JPH0226622A - Isotope separator - Google Patents

Isotope separator

Info

Publication number
JPH0226622A
JPH0226622A JP17279188A JP17279188A JPH0226622A JP H0226622 A JPH0226622 A JP H0226622A JP 17279188 A JP17279188 A JP 17279188A JP 17279188 A JP17279188 A JP 17279188A JP H0226622 A JPH0226622 A JP H0226622A
Authority
JP
Japan
Prior art keywords
electrode
isotope
vacuum container
product
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17279188A
Other languages
Japanese (ja)
Other versions
JP2604009B2 (en
Inventor
Akira Kuwako
彰 桑子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17279188A priority Critical patent/JP2604009B2/en
Publication of JPH0226622A publication Critical patent/JPH0226622A/en
Application granted granted Critical
Publication of JP2604009B2 publication Critical patent/JP2604009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To measure the degree of enrichment of isotope and control it during separation and recovery of isotope in a isotope separator employing laser beam by providing a part of s product recovery electrode by which sampling is possible. CONSTITUTION:An isotope separator is made up of a vacuum vessel 1a and an auxiliary vacuum vessel 1b. The vacuum vessel 1a includes a crucible 4 for vaporization and a linear electron gun 5 to emit electron beam 6 for heating a metal 3. In the directions of vapor flows 7 generated from the metal 3, anodes and cathodes are arranged side by side alternately, between which laser beams which excite only specific isotopes are applied. The auxiliary vacuum vessel 1b is equipped with a load lock chamber 15 and an enrichment measuring chamber 17. In a concentration measuring chamber 16, an ion gun for applying ion beams 23 to a sample electrode 11 and a secondary ion mass spectrometer 17 are provided.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は複数種類の同位体を含む物質から特定の同位体
のみを分離する装置に係り、特にレーデ光を用いて分離
を行う同位体弁@装置に+する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an apparatus for separating only a specific isotope from a substance containing multiple types of isotopes, and in particular to a device for separating only a specific isotope from a substance containing multiple types of isotopes. Add + to the isotope valve @ device that performs.

(従来の技術) レーザ光を用いた同位体分離装置は、例えば原子炉燃料
を製造するために天然原料から核分裂を起こす同位体を
濃縮する■稈等で使用される。
(Prior Art) Isotope separation devices using laser light are used, for example, in culms, etc., to enrich isotopes that cause nuclear fission from natural raw materials in order to produce nuclear reactor fuel.

第3図及び第4図はレーザ光を用いた同位体分離装置の
従来例を示している。
3 and 4 show conventional examples of isotope separation devices using laser light.

同位体分離装置1は真空容器1aの底部に配置され同位
体混合物である金属3を収容した蒸気用るつぼ4と、こ
の金属3を加熱する熱源としての電子ビーム6を発する
リニア電子銃5とを備えている。この蒸発用るつぼ4の
側面上方には金12m13から蒸発した蒸気流7の流れ
方向を導くコリメータ8が設けられ、さらにその上方空
間に蒸気流7の流れ方向と鎖交しない方向に立てられた
Ill電極及び陰電極を交互に°並置してなる製品回収
電極10が設けられており、この両電極間には電界が印
加されている。
The isotope separation device 1 includes a steam crucible 4 placed at the bottom of a vacuum container 1a and containing a metal 3 as an isotope mixture, and a linear electron gun 5 that emits an electron beam 6 as a heat source to heat the metal 3. We are prepared. A collimator 8 is provided above the side surface of the evaporation crucible 4 to guide the flow direction of the vapor flow 7 evaporated from the gold 12m13, and an Ill. A product recovery electrode 10 is provided, which is made up of electrodes and negative electrodes arranged alternately in parallel, and an electric field is applied between the two electrodes.

さらに廃品回収板11が製品回収′i4極10を覆うよ
うに、特定同位体のみを選択的に励起、電離させる波長
に!!11されたレーザ光9を製品回収電極10の各電
極間の空間に該各電極の長手方向に照射する構成となっ
ている。蒸発用るつぼ4に収容された金属3にリニア電
子銃5から発せられた電子ビーム6を偏向磁場で偏向さ
せて照射し、金1i13を加熱蒸発させてその蒸気流7
を発生させる。
Furthermore, the wavelength is used to selectively excite and ionize only specific isotopes so that the waste product collection plate 11 covers the product collection 'i4 pole 10! ! The laser beam 9 is irradiated into the space between each electrode of the product recovery electrode 10 in the longitudinal direction of each electrode. The metal 3 housed in the evaporation crucible 4 is irradiated with an electron beam 6 emitted from a linear electron gun 5 while being deflected by a deflection magnetic field, and the gold 1i13 is heated and evaporated, resulting in a vapor flow 7.
to occur.

蒸気流7はコリメータ8の内側を上昇し、製品回収電極
10の各電極間の空間に導入される。ここにおいて、蒸
気流7に対し、蒸気F17中の特定同位体のみを励起・
電離させる波長のレーザ光9が照射され、前記特定同位
体のみが励起されてイオンとなる。この同位体イオンは
各電極間に印加された電界によって陰電極に引き寄せら
れ、その表面に付着して製品として回収される。一方、
イオン化されない同位体は中性原子であり、前記電界の
形管を受けるこ・となく、製品回収電極10を通過し、
2次的に配設された廃品回収板11に回収される。
The vapor flow 7 rises inside the collimator 8 and is introduced into the space between each electrode of the product recovery electrode 10. Here, for the steam flow 7, only a specific isotope in the steam F17 is excited and
A laser beam 9 having a wavelength that causes ionization is irradiated, and only the specific isotope is excited to become an ion. The isotope ions are attracted to the negative electrode by the electric field applied between the electrodes, adhere to the surface of the negative electrode, and are recovered as a product. on the other hand,
Isotopes that are not ionized are neutral atoms and pass through the product recovery electrode 10 without being subjected to the electric field,
The waste is collected on a secondary waste collection board 11.

(発明が解決しようとする課題) 一般に前記のような構成の同位体分離装置において、製
品回収電極10に回収された特定同位体の濃縮度の測定
は、陰極に対し特定同位体を一定期間回収俊に、真空容
器2から特定同位体が付着した陰極を取り出して、その
付着物を分析し、定量的な評価を行う方法が一般に考え
られている。
(Problem to be Solved by the Invention) Generally, in an isotope separation device having the above-described configuration, the concentration of the specific isotope collected in the product recovery electrode 10 is measured by collecting the specific isotope from the cathode for a certain period of time. Generally, a method has been considered in which a cathode to which a specific isotope is attached is taken out from the vacuum container 2, and the deposit is analyzed to perform a quantitative evaluation.

しかしながら、この方法では、特定同位体としての製品
の濃縮度は、特定の同位体を陰極を回収した後に判定さ
れるものであるため、同位体回収中における製品の濃縮
度に応じて、回収条件、例えば、レーザ出力1.蒸発堡
等をυIIIIシて所望の製品回収を図ることが困難で
あるという問題があった。
However, in this method, the enrichment level of the product as a specific isotope is determined after collecting the specific isotope from the cathode, so the recovery conditions are determined depending on the enrichment level of the product during isotope recovery. , for example, laser output 1. There was a problem in that it was difficult to remove the evaporation barrier and recover the desired product.

本発明は、このような事情に鑑みてなされたもので、特
定同位体としての製品を回収する電極上の製品濃縮度を
、同位体の分離回収中の間に的確に測定でき、分離回収
条件を制御することによって特定同位体の濃縮度を制御
することができる同位体分離装置を提供することを目的
とする。
The present invention has been developed in view of the above circumstances, and it is possible to accurately measure the product concentration on the electrode for recovering the product as a specific isotope during isotope separation and recovery, and to control the separation and recovery conditions. An object of the present invention is to provide an isotope separation device that can control the concentration of a specific isotope by controlling the concentration of a specific isotope.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は真空容器と、この真空容器内に配置された金属
を収容する蒸発用るつぼと、前記金属の蒸発流を発生さ
せるための熱源と、Sri記蒸発用るつぼの上方に前記
蒸気流の流れ方向と鎖交しない方向に交互に並置立設し
た電圧の印加されている11電極及び陰電極とからなる
製品回収電極と、この製品回収電極の上方を覆うよう配
設された廃品回収板と、前記製品回収電極の両電極間に
前記蒸気流の流れ方向と鎖交するレーザ光を照射するよ
うに構成された同位体分離装置において、前記製品回収
電極の陽極の一部をサンプリング可能に設置し、前記真
空容器と開m自在な連通口を介して補助真空容器を付設
するとともにこの補助真空容器にサンプリングされた電
極を搬送する搬送手段と、この搬送手段により搬送され
た電極の表面の付着面に対して子オンビームを照射し、
電極表面から発生した2次イオンの質量を分析する2次
イオン質量分析器を設けたことを特徴とする。
(Means for Solving the Problems) The present invention includes a vacuum container, an evaporation crucible for accommodating a metal disposed in the vacuum container, a heat source for generating an evaporation flow of the metal, and an evaporation crucible for evaporating metal. A product recovery electrode consisting of 11 voltage-applied electrodes and a cathode that are arranged in parallel and arranged alternately in a direction not interlinked with the flow direction of the vapor flow above the crucible; In an isotope separation device configured to irradiate a laser beam interlinked with the flow direction of the vapor flow between a disposed waste product collection plate and both electrodes of the product collection electrode, the anode of the product collection electrode A part of the auxiliary vacuum container is installed so as to be able to be sampled, and an auxiliary vacuum container is attached to the vacuum container via a communication port that can be freely opened. The attached surface of the transported electrode is irradiated with a beam on-beam,
A feature of the present invention is that a secondary ion mass spectrometer is provided to analyze the mass of secondary ions generated from the electrode surface.

(作用) 補助真空容器内が、所定の真空度に維持された後、真空
容器と補助真空容器との連通口が開閉される。特定の同
位体が付着したサンブリング用の電極は補助真空容器内
に設置された搬送手段により真空容器から補助真空容器
内に搬送される。
(Function) After the inside of the auxiliary vacuum container is maintained at a predetermined degree of vacuum, the communication port between the vacuum container and the auxiliary vacuum container is opened and closed. The sampling electrode to which a specific isotope is attached is transported from the vacuum container into the auxiliary vacuum container by a transport means installed in the auxiliary vacuum container.

補助真空容器では、サンプル電極に対してイオンビーム
を照射して電極表面から発生する2次イオンが2次イオ
ン質量分析高に分析され、サンプル電極表面の特定同位
体の濃縮度が測定される。
In the auxiliary vacuum vessel, the sample electrode is irradiated with an ion beam, and secondary ions generated from the electrode surface are analyzed using secondary ion mass spectrometry, and the degree of enrichment of a specific isotope on the sample electrode surface is measured.

このようにして製品濃縮度がオンラインで計測できれば
、サンブリ、ングによる製品の濃縮度と目標濃縮度との
差が把握でき、濃縮度の目標値の高低に応じて、蒸気量
、レーザ出力等を調整することにより濃縮度の制御が可
能となる。
If product concentration can be measured online in this way, it will be possible to grasp the difference between the concentration of the product by sampling and the target concentration, and the amount of steam, laser output, etc. can be adjusted depending on the target value of concentration. By adjusting it, it becomes possible to control the degree of concentration.

(実施例) 以下、第1図及び第2図を参照して本発明の一実施例を
説明する。第1図は縦断面図、第2図は要部拡大図であ
る。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a longitudinal sectional view, and FIG. 2 is an enlarged view of the main parts.

この同位体分離装置は、真空容器1aと補助真空容器1
bとからなる。真空容器1aには、容器の内底部の蒸発
用るつぼ4と、この蒸発用るつぼ4に収納された金属3
を加熱するための電子ビーム6を発するリニア電子銃5
を備えている。蒸発用るつぼ4の上方には金fi3から
発生する蒸気流7の流れ方向を案内するコリメータ8を
設けている。さらにその上方空間に蒸気流7の流れ方向
に沿う方向に並設された陽電極及び陰電極が交互に複数
個並設してなる製品回収電極10が設けられており、こ
の両電極間に電界を印加するようになっている。さらに
この両電極間には、紙面に垂直な方向に蒸気流7中の特
定同位体のみを励起電離させる波長のシー11光が照射
される。また、製品回収電極10の上方全域にわたって
廃品回収板11が設けられている。
This isotope separation device consists of a vacuum container 1a and an auxiliary vacuum container 1.
It consists of b. The vacuum container 1a includes an evaporation crucible 4 at the inner bottom of the container, and a metal 3 housed in the evaporation crucible 4.
A linear electron gun 5 that emits an electron beam 6 for heating the
It is equipped with A collimator 8 is provided above the evaporation crucible 4 to guide the flow direction of the vapor flow 7 generated from the gold fi 3. Furthermore, a product recovery electrode 10 is provided in the space above the product recovery electrode 10, which is made up of a plurality of positive electrodes and negative electrodes arranged in parallel in the direction along the flow direction of the vapor flow 7, and an electric field is generated between the two electrodes. is applied. Further, between these two electrodes, a sea light 11 having a wavelength that excites and ionizes only a specific isotope in the vapor flow 7 is irradiated in a direction perpendicular to the plane of the paper. Further, a waste product collection plate 11 is provided over the entire area above the product collection electrode 10 .

補助真空容器1bは、ロードロックチャンバー15と濃
縮度測定用ヂトンバー17とを備え、それぞれのチャン
バー内は真空ポンプ22a及び22bにより真空引き可
能となっている。
The auxiliary vacuum container 1b includes a load lock chamber 15 and a concentration measuring bar 17, and the inside of each chamber can be evacuated by vacuum pumps 22a and 22b.

ロードロックチャンバー15は真空容31aとゲートバ
ルブ14を介して開閉自在に連通され、ロードロックチ
ャンバー15と濃縮度測定用チャンバー16とはゲート
バルブ20を介して開閉自在に連通されている。
The load-lock chamber 15 communicates with the vacuum volume 31a via a gate valve 14 so as to be openable and closable, and the load-lock chamber 15 and the concentration measurement chamber 16 communicate with each other via a gate valve 20 so as to be openable and closable.

ロードロックチャンバー15には搬送手段としてのロー
ドロック機構13a及びロードロック機構13bを備え
、それぞれの機構はアーム18及びアーム19を有して
いる。アーム18はロードロックチャンバー15から真
空容器1a内に進退可能となっており、アーム19はア
ーム18の進退方向に直交し、ロードロックチャンバー
15と濃縮度測定用チャンバー16間を進退可能となっ
ている。
The load-lock chamber 15 is equipped with a load-lock mechanism 13a and a load-lock mechanism 13b as transport means, each of which has an arm 18 and an arm 19. The arm 18 can move forward and backward from the load-lock chamber 15 into the vacuum container 1a, and the arm 19 is perpendicular to the direction of movement of the arm 18 and can move back and forth between the load-lock chamber 15 and the enrichment measurement chamber 16. There is.

濃縮度測定用チャンバー16内には、サンプル電極11
に対してイオンビーム23を照射するためのイオン銃2
1とサンプル電極11表面の2次イオン24の質量を分
析するための2次イオン質■分析器17が設置されてい
る。
A sample electrode 11 is located inside the concentration measurement chamber 16.
An ion gun 2 for irradiating an ion beam 23 to
A secondary ion quality analyzer 17 is installed to analyze the masses of secondary ions 24 on the surface of the sample electrode 11 and the surface of the sample electrode 11.

次に上記のように構成される同位体分離装置の作用につ
いて説明する。
Next, the operation of the isotope separation device configured as described above will be explained.

真空容器1a内のサンプル電極を取り出す前にロードロ
ックチャンバー15内と濃縮度測定用チャンバー16内
を、それぞれ真空ポンプ22a及び22bにより10 
’torr稈度に真空引きする。
Before taking out the sample electrode in the vacuum container 1a, the inside of the load lock chamber 15 and the inside of the concentration measurement chamber 16 are pumped for 10 minutes by vacuum pumps 22a and 22b, respectively.
Vacuum to 'torr'.

次にゲートバルブ14を開け、ロードロック機構13a
を作動させ、アーム18を真空容器1a内に伸長させ、
陰電極10の一部を構成するサンプル電極11を把持し
、ロードロックチャンバー15内に引き出し、ロードロ
ックチャンバー15の中心部で停止する。この状態でゲ
ートバルブ14を閑じると共にゲートバルブ2oを開け
る。
Next, open the gate valve 14 and load lock mechanism 13a.
to extend the arm 18 into the vacuum container 1a,
The sample electrode 11 constituting a part of the negative electrode 10 is grasped, pulled out into the load-lock chamber 15 , and stopped at the center of the load-lock chamber 15 . In this state, the gate valve 14 is closed and the gate valve 2o is opened.

次にロードロック機構13bを差動させ、アーム19を
ロードロックチャンバー15内の中心部まで伸長させ、
アーム18から外されたサンプルTi極11を把持し、
開放されたゲートバルブ20を介して濃縮度測定用チャ
ンバー16内にサンプル電極11を移動さぼる。
Next, the load lock mechanism 13b is moved differentially, and the arm 19 is extended to the center of the load lock chamber 15.
Grasp the sample Ti electrode 11 removed from the arm 18,
The sample electrode 11 is moved into the concentration measurement chamber 16 through the opened gate valve 20.

アーム19によるサンプル電極11が濃縮度測定用デセ
ンバー16内の所定の場所に位置した後、アーム19を
ロードロツタチャンバー15内に戻す。次にゲートバル
ブ20を閉じ、真空ポンプ22bを介して濃縮度測定用
チャンバー16内を1×10−7程度に保持した侵、イ
オン銃21からサンプル電極11の表面にAr等の重イ
オンビーム23を照射し、その照射面から発生する2次
イオン24を2次イオン質Φ分析器17により質量分析
する。
After the sample electrode 11 by the arm 19 is located at a predetermined location in the concentrate measurement de- mber 16, the arm 19 is returned to the load rotor chamber 15. Next, the gate valve 20 is closed, and a heavy ion beam 23 such as Ar is applied to the surface of the sample electrode 11 from the ion gun 21 while maintaining the inside of the enrichment measurement chamber 16 at a concentration of about 1×10 −7 via the vacuum pump 22 b. is irradiated, and the secondary ions 24 generated from the irradiated surface are subjected to mass analysis by the secondary ion quality Φ analyzer 17.

分析が完了すると、上記した手順と逆の手順によりサン
プル電極11を陽電極10の配置位置に戻す。以上の手
順にJ:って製品回収TI補極上製品(特定同位体)の
濃縮度をオンラインでモニターすることができる。
When the analysis is completed, the sample electrode 11 is returned to the position of the positive electrode 10 by the reverse procedure to the above-described procedure. By following the above procedure, the concentration of the product (specific isotope) on the product recovery TI coelectrode can be monitored online.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、製品回収中に製品回収電極に回収され
る製品の濃縮度をオンラインにてモニターすることがで
き、製品濃縮度の制御が可能となる。
According to the present invention, the degree of concentration of the product collected by the product recovery electrode during product recovery can be monitored online, and the degree of concentration of the product can be controlled.

22b・・・真空ポンプ、23・・・イオンビーム、2
4・・・2次イオン。
22b... Vacuum pump, 23... Ion beam, 2
4...Secondary ion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明同位体分離装置の一実施例を示す縦断面
図、第2図は第1図の要部拡大図、第3図は従来の同位
体弁11fi装置を模式的に示す11断面図、第4図は
第3図のI−I矢視断面図である。 1a・・・真空容器、1b・・・補助真空容器、3・・
・金属、4・・・蒸発用るつぼ、5・・・リニア電子銃
、6・・・電子ビーム、7・・・蒸気流、8・・・コリ
メータ、9・・・レーザ光、10・・・製品回収電極、
11・・・ザンプルT3wA、12・・・廃品回収板、
13・・・ロードロック機構、14・・・ゲートバルブ
、15・・・ロードロックチャンバー 16・・・濃縮
度測定用チャンバー 17・・・2次イオン質量分析器
、18.19・・・アーム、20・・・ゲートバルブ、
21・・・イオン銃、22a。
FIG. 1 is a vertical cross-sectional view showing one embodiment of the isotope separation device of the present invention, FIG. 2 is an enlarged view of the main part of FIG. 1, and FIG. 3 is a schematic view of a conventional isotope valve 11fi device. The sectional view, FIG. 4, is a sectional view taken along the line II in FIG. 3. 1a... Vacuum container, 1b... Auxiliary vacuum container, 3...
・Metal, 4... Evaporation crucible, 5... Linear electron gun, 6... Electron beam, 7... Vapor flow, 8... Collimator, 9... Laser light, 10... product recovery electrode,
11... Sample T3wA, 12... Waste collection board,
13... Load lock mechanism, 14... Gate valve, 15... Load lock chamber 16... Concentration measurement chamber 17... Secondary ion mass spectrometer, 18.19... Arm, 20...gate valve,
21...Ion gun, 22a.

Claims (1)

【特許請求の範囲】[Claims] 真空容器と、この真空容器内に配置された金属を収容す
る蒸発用るつぼと、前記金属の蒸発流を発生させるため
の熱源と、前記蒸発用るつぼの上方に前記蒸気流の流れ
方向と鎖交しない方向に交互に並置立設した電圧の印加
されている陽電極及び陰電極とからなる製品回収電極と
、この製品回収電極の上方を覆うよう配設された廃品回
収板と、前記製品回収電極の両電極間に前記蒸気流の流
れ方向と鎖交するレーザ光を照射するように構成された
同位体分離装置において、前記製品回収電極の一部をサ
ンプリング可能に設置し、前記真空容器と開閉自在な連
通口を介して補助真空容器を付設するとともにこの補助
真空容器にサンプリングされた電極を搬送する搬送手段
と、この搬送手段により搬送された電極の表面の付着面
に対してイオンビームを照射し、電極表面から発生した
2次イオンの質量を分析する2次イオン質量分析器を設
置したことを特徴とする同位体分離装置。
a vacuum container, an evaporation crucible for accommodating metal disposed in the vacuum container, a heat source for generating an evaporation flow of the metal, and above the evaporation crucible interlinked with the flow direction of the vapor flow. a product collection electrode consisting of a positive electrode and a negative electrode to which a voltage is applied, which are arranged in parallel in a direction in which the product is collected; a waste product collection plate disposed to cover the top of the product collection electrode; In an isotope separation device configured to irradiate a laser beam interlinked with the flow direction of the vapor flow between both electrodes, a part of the product recovery electrode is installed so as to be able to sample, and a part of the product recovery electrode is installed so as to be able to be sampled, and is opened and closed with the vacuum vessel. An auxiliary vacuum container is attached through a flexible communication port, and a transport means for transporting the sampled electrodes to this auxiliary vacuum container, and an ion beam is irradiated on the surface of the electrode transported by this transport means. An isotope separation device characterized in that a secondary ion mass spectrometer is installed to analyze the mass of secondary ions generated from the electrode surface.
JP17279188A 1988-07-13 1988-07-13 Isotope separation device Expired - Fee Related JP2604009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17279188A JP2604009B2 (en) 1988-07-13 1988-07-13 Isotope separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17279188A JP2604009B2 (en) 1988-07-13 1988-07-13 Isotope separation device

Publications (2)

Publication Number Publication Date
JPH0226622A true JPH0226622A (en) 1990-01-29
JP2604009B2 JP2604009B2 (en) 1997-04-23

Family

ID=15948423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17279188A Expired - Fee Related JP2604009B2 (en) 1988-07-13 1988-07-13 Isotope separation device

Country Status (1)

Country Link
JP (1) JP2604009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993019039A1 (en) 1992-03-25 1993-09-30 Sagami Chemical Research Center Tetrahydrophthalamide derivative, intermediate for producing the same, production of both, and herbicide containing the same as active ingredient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993019039A1 (en) 1992-03-25 1993-09-30 Sagami Chemical Research Center Tetrahydrophthalamide derivative, intermediate for producing the same, production of both, and herbicide containing the same as active ingredient

Also Published As

Publication number Publication date
JP2604009B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
EP0103586B1 (en) Sputter initiated resonance ionization spectrometry
Backe et al. Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps
Dibeler et al. Mass Spectrometric Study of Photoionization. I. Apparatus and Initial Observations on Acetylene, Acetylene-d2, Benzene, and Benzene-d6
Jalin et al. Absolute electron impact ionization cross sections of Li in the energy range from 100 to 2000 eV
Heiland et al. 6. Ion Scattering and Secondary-Ion Mass Spectrometry
JP2604009B2 (en) Isotope separation device
Geiger et al. SNMS-analysis of insulators
Raith et al. Trace element detection sensitivity in PIXE analysis by means of an external proton beam
Ärje et al. A study of a helium-jet ion guide for an on-line isotope separator
Bukow et al. Lifetimes and initial populations of foil-excited hydrogen and lithium states
Kashihira et al. Source for negative halogen ions
Sen-Britain et al. Study of cluster ions produced from ToF-SIMS analysis of a U-6% Nb target
Bollen et al. Mass determination of radioactive isotopes with the ISOLTRAP spectrometer at ISOLDE, CERN
Heinemeier et al. Accelerator mass spectrometry applied to 22, 24Na, 31, 32Si, and 14C
Macfarlane [11] Principles of californium-252 plasma desorption mass spectrometry applied to protein analysis
Howald et al. Excitation of the Na (3 p) Level by H− Ions and H 0 Atoms
Kuzyakov et al. Atomic ionization spectrometry: prospects and results
Baker Surface analysis by electron spectroscopy
Smith Metal ion injection into metals III. Irradiation system and experimental techniques
JPH07169B2 (en) Isotope separation device
Bekov Resonance ionization spectroscopy
JPS60121662A (en) Mass spectrometer
Seddon et al. Electron spin resonance detection of radicals and electrons condensed from water vapor after irradiation with 1 MeV helium ions
Perović The scientific and technical foundations of electromagnetic isotope separation technology
Krohn et al. Some proposed improvements in the scanning ion microprobe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees