断
したものが使用される。 とくに、繊維の直径が10〜200μm、繊維長さ
が100〜800μmのものは、固体潤滑剤と均一な混
合物を形成すること、シール体の製造時に金型内
に均一な充填を可能とするとともにリング状補強
材のメツシユ目への充填を可能とし、該リング状
補強材と混合物との強固な構造一体化を可能とす
る。 さらに、金属繊維と固体潤滑剤との均一な混合
物は、シール体の摺動面、すなわち外面凸球面部
を形成するため、相手材との摺動において異常音
の発生を防止することができる。 上述した金属繊維と固体潤滑剤とは、一定量の
フエノール樹脂結合材とともに混合され、該金属
繊維と固体潤滑材およびフエノール樹脂結合材か
らなる混合物に形成される。そして、これらの配
合割合は、金属繊維50〜75重量%、固体潤滑剤15
〜30重量%、フエノール樹脂結合剤2〜20重量%
が好ましい範囲である。 つぎに、上述した構成からなるシール体の製造
方法について、図面に基づき説明する。 第1の製造方法は、つぎのとおりである。 (第一工程)シート状に形成した金属メツシユ
を1回乃至数回円筒状に捲回したのち、予めこれ
を円筒軸方向に圧縮してリング状補強材1を形成
する(第1図)。 (第二工程)黒鉛、二硫化モリブデンなどの固
体潤滑剤と直径10〜200μm、長さ100〜800μmの
金属繊維とフエノール樹脂結合材とを攪拌混合
し、該固体潤滑剤と金属繊維とフエノール樹脂結
合材との均一な混合物6を作成する。 (第三工程)貫通孔2および球帯状中空部3を
備えた金型4を用意し、該リング状補強材1を外
周面に保持したコア5を該金型4の貫通孔2に挿
通し、該リング状補強材1を該金型4の球帯状中
空部3の小径部側に位置せしめる(第2図)。 (第四工程)該金型4の球帯状中空部3内に前
記混合物6を充填し、該混合物6を成形圧力1〜
4トン/cm2で圧縮成形する(第2図)。 (第五工程)圧縮成形後、該金型6から成形物
を取り出し、該成形物を加熱炉内に置いて該フエ
ノール樹脂結合材を加熱硬化させる。 (第六工程)ついで、加熱炉から成形物を取り
出し、内面に貫通孔11を備え、外面に凸球面部
12を備えるとともに該貫通孔11の外面凸球面
部12の小径部近傍に圧潰されて配置されたリン
グ状補強材1を一体に備えたシール体10を得
る。 このようにして得たシール体10の縦断面図を
第3図に示す。 第2の製造方法はつぎのとおりである。 (第一工程)シート状に形成した金属メツシユ
を1乃至数回円筒状に捲回して、該金属メツシユ
からなるリング状補強材1′を形成する。 (第二工程)前記第1の製造方法と同じであ
る。 (第三工程)貫通孔2および球帯状中空部3を
備えた金型4を用意し、該リング状補強材1を外
周面に保持したコア5を該金型4の貫通孔2に挿
通し、該リング状補強材1を該金型4の球帯状中
空部3に位置せしめる(第4図)。 (第四工程)該金型4の球帯状中空部3内に前
記混合物6を充填し、該混合物6を成形圧力1〜
4トン/cm2で圧縮成形する(第4図)。 (第五工程)前記第1の製造方法と同じ。 (第六工程)ついで、加熱炉から成形物を取り
出し、内面に貫通孔11を備え、外面に凸球面部
12を備えるとともに該貫通孔11側にその全長
にわたつて圧潰されて配置されたリング状補強材
1′を一体に備えたシール体10を得る。 このようにして得たシール体10の縦断面図を
第5図に示す。 〔実施例〕 以下、本発明の実施例について説明する。 実施例 線径0.3mmのステンレス鋼線を使用し、メツシ
ユ目が5mmの袋状編組メツシユを作成した。この
袋状編組メツシユをローラーを通してシート状に
して、これを円筒状に2回捲回したのち、予め円
筒軸方向に圧縮してリング状補強材1を形成し
た。 一方、固体潤滑剤として黒鉛を使用し、該黒鉛
と線径100μm、長さ500μmのステンレス鋼から
なる繊維とフエノール樹脂結合材とをミキサーに
投入し、攪拌混合して該黒鉛とステンレス鋼繊維
とフエノール樹脂結合材との均一な混合物6を作
成した(混合割合は黒鉛:18重量%、ステンレス
鋼繊維:73重量%、フエノール樹脂結合材:9重
量%)。 ついで、貫通孔2および球帯状中空部3を備え
た金型4を用意し、前記リング状補強材1を外周
面に保持したコア5を該金型4の貫通孔2に挿入
して、該リング状補強材1を金型4の球帯状中空
部3の小径部側に位置せしめた。そして、金型4
の球帯状中空部3内に前記混合物6を充填したの
ち、該混合物6を成形圧力3トン/cm2で圧縮成形
した。圧縮成形後、金型から成形物を取り出し、
該成形物を80℃の温度に設定した加熱炉に30分間
置いて予備加熱したのち、180℃の温度で2時間、
該混合物6中のフエノール樹脂結合材を加熱硬化
させた。 ついで、加熱炉から成形物を取り出し、内面に
貫通孔11を備え、外面に凸球面部12を備える
とともに該貫通孔11の外面凸球面部12の小径
部近傍に圧潰されて配置されたリング状補強材1
を一体に備え、該混合物6とリング状補強材1と
が構造的一体化されたシール体10を得た。 実施例 前記<実施例:>と同様の袋状編組メツシユ
を使用し、この袋状編組メツシユをローラーを通
してシート状にしたのち、これを円筒状に2回捲
回して該袋状編組メツシユからなるリング状補強
材1′を形成した。 該リング状補強材1′をコア5の外周面に嵌装
し、該コア5を金型4の貫通孔2に挿入して、該
リング状補強材1′を金型4の球帯状中空部3内
に位置せしめた。 ついで、前記<実施例:>と同様の方法で、
内面に貫通孔11を備え、外面に凸球面部12を
備えるとともに該貫通孔11側にその全長にわた
つて圧潰されて配置されたリング状補強材1′を
一体に備え、該混合物6とリング状補強材1′と
が構造的一体化されたシール体10を得た。 比較例 固体潤滑剤として黒鉛を使用し、この黒鉛と線
径200μm、長さ3mmのステンレス鋼からなる繊
維とフエノール樹脂結合材とをミキサーに投入し
て攪拌混合し、黒鉛とステンレス鋼繊維とフエノ
ール樹脂結合材との混合物(混合割合は、黒鉛:
18重量%、ステンレス鋼繊維:73重量%、フエノ
ール樹脂結合材:9重量%)を得た。 ついで、この混合物を前記<実施例:>と同
様の金型に充填し、成形圧力3トン/cm2で圧縮成
形して成形物を形成した。該成形物を金型から取
り出し、これを80℃の温度に設定した加熱炉内に
30分間置いて予備加熱したのち、180℃の温度で
2時間、該混合物中のフエノール樹脂結合材を加
熱硬化させた。ついで、成形物を加熱炉から取り
出し、内面に貫通孔を備え、外面に凸球面部を備
えたシール体を得た。 比較例 前記<実施例:>と同様のリング状補強材を
使用し、該リング状補強材を外周面に保持したコ
アを金型の貫通孔に挿入して該リング状補強材を
金型の球帯状中空部の小径部側に位置せしめた。 そして、金型の球帯状中空部内に前記<比較
例:>と同様の混合物を充填し、以下<比較
例:>と同様の方法で、内面に貫通孔を備え、
外面に凸球面部を備えるとともに該貫通孔の外面
凸球面部の小径部近傍に圧潰されて配置されたリ
ング状補強材を一体に備えたシール体を得た。 下表は、上記<実施例:>および<実施例:
>と<比較例:>および<比較例:>とを
それぞれシール体の軸方向に圧縮荷重(圧力)を
作用させ、該シール体の欠損に至る荷重を実験し
た結果を示すものである。
[Industrial Application Field] The present invention particularly relates to a seal body used in a spherical pipe joint of an internal combustion engine and a method for manufacturing the same. [Prior Art] Conventionally, as a seal body used for a spherical pipe joint provided in an exhaust pipe of an internal combustion engine, for example, as disclosed in Japanese Patent Publication No. 58-21144,
A wire mesh and a sheet-like refractory material such as expanded graphite or mica are layered together, wound into a cylindrical shape to form a cylindrical body, and then formed by compression molding in the axial direction of the cylindrical body, or As disclosed in JP-A-59-74326, there is one formed by compression molding a mixture of relatively short (2 mm to 8 mm) fibers and a solid lubricant such as graphite. [Problems to be Solved by the Invention] The seal body disclosed in the above-mentioned Japanese Patent Publication No. 58-21144 has a structure in which the refractory material fills all the holes and gaps of the wire mesh and the two are intertwined with each other. Expanded graphite or mica, which is used as a refractory material, does not exhibit the same lubricity as normal graphite, so it is difficult to slide smoothly with the mating material. It has the disadvantage that it is difficult to move and often generates abnormal noise. Furthermore, the seal body disclosed in JP-A-59-74326 has the advantage that it generates less abnormal noise when sliding with a mating material than the seal body disclosed in JP-A-58-21144. However, due to the material constituting the seal body and manufacturing problems of the seal body, the strength of the seal body decreases during use,
It has the drawback of causing partial breakage, loss, etc., and drastically reducing its function as a sealing body. That is, the seal body has a through hole on the inner surface,
Since it has a spherical shape with a convex spherical surface on the outer surface, when manufacturing the seal body, the small diameter part (the tip of the seal body) of the convex spherical surface on the outer surface of the inner surface through-hole of the seal body is filled with a dense portion of material. This means that even in the subsequent compression molding, sufficient pressure is not applied, resulting in areas lacking in strength. The seal body is
Since it is incorporated into a spherical pipe joint and is used under constant compressive load due to the spring force of the coil spring, if there is a part of the seal body that lacks strength, the part that lacks strength will break or chip, causing exhaust gas leakage. This develops into a serious problem of gas leakage. The present invention belongs to the latter type of seal body, and an object of the present invention is to obtain a seal body for a spherical pipe joint that solves the drawbacks of the latter type of seal body, and a method for manufacturing the same. [Means for Solving the Problems] The present invention adopts the following technical means (configuration) in order to achieve the above-mentioned object. That is, it is a ring-shaped reinforcement made of a metal mesh wound into a cylindrical shape, which is a sealing body that has a through hole on the inner surface and a convex spherical surface on the outer surface, and is used especially in a spherical pipe joint of an internal combustion engine. wood and
Solid lubricants such as graphite and molybdenum disulfide and diameter
consisting of a mixture of metal fibers of 10 to 200 μm and a length of 100 to 800 μm and a phenolic resin binder, the mixture filling the meshes of the ring-shaped reinforcing material and covering the ring-shaped reinforcing material; The ring-shaped reinforcing material and the mixture are compression molded and structurally integrated to form a sealing body for a spherical pipe joint. In the above-described structure, the ring-shaped reinforcing material is formed by compressing a metal mesh wound into a cylindrical shape in advance in the cylindrical axial direction, and is crushed near the small diameter portion of the convex spherical surface of the inner surface of the inner surface through-hole of the seal body. Alternatively, the ring-shaped reinforcing material is made of a metal mesh wound into a cylindrical shape, and is crushed and disposed over its entire length on the inner surface through-hole side of the seal body. In addition, the first manufacturing method of the seal body for spherical pipe joints involves winding a metal mesh formed in a sheet shape into a cylindrical shape once or several times, and then compressing it in advance in the axial direction of the cylinder to strengthen it into a ring shape. A process of forming a material by stirring and mixing a solid lubricant such as graphite or molybdenum disulfide, a metal fiber with a diameter of 10 to 200 μm and a length of 100 to 800 μm, and a phenol resin binder, and forming the solid lubricant and metal fiber. and a phenolic resin binder. A mold having a through hole and a spherical zone-shaped hollow part is prepared, and a core holding the ring-shaped reinforcing material on the outer peripheral surface is passed through the mold. inserting the ring-shaped reinforcing material into the hole and positioning the ring-shaped reinforcing material on the small diameter side of the spherical-band-shaped hollow part of the mold; filling the mixture into the spherical-band-shaped hollow part of the mold; and applying the mixture to a molding pressure of 1 A step of compression molding at ~4 tons/cm 2 , a step of taking out the molded product from the mold after compression molding, placing the molded product in a heating furnace to heat and harden the phenolic resin binder, and then The molded product is removed from the heating furnace, and a seal body is provided with a through hole on the inner surface, a convex spherical surface portion on the outer surface, and a crushed ring-shaped reinforcing material in the vicinity of the small diameter portion of the outer convex spherical surface portion of the through hole. The second manufacturing method consists of a step of obtaining
A process of winding a metal mesh formed in a sheet shape into a cylindrical shape once or several times to form a ring-shaped reinforcing material made of the metal mesh, and a solid lubricant such as graphite or molybdenum disulfide with a diameter of 10 to 200 μm.
A process of stirring and mixing metal fibers with a length of 100 to 200 μm and a phenolic resin binder to create a uniform mixture of the solid lubricant, metal fibers, and phenolic resin binder, and a through hole and a spherical band-shaped hollow part. A step of preparing a mold having a ring-shaped reinforcing material on the outer peripheral surface thereof, inserting the core holding the ring-shaped reinforcing material on the outer circumferential surface into a through-hole of the mold, and positioning the ring-shaped reinforcing material in the spherical band-shaped hollow part of the mold. filling the spherical hollow part of the mold with the mixture and compression molding the mixture at a molding pressure of 1 to 4 tons/cm 2 ; after compression molding, taking out the molded product from the mold; A step of placing the molded product in a heating furnace to heat and harden the phenolic resin binding material, and then taking the molded product out of the heating furnace, providing a through hole on the inner surface, a convex spherical surface portion on the outer surface, and a step on the side of the through hole. The process consists of a step of obtaining a seal body integrally equipped with a ring-shaped reinforcing material crushed over its entire length, and the above steps. In the seal body and its manufacturing method described above, the metal mesh forming the ring-shaped reinforcing material is
A woven or braided metal mesh formed by weaving or knitting fine wires of stainless steel or iron, or so-called expanded metal, which is a thin metal sheet with a continuous mesh, is used. When using a woven or braided metal mesh as the metal mesh, the wire diameter of the thin wire is 0.02 mm.
~0.32mm is used. And the mesh of metal mesh (mesh mesh)
3 to 6 mm are used in each case. The metal fibers used are those obtained by cutting wool-like fibers formed by the chatter cutting method or by cutting from wire strands. In particular, fibers with a diameter of 10 to 200 μm and fiber length of 100 to 800 μm form a uniform mixture with the solid lubricant, and enable uniform filling into the mold during seal body manufacturing. The ring-shaped reinforcing material can be filled into the mesh, and the ring-shaped reinforcing material and the mixture can be strongly integrated into a structure. Furthermore, since the uniform mixture of metal fibers and solid lubricant forms the sliding surface of the seal body, that is, the convex spherical outer surface, it is possible to prevent abnormal noise from occurring during sliding with the mating material. The metal fibers and the solid lubricant described above are mixed together with a certain amount of the phenolic resin binder to form a mixture consisting of the metal fibers, the solid lubricant, and the phenolic resin binder. The mixing ratio of these is 50 to 75% by weight of metal fiber and 15% by weight of solid lubricant.
~30% by weight, phenolic resin binder 2-20% by weight
is the preferred range. Next, a method for manufacturing the seal body having the above-mentioned configuration will be explained based on the drawings. The first manufacturing method is as follows. (First step) A metal mesh formed into a sheet is wound into a cylindrical shape once or several times, and then compressed in advance in the axial direction of the cylinder to form a ring-shaped reinforcing material 1 (FIG. 1). (Second step) A solid lubricant such as graphite or molybdenum disulfide, a metal fiber with a diameter of 10 to 200 μm and a length of 100 to 800 μm, and a phenol resin binder are stirred and mixed, and the solid lubricant, metal fiber, and phenol resin are mixed. A homogeneous mixture 6 with binder is created. (Third step) A mold 4 having a through hole 2 and a spherical hollow portion 3 is prepared, and the core 5 holding the ring-shaped reinforcing material 1 on the outer peripheral surface is inserted into the through hole 2 of the mold 4. , the ring-shaped reinforcing material 1 is positioned on the small-diameter side of the spherical-band-shaped hollow part 3 of the mold 4 (FIG. 2). (Fourth step) The mixture 6 is filled into the spherical hollow part 3 of the mold 4, and the mixture 6 is heated at a molding pressure of 1 to
Compression molding is performed at 4 tons/cm 2 (Figure 2). (Fifth step) After compression molding, the molded product is taken out from the mold 6 and placed in a heating furnace to heat and harden the phenolic resin binder. (Sixth step) Next, the molded product is taken out from the heating furnace, and the through hole 11 is provided on the inner surface, and the convex spherical surface portion 12 is provided on the outer surface, and the molded product is crushed near the small diameter portion of the outer surface convex spherical surface portion 12 of the through hole 11. A seal body 10 integrally equipped with the arranged ring-shaped reinforcing material 1 is obtained. A longitudinal cross-sectional view of the seal body 10 obtained in this manner is shown in FIG. The second manufacturing method is as follows. (First step) A metal mesh formed into a sheet is wound once or several times into a cylindrical shape to form a ring-shaped reinforcing material 1' made of the metal mesh. (Second step) Same as the first manufacturing method. (Third step) A mold 4 having a through hole 2 and a spherical hollow portion 3 is prepared, and a core 5 holding the ring-shaped reinforcing material 1 on the outer peripheral surface is inserted into the through hole 2 of the mold 4. , the ring-shaped reinforcing material 1 is positioned in the spherical and band-shaped hollow part 3 of the mold 4 (FIG. 4). (Fourth step) The mixture 6 is filled into the spherical hollow part 3 of the mold 4, and the mixture 6 is heated at a molding pressure of 1 to
Compression molding is performed at 4 tons/cm 2 (Figure 4). (Fifth step) Same as the first manufacturing method. (Sixth step) Next, the molded product is taken out from the heating furnace, and a ring is provided with a through hole 11 on the inner surface, a convex spherical surface portion 12 on the outer surface, and is crushed and disposed on the side of the through hole 11 over its entire length. A seal body 10 integrally provided with a shaped reinforcing material 1' is obtained. A longitudinal cross-sectional view of the seal body 10 obtained in this manner is shown in FIG. [Examples] Examples of the present invention will be described below. Example A bag-like braided mesh with a mesh size of 5 mm was prepared using stainless steel wire with a wire diameter of 0.3 mm. This bag-shaped braided mesh was passed through a roller to form a sheet, which was wound twice into a cylindrical shape, and then compressed in advance in the axial direction of the cylinder to form a ring-shaped reinforcing material 1. On the other hand, using graphite as a solid lubricant, the graphite, a stainless steel fiber with a wire diameter of 100 μm and a length of 500 μm, and a phenol resin binder are put into a mixer, and the graphite and stainless steel fibers are mixed by stirring. A homogeneous mixture 6 with a phenolic resin binder was prepared (mixing ratio: graphite: 18% by weight, stainless steel fiber: 73% by weight, phenolic resin binder: 9% by weight). Next, a mold 4 having a through hole 2 and a spherical hollow part 3 is prepared, and the core 5 holding the ring-shaped reinforcing material 1 on the outer peripheral surface is inserted into the through hole 2 of the mold 4. The ring-shaped reinforcing material 1 was placed on the small diameter side of the spherical band-shaped hollow part 3 of the mold 4. And mold 4
After the mixture 6 was filled into the spherical hollow part 3 of the mold, the mixture 6 was compression molded at a molding pressure of 3 tons/cm 2 . After compression molding, remove the molded product from the mold,
The molded product was preheated by placing it in a heating furnace set at a temperature of 80°C for 30 minutes, and then heated at a temperature of 180°C for 2 hours.
The phenolic resin binder in the mixture 6 was heated and cured. Next, the molded product is taken out from the heating furnace, and a ring-shaped molded product is formed which has a through hole 11 on the inner surface, a convex spherical surface portion 12 on the outer surface, and is crushed and arranged near the small diameter portion of the outer convex spherical surface portion 12 of the through hole 11. Reinforcement material 1
A seal body 10 was obtained in which the mixture 6 and the ring-shaped reinforcing material 1 were structurally integrated. Example A bag-like braided mesh similar to the above <Example:> is used, and the bag-like braided mesh is made into a sheet by passing it through a roller, and then wound twice into a cylindrical shape to form the bag-like braided mesh. A ring-shaped reinforcing material 1' was formed. The ring-shaped reinforcing material 1' is fitted onto the outer peripheral surface of the core 5, the core 5 is inserted into the through hole 2 of the mold 4, and the ring-shaped reinforcing material 1' is inserted into the spherical band-shaped hollow part of the mold 4. It was placed within 3. Then, in the same manner as in <Example:> above,
A through hole 11 is provided on the inner surface, a convex spherical surface portion 12 is provided on the outer surface, and a ring-shaped reinforcing material 1' is provided on the side of the through hole 11 in a crushed manner over its entire length, and the mixture 6 and the ring A seal body 10 was obtained in which the shaped reinforcing material 1' was structurally integrated. Comparative example Graphite is used as a solid lubricant, and the graphite, stainless steel fibers with a wire diameter of 200 μm and length of 3 mm, and a phenol resin binder are put into a mixer and mixed by stirring, and graphite, stainless steel fibers, and phenol are mixed. Mixture with resin binder (mixture ratio is graphite:
18% by weight, stainless steel fiber: 73% by weight, phenolic resin binder: 9% by weight). Next, this mixture was filled into the same mold as in the above <Example:> and compression molded at a molding pressure of 3 tons/cm 2 to form a molded product. The molded product was taken out of the mold and placed in a heating furnace set at a temperature of 80°C.
After preheating for 30 minutes, the phenolic resin binder in the mixture was heated and cured at a temperature of 180° C. for 2 hours. Then, the molded product was taken out of the heating furnace to obtain a seal body having a through hole on the inner surface and a convex spherical surface on the outer surface. Comparative Example Using the same ring-shaped reinforcing material as in <Example:> above, a core holding the ring-shaped reinforcing material on the outer peripheral surface is inserted into a through hole of a mold, and the ring-shaped reinforcing material is inserted into the mold. It is located on the small diameter side of the spherical belt-shaped hollow part. Then, the spherical hollow part of the mold is filled with the same mixture as in <Comparative Example:>, and a through hole is provided on the inner surface in the same manner as in <Comparative Example:>.
A seal body was obtained which was provided with a convex spherical surface portion on the outer surface and integrally provided with a ring-shaped reinforcing material crushed and disposed near the small diameter portion of the outer convex spherical surface portion of the through hole. The table below shows the above <Example:> and <Example:>
], <Comparative Example:>, and <Comparative Example:>, a compressive load (pressure) is applied in the axial direction of the seal body, respectively, and the results of an experiment to determine the load that causes the seal body to break are shown.

〔効 果〕〔effect〕

本発明は、上述した構成からなるもので、以下
の特有の効果を有する。 本発明のシール体は、金属メツシユを円筒状
に捲回して形成したリング状補強材と、固体潤
滑剤と直径20〜200μm、長さ100〜800μmの金
属繊維とフエノール樹脂結合材との混合物とか
らなり、該混合物は該リング状補強材のメツシ
ユ目を充填しかつ該補強材を覆つて該補強材と
一体に圧縮成形され、該混合物とリング状補強
材とは構造的一体化されていることを特徴とす
るもので、従来技術の欠点であつたシール体の
内面通孔の外面凸球面部の小径部(シール体の
先端部)に生じる破壊、欠損は、当該部分が金
属メツシユからなるリング状補強材で補強され
ているので生じることがない。 上記の効果と相俟つて、シール体の破壊、
欠損に起因する継手部分からのガス漏れ量が極
めて少なく、当該シール体の密封効果が長期間
にわたつて維持される。
The present invention has the above-described configuration and has the following unique effects. The seal body of the present invention includes a ring-shaped reinforcing material formed by winding a metal mesh into a cylindrical shape, a solid lubricant, a mixture of metal fibers having a diameter of 20 to 200 μm and a length of 100 to 800 μm, and a phenolic resin binding material. The mixture fills the mesh of the ring-shaped reinforcing material, covers the reinforcing material, and is compression-molded integrally with the reinforcing material, and the mixture and the ring-shaped reinforcing material are structurally integrated. This is characterized by the fact that the breakage or chipping that occurs in the small diameter part (the tip of the seal body) of the outer convex spherical surface of the inner surface through hole of the seal body, which was a drawback of the conventional technology, can be avoided because this part is made of metal mesh. This does not occur because it is reinforced with a ring-shaped reinforcing material. Combined with the above effects, the seal body is destroyed,
The amount of gas leaking from the joint due to defects is extremely small, and the sealing effect of the seal body is maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はリング状補強材を示す斜視図、第2図
は製造工程を示す断面図、第3図はシール体の縦
断面図、第4図は製造工程を示す断面図、第5図
はシール体を示す縦断面図、第6図はシール体を
球面管継手に装着した状態を示す縦断面図、第7
図はシール体のガス漏れ量を試験した結果を示す
グラフである。 1,1′……リング状補強材、3……球帯状中
空部、4……金型、5……コア、6……混合物、
10……シール体、11……貫通孔、12……凸
球面部。
Fig. 1 is a perspective view showing the ring-shaped reinforcing material, Fig. 2 is a sectional view showing the manufacturing process, Fig. 3 is a vertical sectional view of the seal body, Fig. 4 is a sectional view showing the manufacturing process, and Fig. 5 is a sectional view showing the manufacturing process. FIG. 6 is a vertical cross-sectional view showing the seal body, FIG. 6 is a vertical cross-sectional view showing the seal body attached to a spherical pipe joint,
The figure is a graph showing the results of testing the amount of gas leakage from the seal body. 1, 1'...Ring-shaped reinforcing material, 3...Spheroidal hollow part, 4...Mold, 5...Core, 6...Mixture,
10... Seal body, 11... Through hole, 12... Convex spherical surface portion.

Claims (1)

【特許請求の範囲】 1 内面に貫通孔を備え、外面に凸球面部を備え
た、とくに内燃機関の球面管継手に用いられるシ
ール体であつて、円筒状に捲回して形成された金
属メツシユからなるリング状補強材と、黒鉛、二
硫化モリブデンなどの固体潤滑剤と直径10〜
200μm、長さ100〜800μmの金属繊維とフエノー
ル樹脂結合材との混合物とから成り、該混合物は
該リング状補強材のメツシユ目を充填しかつ該リ
ング状補強材を覆つて充填され、該リング状補強
材と混合物とは圧縮成形されて構造的一体化され
ていることを特徴とする球面管継手用シール体。 2 リング状補強材は、円筒状に捲回された金属
メツシユを予め円筒軸方向に圧縮して形成され、
該シール体の内面貫通孔の外面凸球面部の小径部
近傍に圧潰されて配置されていることを特徴とす
る特許請求の範囲第1項記載の球面管継手用シー
ル体。 3 リング状補強材は、円筒状に捲回された金属
メツシユからなり、該シール体の内面貫通孔側に
その全長にわたつて圧潰されて配置されているこ
とを特徴とする特許請求の範囲第1項記載の球面
管継手用シール体。 4 シート状に形成した金属メツシユを1回
乃至数回円筒状に捲回したのち、予めこれを円
筒軸方向に圧縮してリング状補強材を形成する
工程と、 黒鉛、二硫化モリブデンなどの固体潤滑剤と
直径10〜200μm、長さ100〜800μmの金属繊維
とフエノール樹脂結合材とを攪拌混合して、該
固体潤滑剤と金属繊維とフエノール樹脂結合材
との均一な混合物を作成する工程と、 貫通孔および球帯状中空部を備えた金型を用
意し、該リング状補強材を外周面に保持したコ
アを該金型の貫通孔に挿通し、該リング状補強
材を該金型の球帯状中空部の小径部側に位置せ
しめる工程と、 該金型の球帯状中空部内に前記混合物を充填
し、該混合物を成形圧力1〜4トン/cm2で圧縮
成形する工程と、 圧縮成形後、該金型から成形物を取り出し、
該成形物を加熱炉内に置いて該フエノール樹脂
結合材を加熱硬化させる工程と、 ついで、加熱炉から成形物を取り出し、内面
に貫通孔を備え、外面に凸球面部を備えるとと
もに該貫通孔の外面凸球面部の小径部近傍に圧
潰されたリング状補強材を一体に備えたシール
体を得る工程と、 以上乃至の工程からなることを特徴とする
球面管継手用シール体の製造方法。 5 シート状に形成した金属メツシユを1回
乃至数回円筒状に捲回して該金属メツシユから
なるリング状補強材を形成する工程と、 黒鉛、二硫化モリブデンなどの固体潤滑剤と
直径10〜200μm、長さ100〜800μmの金属繊維
とフエノール樹脂結合材とを攪拌混合して、該
固体潤滑剤と金属繊維とフエノール樹脂結合材
との均一な混合物を作成する工程と、 貫通孔および球帯状中空部を備えた金型を用
意し、該リング状補強材を外周面に保持したコ
アを該金型の貫通孔に挿通し、該リング状補強
材を該金型の球帯状中空部に位置せしめる工程
と、 該金型の球帯状中空部内に前記混合物を充填
し、該混合物を成形圧力1〜4トン/cm2で圧縮
成形する工程と、 圧縮成形後、該金型から成形物を取り出し、
該成形物を加熱炉内に置いて該フエノール樹脂
結合材を加熱硬化させる工程と、 ついで、加熱炉から成形物を取り出し、内面
に貫通孔を備え、外面に凸球面部を備えるとと
もに該貫通孔側にその全長にわたつて圧潰され
たリング状補強材を一体に備えたシール体を得
る工程と、 以上乃至の工程からなることを特徴とする
球面管継手用シール体の製造方法。
[Scope of Claims] 1. A sealing body that is provided with a through hole on the inner surface and a convex spherical surface on the outer surface, and is used particularly in a spherical pipe joint of an internal combustion engine, and is a metal mesh formed by winding into a cylindrical shape. A ring-shaped reinforcement material consisting of a solid lubricant such as graphite or molybdenum disulfide and a diameter of 10~
It consists of a mixture of metal fibers with a length of 200 μm and a length of 100 to 800 μm and a phenolic resin binder, and the mixture is filled in the mesh of the ring-shaped reinforcing material and covers the ring-shaped reinforcing material, and the ring A sealing body for a spherical pipe joint, characterized in that the reinforcing material and the mixture are compression molded and structurally integrated. 2. The ring-shaped reinforcing material is formed by compressing a metal mesh wound into a cylindrical shape in advance in the axial direction of the cylinder,
The seal body for a spherical pipe joint according to claim 1, wherein the seal body for a spherical pipe joint according to claim 1 is disposed in a crushed manner near a small diameter portion of an outer convex spherical surface portion of an inner surface through-hole of the seal body. 3. The ring-shaped reinforcing material is made of a metal mesh wound into a cylindrical shape, and is crushed and disposed over its entire length on the inner surface through-hole side of the seal body. The seal body for a spherical pipe joint according to item 1. 4. A process in which a metal mesh formed in a sheet shape is wound once or several times into a cylindrical shape, and then compressed in advance in the axial direction of the cylinder to form a ring-shaped reinforcing material, and solids such as graphite and molybdenum disulfide are used. A step of stirring and mixing a lubricant, metal fibers with a diameter of 10 to 200 μm and a length of 100 to 800 μm, and a phenolic resin binder to create a uniform mixture of the solid lubricant, metal fibers, and phenolic resin binder; A mold having a through hole and a spherical hollow part is prepared, a core holding the ring-shaped reinforcing material on the outer peripheral surface is inserted into the through-hole of the mold, and the ring-shaped reinforcing material is inserted into the mold. a step of locating the mixture on the small diameter side of the spherical hollow part; a step of filling the mixture into the spherical hollow part of the mold and compression molding the mixture at a molding pressure of 1 to 4 tons/ cm2 ; compression molding. After that, take out the molded product from the mold,
A step of placing the molded product in a heating furnace to heat and harden the phenolic resin binder, and then taking the molded product out of the heating furnace, providing a through hole on the inner surface, a convex spherical surface on the outer surface, and the step of curing the phenolic resin binding material by heating. 1. A method for manufacturing a seal body for a spherical pipe joint, comprising: obtaining a seal body integrally equipped with a crushed ring-shaped reinforcing material in the vicinity of the small diameter portion of the outer convex spherical surface portion; and the above steps. 5. A process of forming a ring-shaped reinforcing material made of the metal mesh by winding the metal mesh formed in a sheet shape once or several times into a cylindrical shape, and using a solid lubricant such as graphite or molybdenum disulfide with a diameter of 10 to 200 μm. , a step of stirring and mixing metal fibers with a length of 100 to 800 μm and a phenolic resin binder to create a uniform mixture of the solid lubricant, metal fibers, and phenolic resin binder; A core holding the ring-shaped reinforcing material on the outer peripheral surface is inserted into a through hole of the mold, and the ring-shaped reinforcing material is positioned in the spherical band-shaped hollow part of the mold. a step of filling the mixture into the spherical hollow part of the mold and compression molding the mixture at a molding pressure of 1 to 4 tons/cm 2 ; after compression molding, taking out the molded product from the mold;
a step of placing the molded product in a heating furnace to heat and harden the phenolic resin binder, and then taking out the molded product from the heating furnace, providing a through hole on the inner surface, a convex spherical surface on the outer surface, and the step of curing the phenolic resin binding material by heating. A method for manufacturing a seal body for a spherical pipe joint, comprising: a step of obtaining a seal body integrally equipped with a ring-shaped reinforcing material crushed over its entire length on the side; and the above steps.
JP62190155A 1987-07-31 1987-07-31 Sealing body for spherical tube fitting Granted JPS6436913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62190155A JPS6436913A (en) 1987-07-31 1987-07-31 Sealing body for spherical tube fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62190155A JPS6436913A (en) 1987-07-31 1987-07-31 Sealing body for spherical tube fitting

Publications (2)

Publication Number Publication Date
JPS6436913A JPS6436913A (en) 1989-02-07
JPH0226687B2 true JPH0226687B2 (en) 1990-06-12

Family

ID=16253336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62190155A Granted JPS6436913A (en) 1987-07-31 1987-07-31 Sealing body for spherical tube fitting

Country Status (1)

Country Link
JP (1) JPS6436913A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156967B2 (en) * 1989-02-16 2001-04-16 オイレス工業株式会社 Seal body for exhaust pipe joint and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974326A (en) * 1982-09-16 1984-04-26 ゲツツエ・アクチエンゲゼルシヤフト Seal ring
JPS61234219A (en) * 1985-04-10 1986-10-18 ゲツツエ ア−ゲ− Seal ring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974326A (en) * 1982-09-16 1984-04-26 ゲツツエ・アクチエンゲゼルシヤフト Seal ring
JPS61234219A (en) * 1985-04-10 1986-10-18 ゲツツエ ア−ゲ− Seal ring

Also Published As

Publication number Publication date
JPS6436913A (en) 1989-02-07

Similar Documents

Publication Publication Date Title
US4601476A (en) Squeak free seal for exhaust couplings
JPH06123361A (en) Spherical zone seal body and its manufacture
US4146401A (en) Graphite material having compressibility and recovering property and method for manufacturing the same
EP1145830B1 (en) Gear made of fiber reinforced resin and method for manufacturing same
EP0154488A2 (en) Friction materials and their manufacture
JPS61166934A (en) Short fiber compacted body for manufacturing composite material and its manufacture
EP0197287A1 (en) Seal ring
JPH10220584A (en) Spherically zonal seal body and manufacture thereof
JPH08504886A (en) Sintered article
EP2781807A1 (en) Cylindrical gasket and method for producing same, and plug-in type exhaust pipe connector using said cylindrical gasket
EP1632688B1 (en) Synchronizer ring
EP2657580A1 (en) Cylindrical gasket, method for manufacturing same, and insertion-type exhaust pipe joint using the cylindrical gasket
JPH0226687B2 (en)
DE10234400B3 (en) Process for the production of hollow bodies from fiber-reinforced ceramic materials, hollow bodies and their use
JP3156967B2 (en) Seal body for exhaust pipe joint and method of manufacturing the same
DE2912347A1 (en) Resilient sealed car engine exhaust pipe connection - has contoured captive seal ring pressed from mineral fibre inside metal wire mesh
DE2154107B2 (en) Process for the production of interconnected sintered bodies
JPH0461238B2 (en)
DE2210950A1 (en) Manufacturing process for semi-metal coverings see
JP3257059B2 (en) Spherical band-shaped seal body and manufacturing method thereof
DE19805608C2 (en) Process for the production of near-net-shape molded articles from molding compounds, and molded articles obtainable thereafter
US1932919A (en) Molded brake lining
JPH0489890A (en) Solid lubricant and sliding member with the solid lubricant embedded therein
JPS5663811A (en) Manufacture of graphite composite material
US6533977B1 (en) High temperature composite structure and method of manufacturing same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees