JPH02266211A - Horizontal position measuring instrument for drilling machine - Google Patents

Horizontal position measuring instrument for drilling machine

Info

Publication number
JPH02266211A
JPH02266211A JP8776489A JP8776489A JPH02266211A JP H02266211 A JPH02266211 A JP H02266211A JP 8776489 A JP8776489 A JP 8776489A JP 8776489 A JP8776489 A JP 8776489A JP H02266211 A JPH02266211 A JP H02266211A
Authority
JP
Japan
Prior art keywords
magnetic field
construction plan
field detection
deviation
plan line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8776489A
Other languages
Japanese (ja)
Other versions
JP2786238B2 (en
Inventor
Masao Nosaka
野坂 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takachiho Sangyo KK
Original Assignee
Takachiho Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takachiho Sangyo KK filed Critical Takachiho Sangyo KK
Priority to JP1087764A priority Critical patent/JP2786238B2/en
Publication of JPH02266211A publication Critical patent/JPH02266211A/en
Application granted granted Critical
Publication of JP2786238B2 publication Critical patent/JP2786238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To enable easy, speedy, and accurate detection without carrying a survey instrument to a target point nor performing any complicate traffic interception by laying a magnetic field detection cable on the ground surface and detecting the position. CONSTITUTION:Voltages generated on two magnetic field detection cables 3 and 4 which are laid on the ground surface one over the other along a construction plan line symmetrically about the construction plan line are measured from the magnetic field produced by a magnetic field producing element 1 provided to the drilling head 15 of the drilling machine. Arithmetic is carried out according to the measured voltage to find the deviation of the drilling head 15 from the construction plan line. Thus, the easy, speedy, and accurate detection is performed without carrying the survey instrument to the target position nor performing traffic interception.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は掘進機により地中に管路設備を非開削で埋設す
る場合、掘進別を施工計画線に沿って掘進させるために
掘進機の位置を測定する掘進はの位置測定装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for using an excavator to excavate along a construction plan line when burying pipe equipment underground using an excavator without excavating. The present invention relates to a position measuring device for excavating a position.

[従来の技術] 従来、こうした水道管やガス管を埋設することを目的と
した比較的小口径の地中掘進喋においては、掘削スペー
スが小さい上に曲線掘削なども頻繁に行なわれるなどと
いった性格上、この掘削位冒を計測、確認するに、レー
ザトランシット等を用いた光学111ffiは適用でき
ないし、特にこの水平方向の変位に関してはこれを正確
にSl測すること自体が不可能であるというのが実情で
あった。これに対し最近、地中掘進機内部に磁気発生素
子を設置し、この磁気発生素子から発生する交番磁界の
地表での特徴を利用して、地中掘進機の真上の地表点あ
るいは真上の地表点からの変位を訓測する方法が特公昭
58−11030号、発明の名称「シールド薄の水平位
胃探知方法」を基本としていくつか4案されている。
[Conventional technology] Conventionally, in underground excavation of relatively small diameters for the purpose of burying water pipes and gas pipes, the excavation space is small and curved excavations are frequently performed. First, optical 111ffi using laser transit cannot be applied to measure and confirm this excavation displacement, and it is impossible to accurately measure Sl, especially regarding this horizontal displacement. was the reality. In response to this, recently, a magnetic generation element has been installed inside the underground excavator, and by utilizing the characteristics of the alternating magnetic field generated by this magnetism generating element on the ground surface, it is possible to Four methods have been proposed based on the method of measuring the displacement from a point on the earth's surface, which is published in Japanese Patent Publication No. 11030/1983, titled ``Method for Detecting the Horizontal Stomach of a Thin Shield''.

[発明が解決しようとする課題] こうした方法によれば、地中掘進機の水平位置について
確かにこれを計測することはできるものの、この実用に
際しては、上記の磁気検出素子が所定の姿勢で設置され
た探査器を地表の目標地点へ運搬し、設置、探査せねば
ならないことから、計測担当人員の増加や計測の手間・
時間がかかる等の新たな問題が生じることとなる。まし
て、交通間の多い道路ではこのような計測方法は不可能
に等しく、頻繁な交通遮断を行なうに至っては地中掘進
機を用いた管理設方法の本来の利点を失わせるものであ
る。
[Problem to be solved by the invention] Although it is possible to certainly measure the horizontal position of an underground excavator using this method, in practical use, it is necessary to install the above-mentioned magnetic detection element in a predetermined posture. The probe must be transported to the target point on the earth's surface, installed, and explored, resulting in an increase in the number of personnel in charge of measurement, and the labor and time required for measurement.
New problems such as time consuming will arise. Moreover, such a measurement method is almost impossible on roads with a lot of traffic, and if traffic is frequently cut off, the original advantage of the management installation method using underground excavators will be lost.

[課題を解決するための手段] 上記の課題を解決するため、本発明は地中掘進機の水平
位置を測定する装置であって、掘進機の掘進ヘッドに備
えられた磁界発生素子と、該素子に電流を供給する手段
と、地表面上で、施工計画線に冶って往路線と復路線と
で一定の間隔を保って9!2設してループを形成し、そ
のループが施工計画線に対して対称となるように重ね合
わせて敷設された2組の磁界検出ケーブルと、前記磁界
発生素子からの磁界により、前記2組のケーブルに発生
した電圧を測定し、前記電圧測定値の演算により掘進ヘ
ッドの施工計画線からの水平位置偏差を測定することを
要旨とする掘進機の水平位置測定装置である。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a device for measuring the horizontal position of an underground excavator, which comprises a magnetic field generating element provided in the excavation head of the excavator, and a magnetic field generating element provided in the excavation head of the excavator. A means for supplying current to the element is placed on the ground surface along the construction plan line, and 9!2 are placed at a constant interval between the outgoing route and the return route to form a loop, and the loop is the construction plan line. The voltages generated in the two sets of cables are measured by the two sets of magnetic field detection cables laid over each other symmetrically with respect to the line, and the magnetic field from the magnetic field generating element. This is a horizontal position measuring device for an excavator that uses calculation to measure the horizontal position deviation of the excavation head from the construction plan line.

[作 用] 上記の構成についての作用について説明する。[Work] The operation of the above configuration will be explained.

掘進機の掘進ヘッドに備えられた磁界発生素子から発生
した磁界により、地表面上に施工計画線に沿って敷設さ
れ、かつ施工計画線に対して対称となるように重ね合わ
せて敷設された2組の磁界ケーブルに発生する電圧を測
定する。
The magnetic field generated by the magnetic field generating element installed in the excavation head of the excavator is used to lay the ground along the construction plan line on the ground surface, and to overlap the construction plan line symmetrically. Measure the voltage generated in the set of magnetic field cables.

この測定された電圧に基づいて演算をすることによって
施工計画線に対する掘進ヘッドの施工計画線からの偏差
が求まる。
By performing calculations based on this measured voltage, the deviation of the excavation head from the construction planning line is determined.

「実施例] 本発明の一実施例を図面に従って説明する。"Example] An embodiment of the present invention will be described with reference to the drawings.

第1図は作業状態にある図示しない地中拙進纏に取付け
られている掘進ヘッド15を含む実施例の装置の大まか
な構成を平面図をもって模式的に示したものであり、ま
た第2図は同実施例装置の横断面を模式的に示したもの
であり、更に第3図は同地中掘進ヘッド15の進行方向
から見た該実施例装置の要部断面構造を模式的に示した
ものであり、これらの図において、EPは地表面、17
は発進立坑、3及び4は該地表面EP上に施設された磁
界検出ケーブルであって、磁界検出ケーブル3は施工計
画線18に平行に往路線3aと復路I!23bにてルー
プを形成している。又磁界検出ケーブル4も同様に往路
線4aを復路線4bとでループを形成し、これら磁界検
出ケーブル3及び4は第3図で示すように施工計画線1
8を中心に1/2シの距離に磁界検出ケーブル3の復路
線3b及び磁界検出ケーブル4の往路線4bが、又距離
3/2Lの位置には磁界検出ケーブル4の復路線4bが
又反対の位置には磁界検出ケーブル3の往路線3aがそ
れぞれ互いに平行に施設されている。
FIG. 1 is a plan view schematically showing the rough configuration of the apparatus of the embodiment including the excavation head 15 attached to an underground excavator (not shown) in working condition, and FIG. 3 schematically shows a cross section of the device according to the embodiment, and FIG. In these figures, EP is the ground surface, 17
is a starting shaft; 3 and 4 are magnetic field detection cables installed on the ground surface EP; A loop is formed at 23b. Similarly, the magnetic field detection cable 4 forms a loop with the outgoing line 4a and the incoming line 4b, and these magnetic field detection cables 3 and 4 are connected to the construction plan line 1 as shown in FIG.
8, the return line 3b of the magnetic field detection cable 3 and the outward line 4b of the magnetic field detection cable 4 are located at a distance of 1/2L from the center, and the return line 4b of the magnetic field detection cable 4 is oppositely located at a distance of 3/2L. Outbound lines 3a of the magnetic field detection cables 3 are installed parallel to each other at the positions shown in FIG.

一方、施工計画線18に沿って掘進された推進管16の
先端部には図示しない掘進機の掘進ヘッド15があり、
その掘進ヘッド15内にはコイルからなる磁界発生素子
1が深さ1」の位置に内挿されている。発進立坑17の
横の地上面上には装置部14が設置されており、磁界検
出ケーブル3.4及び磁界発生素子1とケーブル1つで
もって接続されている。この装置14の構成については
第4図に詳しく示す。すなわち、第4図に示すように適
宜の繰返し周波数を有する交流信号を発信する発振器5
2はケーブル19を介して磁界発生素子1に接続されて
いる。磁界発生素子1で発生された磁界は磁界検出ケー
ブル3,4で検出され、その検出信号は切替器55へ入
力され、切替えられた信号、即ち磁界検出ケーブル3で
検出された信号あるいは磁界検出ケーブル4で検出され
た信号のいずれかに選択された信号は増幅器56、バン
ドパスフィルター57、検波器58及びA/D変換器5
9を経てCPtJ60へ入力される。CPU60はRO
M61及びRAM62を備えていてROM61に予め記
憶されているプログラムに従って処理され、結果は表示
器63に表示される。
On the other hand, there is an excavation head 15 of an excavator (not shown) at the tip of the propulsion pipe 16 excavated along the construction plan line 18.
A magnetic field generating element 1 consisting of a coil is inserted into the digging head 15 at a depth of 1''. A device section 14 is installed on the ground next to the starting shaft 17, and is connected to the magnetic field detection cable 3.4 and the magnetic field generating element 1 by a single cable. The configuration of this device 14 is shown in detail in FIG. That is, as shown in FIG. 4, an oscillator 5 that emits an AC signal having an appropriate repetition frequency.
2 is connected to the magnetic field generating element 1 via a cable 19. The magnetic field generated by the magnetic field generating element 1 is detected by the magnetic field detection cables 3 and 4, and the detection signal is input to the switch 55, and the switched signal, that is, the signal detected by the magnetic field detection cable 3 or the magnetic field detection cable The signal selected as one of the signals detected in step 4 is sent to an amplifier 56, a bandpass filter 57, a detector 58, and an A/D converter 5.
9 and is input to CPtJ60. CPU60 is RO
It is equipped with M61 and RAM62, and is processed according to a program stored in advance in ROM61, and the results are displayed on display 63.

次に、本実施例の理論について第5図乃至第8図を参照
して説明する。
Next, the theory of this embodiment will be explained with reference to FIGS. 5 to 8.

第5図から明らかなように磁界検出ケーブル3゜4は地
表面EP上に往路3a、4a及び復路3b。
As is clear from FIG. 5, the magnetic field detection cable 3.4 has outward routes 3a, 4a and return route 3b on the ground surface EP.

4bが施工計画線18に距離りの間隔で平行に敷設され
、かつ往路3aと復路3bの中点には往路4aが位置し
、又往路4aと復路3bの中点に施工計画m18が位置
する。磁界発生素子1は地表面EPから深さHでかつ施
工計画線18から偏差Δgだけ水平方向に離れた位置に
ある。また、地表面に敷設されている往路3a、4a及
び復路3b、4bから磁界発生素子1までの直線距離を
それぞれ13a、 J 3b、 M 4a、 Jl 4
bとすると、となる。
4b is laid parallel to the construction plan line 18 at intervals of distance, and the outbound path 4a is located at the midpoint of the outbound path 3a and the return path 3b, and the construction plan m18 is located at the midpoint of the outbound path 4a and the return path 3b. . The magnetic field generating element 1 is located at a depth H from the ground surface EP and horizontally separated from the construction plan line 18 by a deviation Δg. In addition, the straight-line distances from the outward paths 3a, 4a and the backward paths 3b, 4b laid on the ground surface to the magnetic field generating element 1 are respectively 13a, J3b, M4a, Jl4.
If it is b, then it becomes.

次に磁界検出ケーブルに発生する電圧を求める。Next, find the voltage generated in the magnetic field detection cable.

磁界検出ケーブル3の往路3aに発生する電圧v3aは
、第5図に示すように往路3aと磁界発生子1とを結ぶ
磁界発生子1での鉛直方向軸とが成す角度を01として
、かつ第1図に示すように磁界検出ケーブル3,4の敷
設長さをLLとしてこの長さLLと413aとを比較し
た場合L L >)413aであると V3a =  K/ 」1 3a−cos  θ 1 
−  K#  3a−)−1/j  3aである。
As shown in FIG. 5, the voltage v3a generated in the outgoing path 3a of the magnetic field detection cable 3 is determined by assuming that the angle formed by the vertical axis of the magnetic field generator 1 connecting the outgoing path 3a and the magnetic field generator 1 is 01, and As shown in Fig. 1, when the installation length of the magnetic field detection cables 3 and 4 is LL and this length LL is compared with 413a, if LL>)413a, then V3a = K/''1 3a-cos θ 1
- K# 3a-)-1/j 3a.

同様に磁界検出ケーブル3の復路3bに発生する電圧V
3bを求める。第5図において復路3bと磁界発生素子
1とを結ぶ直線と磁界発生素子1での鉛直方向軸とが成
す角度を02とし、かつLL>>j 3bであると V3b=に/j 3b−cosθ2 =に/# 3b−
H/j 3bである。
Similarly, the voltage V generated on the return path 3b of the magnetic field detection cable 3
Find 3b. In FIG. 5, if the angle between the straight line connecting the return path 3b and the magnetic field generating element 1 and the vertical axis of the magnetic field generating element 1 is 02, and LL>>j 3b, then V3b=/j 3b-cos θ2 = to/# 3b-
H/j 3b.

上記で求まった電圧V3aとV3bとは逆方向の電圧で
あるため磁界検出ケーブル3に発生する電圧v3は V3 =に−H・(1/j) 3a2 −1/J 3b
2  )(1a) である。
Since the voltages V3a and V3b found above are in opposite directions, the voltage v3 generated in the magnetic field detection cable 3 is V3 = −H・(1/j) 3a2 −1/J 3b
2) (1a).

一方、磁界検出ケーブル4に発生する電圧v4について
は上記V3と同様の方法で求めることができる。即ち、
磁界検出ケーブル4の往路4aに発生するV4aは磁界
検出ケーブル4の往路4aと磁界発生素子1とを結ぶ直
線と磁界発生素子1での鉛直方向軸とが成す角度をθ3
とし、かつLL>>fJ 4aとすると V4a= K/j 4a−cos θ3−に/j14a
−H/414aとなる。
On the other hand, the voltage v4 generated in the magnetic field detection cable 4 can be determined in the same manner as the voltage V3 described above. That is,
V4a generated on the outgoing path 4a of the magnetic field detection cable 4 is defined by the angle θ3 between the straight line connecting the outgoing path 4a of the magnetic field detection cable 4 and the magnetic field generating element 1 and the vertical axis of the magnetic field generating element 1.
And if LL >> fJ 4a, then V4a = K/j 4a-cos θ3-/j14a
-H/414a.

また、同様に磁界検出ケーブル4の復路4bに発生する
電圧V4bは磁界検出ケーブル4の復路4bと磁界発生
素子1とを結ぶ直線と磁界発生素子1での鉛直方向軸と
が成す角度を03とし、かっl l >>J 4bとす
ると V4b= K/j 4b−cosθ3 =に/j14b
−H/Jl 4bとなる。
Similarly, the voltage V4b generated on the return path 4b of the magnetic field detection cable 4 is determined by assuming that the angle between the straight line connecting the return path 4b of the magnetic field detection cable 4 and the magnetic field generation element 1 and the vertical axis of the magnetic field generation element 1 is 03. , If l l >> J 4b, then V4b = K/j 4b-cos θ3 = /j14b
-H/Jl 4b.

上記で求めた電圧V4aとV4bとは逆方向電圧である
ため、磁界検出ケーブル4に発生する電圧v4は V4 =K −H・(1,14a  −1/j 4b”
 )(1b) である。
Since the voltages V4a and V4b obtained above are voltages in opposite directions, the voltage v4 generated in the magnetic field detection cable 4 is V4 = K −H・(1,14a −1/j 4b”
)(1b).

なお、上記(1a)及び(1b)の式のKは大地の誘電
率等を含んだ比例係数である。
Note that K in the above equations (1a) and (1b) is a proportional coefficient that includes the dielectric constant of the earth.

次に、上記で求めた電圧■3及びV4の絶対値と磁界発
生素子1が施工計画線18より水平方向に離れている距
離、即ち偏差Δgとの関係を磁界発生素子1の深さ(」
をH=2Lの状態で実測した結果を第6図に示す。この
図から絶対値電圧■3及びv4は偏差Δgが−L/2≦
Δp≦L/2の範囲においてほぼ直線的に変化し、比例
定数をkとすると、 V3 =に一ΔN 、 V4 =に一Δllと表させる
Next, the relationship between the absolute values of the voltages 3 and V4 obtained above and the distance that the magnetic field generating element 1 is horizontally separated from the construction plan line 18, that is, the deviation Δg, is determined by the depth of the magnetic field generating element 1 ("
FIG. 6 shows the results of actual measurements under the condition of H=2L. From this figure, the absolute value voltage ■3 and v4 have a deviation Δg of −L/2≦
It changes almost linearly in the range of Δp≦L/2, and when the proportional constant is k, V3 = is expressed as -ΔN, and V4 = as -Δll.

そこで、第5図に示す状態に上記の関係を適用してみる
と、 V3=−k(L/2−Δ1) V4− k (L/2 +4jl ) となり、偏差Δ1は ΔM−(V3 +V4 ) / (V4−V3 ) −
L/2として求まる。従って、測定した電圧V 3. 
V 4及び距11Lより偏差Δ1を求めることができる
。なおこの偏差Δgを計算値としての偏差へρ′とする
。 次に、上記で求めた計算のΔp′が実測の偏差Δρ
との相異について第7図に示す。第7図は横軸に実測の
偏差Δg、縦軸に計算の偏差Δp′をとり、H−L、)
−1=31及びH=5Lの条件のもとに実測比較した図
である。この第7図から計算の偏差Δ9′は実測の偏差
Δ1とほとんど一致している。即ち、磁界発生素子1の
深さHに拘らずほぼ正確に施工計画線18よりの偏差Δ
n=を求めることができる。
Therefore, when we apply the above relationship to the situation shown in Figure 5, we get V3=-k(L/2-Δ1) V4-k(L/2+4jl), and the deviation Δ1 is ΔM-(V3+V4) / (V4-V3) -
It is found as L/2. Therefore, the measured voltage V3.
The deviation Δ1 can be determined from V4 and the distance 11L. Note that this deviation Δg is defined as a deviation ρ' as a calculated value. Next, Δp′ of the calculation obtained above is the deviation of the actual measurement Δρ
Figure 7 shows the differences between the two. In Figure 7, the horizontal axis shows the measured deviation Δg, and the vertical axis shows the calculated deviation Δp', H-L.
It is a figure which compared actual measurements under the conditions of -1=31 and H=5L. From FIG. 7, the calculated deviation Δ9' almost matches the measured deviation Δ1. That is, regardless of the depth H of the magnetic field generating element 1, the deviation Δ from the construction plan line 18 is almost exactly
It is possible to find n=.

従って、上記に記載した方法で偏差Δg′を求めるよう
に予め装置部14内に設けであるROM11にプログラ
ムしておくことにより容易に求めることができる。即ち
、予め磁界検出ケーブルの敷設距離りの値をCPtJl
oに与えておき、切替器55によってまず磁界検出ケー
ブル3に発生する電圧V3°を検出するようにし、この
検出値を増幅器6等を介してCPU60GC読込む。そ
して同様に切替器55を切替えて磁界検出ケーブル4に
発生する電圧v4°を検出してCPU60に読込む。
Therefore, the deviation Δg' can be easily obtained by programming the ROM 11 provided in the device section 14 in advance to obtain the deviation Δg' using the method described above. That is, the value of the installation distance of the magnetic field detection cable is determined in advance by CPtJl.
o, the voltage V3° generated in the magnetic field detection cable 3 is first detected by the switch 55, and this detected value is read by the CPU 60GC via the amplifier 6 or the like. Similarly, the switch 55 is switched to detect the voltage v4° generated in the magnetic field detection cable 4 and read it into the CPU 60.

CPU60では読込まれたV3’とV4°及びLでもっ
て偏差Δgを ΔJ) −(V3’+V4°)/(V4°−V3°)−
L/2で求める。
The CPU 60 uses the read V3', V4° and L to calculate the deviation Δg as ΔJ) - (V3' + V4°) / (V4° - V3°) -
Calculate by L/2.

なお、■3及びV4をそれぞれ式(1a)、 (1b)
で求める必要がないのは偏差Δρを求める式がv3とV
4の比率関係であり、相対値でもって演算すればよいか
らである。
In addition, ■3 and V4 are expressed by formulas (1a) and (1b), respectively.
What is not necessary is that the formula for calculating the deviation Δρ is v3 and V
This is because the relationship is a ratio of 4, and calculations can be made using relative values.

このように本実施例では施工計画線に沿って往路線と復
路線とで一定の間隔を保って敷設してループを形成し、
そのループが施工計画線に対して対称となるように重ね
合わせて敷設された2組の磁界検出ケーブルに発生する
電圧を測定し、その電圧値に基づいて偏差Δ1′を演算
し、算出された偏差Δp′を表示器63に表示できる。
In this way, in this example, the outbound route and the return route are laid along the construction planned line at a constant interval to form a loop.
The voltage generated in two sets of magnetic field detection cables laid overlapping each other so that the loops are symmetrical with respect to the construction plan line is measured, and the deviation Δ1' is calculated based on the voltage value. The deviation Δp' can be displayed on the display 63.

又この偏差Δ1′に応じて掘進機の掘進方向制御を行な
うことも容易にでき、かつ自動的に高感度に検出するこ
とができ、又掘進機の掘進方向制御を完全に自動化する
ことができる。更に、施工計画線が自由曲線であっても
、それが直線の場合と何等変えるところなく位置検出及
び掘進方向制御を行なうことができる。
Furthermore, the excavation direction of the excavation machine can be easily controlled in accordance with this deviation Δ1', and it can be detected automatically and with high sensitivity, and the excavation direction control of the excavation machine can be completely automated. . Furthermore, even if the construction plan line is a free curve, position detection and excavation direction control can be performed in the same way as when it is a straight line.

なお、上記実施例の説明では磁界検出ケーブルを地表上
に敷設する例について説明したが、磁界検出ケーブルは
地面に敷設してもよい。
In addition, in the description of the above embodiment, an example was explained in which the magnetic field detection cable is laid on the ground surface, but the magnetic field detection cable may be laid on the ground surface.

[発明の効果] 以上述べたように、本発明では磁界検出ケーブルを地表
面に敷設して位置を検出するものである。
[Effects of the Invention] As described above, in the present invention, a magnetic field detection cable is laid on the ground surface to detect the position.

そのため、探査器を目標地点へ運搬覆ることなく、又繁
雑な交通遮断を行なうことなく、容易にかつ迅速に精度
よく検出することができる。又、曲線掘削にも適用する
ことができる。
Therefore, detection can be performed easily, quickly, and accurately without transporting the probe to the target point and without having to block traffic. It can also be applied to curved excavation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる地中掘進機の掘進ヘッドを含む
実施例装置の大まかな構成を示す平面図、第2図は同実
施例装置を模式的にポリ横断面図、第3図は掘進ヘッド
の進行方向から見た同実施例の要部断面構造を模式的に
示したもの、第4図は装置部の内部構成図、第5図は本
実施例の動作について説明するための磁界発生素子と磁
界検出ケーブルとを掘進ヘッドの進行方向から見た図、
第6図は偏差Δgと磁界検出ケーブルに発生する電圧と
の関係式、第7図は実測の偏差Δgと計算の偏差Δ1−
を示す図である。 1・・・磁界発生素子 3(3a、3b)、4(4a、4b) −fjl界検量
検出ケーブル15・庭進ヘッド 17・・・発進立坑 18・・・施工計画線
Fig. 1 is a plan view showing the rough configuration of an embodiment device including an excavation head of an underground excavator according to the present invention, Fig. 2 is a schematic cross-sectional view of the embodiment device, and Fig. 3 is a schematic cross-sectional view of the embodiment device. Fig. 4 is an internal configuration diagram of the device, and Fig. 5 is a diagram showing the magnetic field for explaining the operation of this embodiment. A diagram of the generating element and the magnetic field detection cable viewed from the direction of movement of the excavation head,
Figure 6 shows the relational expression between the deviation Δg and the voltage generated in the magnetic field detection cable, and Figure 7 shows the measured deviation Δg and the calculated deviation Δ1−.
FIG. 1... Magnetic field generating elements 3 (3a, 3b), 4 (4a, 4b) - fjl field calibration detection cable 15 - Niwashin head 17... Starting shaft 18... Construction plan line

Claims (1)

【特許請求の範囲】[Claims] 地中掘進機の水平位置を測定する装置であって、掘進機
の掘進ヘッドに備えられた磁界発生素子と、該素子に電
流を供給する手段と、地表面上で、施工計画線に沿って
往路線と復路線とで一定の間隔を保って敷設してループ
を形成し、そのループが施工計画線に対して対称となる
ように重ね合わせて敷設された2組の磁界検出ケーブル
と、前記磁界発生素子からの磁界により、前記2組のケ
ーブルに発生した電圧を測定し、前記電圧測定値の演算
により掘進ヘッドの施工計画線からの水平位置偏差を測
定することを特徴とする掘進機の水平位置測定装置。
A device for measuring the horizontal position of an underground excavator, comprising: a magnetic field generating element provided in the excavation head of the excavator; a means for supplying current to the element; Two sets of magnetic field detection cables are laid at a constant interval on the outbound route and the return route to form a loop, and the cables are laid overlapping each other so that the loops are symmetrical with respect to the construction plan line; An excavator characterized in that the voltage generated in the two sets of cables is measured by the magnetic field from the magnetic field generating element, and the horizontal positional deviation of the excavation head from the construction plan line is measured by calculating the voltage measurement value. Horizontal position measuring device.
JP1087764A 1989-04-06 1989-04-06 Excavator horizontal position measurement device Expired - Lifetime JP2786238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1087764A JP2786238B2 (en) 1989-04-06 1989-04-06 Excavator horizontal position measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087764A JP2786238B2 (en) 1989-04-06 1989-04-06 Excavator horizontal position measurement device

Publications (2)

Publication Number Publication Date
JPH02266211A true JPH02266211A (en) 1990-10-31
JP2786238B2 JP2786238B2 (en) 1998-08-13

Family

ID=13924025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087764A Expired - Lifetime JP2786238B2 (en) 1989-04-06 1989-04-06 Excavator horizontal position measurement device

Country Status (1)

Country Link
JP (1) JP2786238B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326510A (en) * 1986-07-19 1988-02-04 Fujitsu Ltd Inspection device for packaging component
JPS63265110A (en) * 1986-12-04 1988-11-01 Komatsu Ltd Horizontal displacement measuring apparatus of underground excavator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326510A (en) * 1986-07-19 1988-02-04 Fujitsu Ltd Inspection device for packaging component
JPS63265110A (en) * 1986-12-04 1988-11-01 Komatsu Ltd Horizontal displacement measuring apparatus of underground excavator

Also Published As

Publication number Publication date
JP2786238B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US6466020B2 (en) Electromagnetic borehole surveying method
JPH02266211A (en) Horizontal position measuring instrument for drilling machine
US5107938A (en) Apparatus for detecting position of underground excavator
EP0481077B1 (en) Device for measuring position of underground excavator
JP3224004B2 (en) Drilling tube tip location method
JP2866078B2 (en) Excavation propulsion position detecting device and position detecting method
JPS625121A (en) Position detector of excavating machine
JPS625117A (en) Position detector of excavating machine
JP2757058B2 (en) Underground excavator relative position detector
JPS62169012A (en) Horizontal displacement measuring apparatus for underground excavator
JPS60230079A (en) Position detecting device of excavator
JPS625119A (en) Position detector of excavating machine
JP3553831B2 (en) Method and apparatus for detecting relative orientation of underground pipeline
JPS60230498A (en) Position detection apparatus of drilling machine
JPS62132111A (en) Apparatus for measureing horizontal displacement of underground excavator
JPS63265110A (en) Horizontal displacement measuring apparatus of underground excavator
JPS625118A (en) Position detector of excavating machine
JPS62132110A (en) Apparatus for measuring horizontal displacement quantity of underground excavator
JPH02203294A (en) Position measuring instrument for underground moving body
JPH0372291A (en) Method and device for measuring position of underground excavator
JPH03260284A (en) Horizontal displacement detector of underground moving body
JPS6023594A (en) Horizontal displacement measuring method and apparatus of tunnel drilling machine
JPH01214692A (en) Horizontal displacement measuring device for underground drilling machine
JPS625115A (en) Position detector of excavating machine
JPS6153587A (en) Position detector for excavator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

EXPY Cancellation because of completion of term