JPH0226619B2 - - Google Patents

Info

Publication number
JPH0226619B2
JPH0226619B2 JP57130483A JP13048382A JPH0226619B2 JP H0226619 B2 JPH0226619 B2 JP H0226619B2 JP 57130483 A JP57130483 A JP 57130483A JP 13048382 A JP13048382 A JP 13048382A JP H0226619 B2 JPH0226619 B2 JP H0226619B2
Authority
JP
Japan
Prior art keywords
ethyleneamines
benzyl alcohol
organic phase
aqueous solution
eda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57130483A
Other languages
Japanese (ja)
Other versions
JPS5920254A (en
Inventor
Yoichi Hiraga
Tsugio Murakami
Hiroyuki Saito
Osamu Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP57130483A priority Critical patent/JPS5920254A/en
Publication of JPS5920254A publication Critical patent/JPS5920254A/en
Publication of JPH0226619B2 publication Critical patent/JPH0226619B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエチレンアミン類および塩化アンモニ
ウム、塩化ナトリウムまたは塩化カルシウム等の
無機塩化物を含む水溶液から、エチレンアミン類
を選択的に抽出して無機塩化物と分離する方法に
関するものである。更に詳しくは、例えば二塩化
エタンとアンモニア水溶液の反応によつて得たエ
チレンジアミン、ジエチレントリアミン、トリエ
チレンテトラミン、テトラエチレンペンタミンな
ど、およびピペラジンなどの鎖状;環状アミン等
を含むエチレンアミン類のモノ塩酸塩、およびア
ンモニア、塩化アンモニウムを含む反応生成液、
あるいは該反応生成液に水酸化ナトリウム、水酸
化カルシウム等を添加して得られる遊離のエチレ
ンアミン類および塩化ナトリウムまたは塩化カル
シウム等の塩化物を含む水溶液から、ベンジルア
ルコールを用いてエチレンアミン類を効率よく有
機相に抽出し、無機塩化物と分離する方法に関す
るものである。 現在、エチレンアミン類(EA)と無機塩化物
との分離は、生成する無機塩化物が極めて安定で
あること、および遊離のアミンを生成できるアル
カリ強度を有することから二塩化エタンとアンモ
ニア水溶液の反応生成物に対し、水酸化ナトリウ
ムを作用させて、次式のように苛性化し、 EA・HCl+NH4Cl+2NaOH→ EA+NH3+2NaCl+2H2O 遊離アンモニアを除去した後、蒸発濃縮で塩化
ナトリウムを晶出させ、遊離のエチレンアミン類
を回収する方法が採用されている。即ち、アンモ
ニアはアルカリ強度が弱く、エチレンアミン類の
モノ塩酸塩を遊離のエチレンアミン類にする能力
はなく、水酸化カルシウムを用いた場合、副生す
る塩化カルシウムを晶出分離するため蒸発濃縮す
ると、高温時に次式のような逆反応が起り、 2EA+CaCl2+2H2O→ 2EA・HCl+Ca(OH)2↓ エチレンアミン類を回収することが出来なくな
るため、水酸化ナトリウムの使用が必須となつて
いる。 現状のエチレンアミン類と無機塩化物との分離
方法は、1)高価な水酸化ナトリウムを多量に必
要とすること。2)副生する塩化ナトリウムを分
離するには、反応時に必要とした多量の水をすべ
て蒸発除去しなければならず、多量の熱エネルギ
ーを必要とすること。3)効率よく塩化ナトリウ
ムを分離するには晶析・分離に複雑な操作、高価
な装置を必要とすること。などの問題点を有して
いる。 以上の状況から本発明者らは、上記問題点を解
決したエチレンアミン類と無機塩化物の分離方法
を確立すべく鋭意検討した結果、ベンジルアルコ
ールを用いると極めて効率的にエチレンアミン類
が有機相に抽出されるという全く予期せぬ知見を
見出し、本発明を達成した。 即ち、本発明はエチレンアミン類と無機塩化物
を含む水溶液からベンジルアルコールあるいはベ
ンジルアルコールと炭素数3〜8ケの脂肪族アル
コール及び/又はケトン基を有する有機溶剤から
なる混合溶剤を用いて、エチレンアミン類を選択
的に有機相に抽出することを特徴とするエチレン
アミン類と無機塩化物とを分離する方法である。 以下本発明を更に詳細に説明する。 本発明で云うエチレンアミン類とは前述したよ
うに、エチレンジアミンを単位として生成する各
種アミンの総称であり、これらエチレンアミン類
の分子中には親有機性を与える炭素・炭素結合数
に比較し、極めて親水性を示すアミノ基が高比率
で含有するので、全体としてエチレンアミン類は
親水性が強く、一般の各種有機溶剤では有機相に
抽出することはできない。 しかしながら、ベンジルアルコールを使用した
場合は、エチレンアミン類を効率よく有機相に抽
出できる。何故ベンジルアルコールがエチレンア
ミン類を効率よく抽出できるのか、その機構は不
明であるが、エチレンアミン類の性質から判断し
て、ベンジルアルコールがエチレンアミン類のア
ミノ基と反応して付加物を生成するか、あるいは
アミノ基に作用することによつて、エチレンアミ
ン類のアミノ基が不活性化され、このためアミノ
基に起因した親水性が失われて全体として親有機
性(以下、有機溶剤相への移り易い性質をいう。)
になるためと推察される。 本発明は以上の理由から、ベンジルアルコール
を用いることが必須の要件となるが、その使用態
様に関しては特に制限はない。即ちエチレンアミ
ン類が親有機性になるのに必要な量のベンジルア
ルコール、言換えるとエチレンアミン類の組成に
よつて多少異なるが、エチレンアミン類のアミノ
基に対して少なくとも0.3モル倍以上、好ましく
は0.5モル倍以上のベンジルアルコールを用いれ
ばよい。有機相の形成およびエチレンアミン類を
抽出するための溶剤としてはベンジルアルコール
単独に限定されるものではなく、各種有機溶剤と
の混合使用が出来る。使用できる溶剤は、有機相
を形成でき、且つベンジルアルコールと反応しな
いものであればよく、特に抽出性、分相性、取扱
い易さ、価格等から炭素数3〜8ケを分子中に有
する脂肪族アルコールが好ましい。例えばベンジ
ルアルコール・n―ブタノール、ベンジルアルコ
ール・i―アミルアルコールなどが使用され、混
合溶剤中のベンジルアルコールは、5〜80体積%
が一般的である。 また原料としてはエチレンアミン類と無機塩化
物を含む水溶液であれば、本発明ではこれら水溶
液の形成条件、濃度、成分比率等にも制限はない
が、本発明を最も有利に使用できる実施態様は、
二酸化エタンとアンモニア水溶液の反応により生
成するエチレンアミン類、モノ塩酸塩、アンモニ
ア、塩化アンモニウムの混合水溶液、あるいは該
混合水溶液に水酸化ナトリウム、水酸化カルシウ
ム等を作用させて得られるエチレンアミン類・塩
化ナトリウムあるいは塩化カルシウム混合水溶液
である。 水酸化ナトリウム、水酸化カルシウム等で苛性
化して得られる水溶液中のエチレンアミン類は遊
離の状態であるので当然有機相に抽出されたエチ
レンアミン類も遊離の状態で抽出されるが、反応
生成物であるエチレンアミン類モノ塩酸塩、、ア
ンモニア、塩化アンモニウムの混合水溶液からも
有機相へ抽出されるエチレンアミン類は遊離の状
態である。この理由も推察の域を出ないが、エチ
レンアミン類モノ塩酸塩の塩酸と結合していない
アミノ基とベンジルアルコールの相互作用によ
り、アルカリ強度がアンモニアのそれより低下
し、この結果としてアンモニアによつて脱塩酸が
達成されるため遊離のエチレンアミン類が抽出さ
れると考えられる。このように苛性化することな
く、エチレンアミン類を選択的に分離できること
は本発明の特徴の1つである。 本発明の方法におけるエチレンアミン類の抽出
性を(有機相)/(水相)の濃度比で表わす分配
係数で示すと、共存する無機塩化物の種類、エチ
レンアミン類の濃度、エチレンアミン類と無機塩
化物の比等で変動するが、最低でも0.5、通常は
1〜3の数値が得られる。この分配係数に対して
最も影響を与える因子は無機塩化物の種類であ
り、特に共存塩が塩化カルシウムの場合、他の塩
に比較してエチレンアミン類の抽出性が劣る。こ
れはCa2+イオンに水が配位し、弱い酸としての
性質を有するアクアイオンを形成し、このアクア
イオンと塩基であるエチレンアミン類の相互作用
によつて有機相への抽出性が減少すると考えられ
る。このため塩化カルシウムを共存する系では上
記アクアイオンの影響を除くためアンモニアを共
存させると、エチレンアミン類の抽出性は2〜6
倍も向上するので、水酸化カルシウムによつて苛
性化した液からアンモニアを除去することなく抽
出を行うことが好ましい。 またエチレンアミンの抽出性を更に向上させる
にはケトン基を有する有機溶剤、例えばアセト
ン、メチルエチルケトン、シクロヘキサノン、シ
クロペンタノン等をベンジルアルコールと併用す
るとよい。上記ケトン基を含む有機溶剤は、単独
でもエチレンアミン類を選択的に抽出できる溶剤
であることは、本発明者らによつて既に提案して
ある。(特願昭57−94952号)。しかしながら、混
合溶剤とベンジルアルコールあるいはケトン基を
有する有機溶剤を単独で用いた場合に比較して、
機構的にはまつたく不明であるが、エチレンアミ
ン類に対する抽出性はより向上するので、本発明
のより好ましい実施態様の1つとなる。 本発明の方法では上述のようにエチレンアミン
類が極めて効率よく抽出できるので、例えば原料
水溶液に対し抽出溶剤を2〜10容量倍使用し、抽
出段数3〜10段で向流接触させれば、原料中に含
まれるエチレンアミン類を実質的にすべて抽出で
きる。原料中に共存する塩化物の分配係数は最大
でも0.1、通常は0.02以下と極めて小さく、エチ
レンアミン類と共に有機相に抽出される塩化物は
極めて少量である。この共抽出された塩化物も、
抽出相を少量の水あるいは少量のエチレンアミン
類水溶液と接触させるだけで簡単に有機相から除
くことができる。 このようにして得たエチレンアミン類を含む有
機相からエチレンアミン類を回収する方法には特
に限定はない。例えば純水を接触させてエチレン
アミン類水溶液として回収する方法、有機相を蒸
留してエチレンアミン類を回収する方法など採用
できるが、最も好ましい方法は、酸を使用する方
法である。即ち、有機相と酸水溶液を接触させて
エチレンアミン類の塩を生成させる方法で、これ
は生成するエチレンアミン類の塩の有機相への溶
解性が極めて小さいため、高濃度のエチレンアミ
ン類の塩水溶液として回収できるためである。例
えばエチレンアミン類として100g/の濃度の
水溶液から200g/以上、通常は300g/以上
のエチレンアミン類の濃度を有する水溶液が容易
に回収できる。 最終目的物がエチレンアミン類の塩である場合
は、目的とする塩を形成する酸を選択すればよ
く、遊離のエチレンアミン類を目的とする場合
は、酸として炭酸ガスあるいは炭酸水を使用する
方法が好ましい。この場合、エチレンアミン類は
炭酸塩水溶液として回収されるが、この炭酸塩は
100℃前后の温度で熱分解して炭酸ガスを放出し、
遊離のエチレンアミン類を生成するので簡単に遊
離のエチレンアミン類を回収することができる。 以上の説明からも明らかなように、本発明の方
法は、 1 高価な水酸化ナトリウムを特に必要とせず、
安価な水酸化カルシウム、水酸化マグネシウム
などのアルカリが使用できる。 2 抽出操作でエチレンアミン類は2〜5倍濃縮
できるので極めて省エネルギーである。 3 晶析・分離を必要としないため、複雑な操
作、高価な装置を必要としない。 など従来法の問題点を解決しており、工業的にも
極めて優れている。 以下実施例により更に説明するが、本発明はこ
れら実施例のみに限定されるものではない。 実施例 1〜4 エチレンアミン類20.0g及び塩化ナトリウム
(NaCl)40.0gを含む水溶液200mlにベンジルア
ルコール200mlを加え、10分間振盪した後、静定
分離し、以下の結果を得た。尚、有機相のNaCl
はいずれも1g/以下であつた。
The present invention relates to a method for selectively extracting ethyleneamines and separating them from inorganic chlorides from an aqueous solution containing ethyleneamines and inorganic chlorides such as ammonium chloride, sodium chloride, or calcium chloride. More specifically, monohydrochloric acid of ethylene amines including ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, etc. obtained by the reaction of dichloroethane and aqueous ammonia solution, and chain/cyclic amines such as piperazine. salt, and a reaction product liquid containing ammonia and ammonium chloride,
Alternatively, from an aqueous solution containing free ethyleneamines and chlorides such as sodium chloride or calcium chloride obtained by adding sodium hydroxide, calcium hydroxide, etc. to the reaction product liquid, ethyleneamines can be efficiently purified using benzyl alcohol. It relates to a method for extracting into an organic phase and separating it from inorganic chlorides. Currently, separation of ethylene amines (EA) and inorganic chlorides is possible through the reaction of ethane dichloride with aqueous ammonia solution, since the inorganic chlorides produced are extremely stable and have alkaline strength that can produce free amines. The product is made caustic by the action of sodium hydroxide according to the following formula, EA・HCl + NH 4 Cl + 2NaOH → EA + NH 3 + 2NaCl + 2H 2 O After removing free ammonia, crystallize sodium chloride by evaporation and concentration. A method has been adopted to recover ethyleneamines. In other words, ammonia has low alkaline strength and does not have the ability to convert monohydrochloride of ethyleneamines into free ethyleneamines.When calcium hydroxide is used, it is difficult to evaporate and concentrate to crystallize and separate by-product calcium chloride. , at high temperatures, a reverse reaction occurs as shown in the following equation, 2EA + CaCl 2 + 2H 2 O→ 2EA・HCl + Ca(OH) 2 ↓ As ethyleneamines cannot be recovered, the use of sodium hydroxide is essential. . The current methods for separating ethyleneamines and inorganic chlorides are as follows: 1) A large amount of expensive sodium hydroxide is required. 2) In order to separate the by-product sodium chloride, all of the large amount of water required during the reaction must be removed by evaporation, which requires a large amount of thermal energy. 3) Efficient separation of sodium chloride requires complex operations and expensive equipment for crystallization and separation. It has problems such as: In light of the above circumstances, the present inventors have conducted intensive studies to establish a method for separating ethyleneamines and inorganic chlorides that solves the above problems. As a result, the use of benzyl alcohol allows ethyleneamines to be separated from the organic phase very efficiently. The present invention was achieved based on the completely unexpected discovery that That is, in the present invention, ethylene is extracted from an aqueous solution containing ethylene amines and an inorganic chloride using benzyl alcohol or a mixed solvent consisting of benzyl alcohol and an aliphatic alcohol having 3 to 8 carbon atoms and/or an organic solvent having a ketone group. This is a method for separating ethylene amines and inorganic chlorides, which is characterized by selectively extracting amines into an organic phase. The present invention will be explained in more detail below. As mentioned above, ethyleneamines in the present invention is a general term for various amines produced using ethylenediamine as a unit, and the number of carbon-carbon bonds in the molecules of these ethyleneamines gives organophilicity. Since they contain a high proportion of extremely hydrophilic amino groups, ethyleneamines as a whole have strong hydrophilic properties and cannot be extracted into the organic phase with various general organic solvents. However, when benzyl alcohol is used, ethyleneamines can be efficiently extracted into the organic phase. The mechanism behind why benzyl alcohol can efficiently extract ethyleneamines is unknown, but judging from the properties of ethyleneamines, benzyl alcohol reacts with the amino groups of ethyleneamines to form adducts. Alternatively, by acting on the amino group, the amino group of ethylene amines is inactivated, and as a result, the hydrophilicity due to the amino group is lost, making the whole organophilic (hereinafter referred to as organic solvent phase). )
It is presumed that this was to become Although it is essential for the present invention to use benzyl alcohol for the above reasons, there are no particular limitations on the manner in which it is used. That is, the amount of benzyl alcohol necessary for the ethyleneamine to become organophilic, in other words, it varies somewhat depending on the composition of the ethyleneamine, but is preferably at least 0.3 times the amino group of the ethyleneamine. 0.5 mole or more of benzyl alcohol may be used. The solvent for forming the organic phase and extracting ethyleneamines is not limited to benzyl alcohol alone, but can be used in combination with various organic solvents. The solvents that can be used are those that can form an organic phase and do not react with benzyl alcohol.In particular, aliphatic solvents having 3 to 8 carbon atoms in the molecule are suitable for extractability, phase separation, ease of handling, price, etc. Alcohol is preferred. For example, benzyl alcohol/n-butanol, benzyl alcohol/i-amyl alcohol, etc. are used, and the benzyl alcohol in the mixed solvent is 5 to 80% by volume.
is common. Further, as long as the raw materials are aqueous solutions containing ethyleneamines and inorganic chlorides, the present invention does not limit the formation conditions, concentrations, component ratios, etc. of these aqueous solutions; however, the embodiment in which the present invention can be most advantageously used is ,
A mixed aqueous solution of ethylene amines, monohydrochloride, ammonia, and ammonium chloride produced by the reaction of ethane dioxide and aqueous ammonia solution, or ethylene amines/chloride obtained by reacting the mixed aqueous solution with sodium hydroxide, calcium hydroxide, etc. It is a mixed aqueous solution of sodium or calcium chloride. Ethyleneamines in the aqueous solution obtained by causticizing with sodium hydroxide, calcium hydroxide, etc. are in a free state, so naturally the ethyleneamines extracted into the organic phase are also extracted in a free state, but the reaction products Ethyleneamines extracted into the organic phase from a mixed aqueous solution of ethyleneamine monohydrochloride, ammonia, and ammonium chloride are in a free state. The reason for this is still speculation, but due to the interaction between the amino groups of ethyleneamine monohydrochloride that are not bonded to hydrochloric acid and benzyl alcohol, the alkaline strength is lower than that of ammonia, and as a result, ammonia It is thought that free ethyleneamines are extracted because dehydrochlorination is achieved. One of the features of the present invention is that ethyleneamines can be selectively separated without causticization. The extractability of ethyleneamines in the method of the present invention is expressed by the distribution coefficient expressed as the concentration ratio of (organic phase)/(aqueous phase). Although it varies depending on the ratio of inorganic chlorides, etc., a value of at least 0.5 and usually 1 to 3 can be obtained. The factor that most influences this partition coefficient is the type of inorganic chloride, and especially when the coexisting salt is calcium chloride, the extractability of ethyleneamines is inferior to other salts. Water coordinates with Ca 2+ ions to form aqua ions that have weak acid properties, and the interaction between these aqua ions and ethyleneamines, which are bases, reduces extractability into the organic phase. It is thought that then. Therefore, in a system where calcium chloride coexists, if ammonia is coexisting to remove the influence of the above aqua ions, the extractability of ethyleneamines will be 2 to 6.
Therefore, it is preferable to perform the extraction without removing ammonia from the solution causticized with calcium hydroxide. Further, in order to further improve the extractability of ethyleneamine, it is preferable to use an organic solvent having a ketone group, such as acetone, methyl ethyl ketone, cyclohexanone, cyclopentanone, etc., in combination with benzyl alcohol. The present inventors have already proposed that the above-mentioned organic solvent containing a ketone group is a solvent that can selectively extract ethyleneamines even when used alone. (Special Application No. 57-94952). However, compared to using a mixed solvent and benzyl alcohol or an organic solvent having a ketone group alone,
Although the mechanism is not completely clear, the extractability for ethyleneamines is further improved, so this is one of the more preferred embodiments of the present invention. In the method of the present invention, as mentioned above, ethyleneamines can be extracted extremely efficiently. For example, if the extraction solvent is used 2 to 10 times the volume of the raw material aqueous solution and brought into countercurrent contact with the number of extraction stages from 3 to 10, Substantially all ethyleneamines contained in the raw material can be extracted. The distribution coefficient of chloride coexisting in the raw material is extremely small, at most 0.1, but usually 0.02 or less, and the amount of chloride extracted into the organic phase together with ethyleneamines is extremely small. This co-extracted chloride also
The extracted phase can be easily removed from the organic phase by simply contacting it with a small amount of water or a small amount of an aqueous solution of ethyleneamines. There is no particular limitation on the method for recovering ethyleneamines from the organic phase containing ethyleneamines thus obtained. For example, a method in which the ethyleneamines are recovered as an aqueous solution by contacting them with pure water, a method in which the ethyleneamines are recovered by distilling the organic phase, etc. can be employed, but the most preferred method is a method using an acid. That is, this method involves bringing an organic phase into contact with an acid aqueous solution to produce salts of ethyleneamines.This method involves contacting an organic phase with an aqueous acid solution to produce salts of ethyleneamines. This is because it can be recovered as an aqueous salt solution. For example, an aqueous solution having a concentration of ethyleneamines of 200g/or more, usually 300g/or more, can be easily recovered from an aqueous solution of 100g/or more. If the final target is a salt of ethyleneamines, select an acid that forms the target salt; if the target is free ethyleneamines, use carbon dioxide gas or carbonated water as the acid. The method is preferred. In this case, ethyleneamines are recovered as a carbonate aqueous solution, but this carbonate is
It thermally decomposes at a temperature of around 100℃ and releases carbon dioxide gas,
Since free ethyleneamines are produced, free ethyleneamines can be easily recovered. As is clear from the above explanation, the method of the present invention: 1. Does not particularly require expensive sodium hydroxide;
Inexpensive alkalis such as calcium hydroxide and magnesium hydroxide can be used. 2 Ethylene amines can be concentrated 2 to 5 times during the extraction operation, which is extremely energy-saving. 3. Since crystallization and separation are not required, complicated operations and expensive equipment are not required. It solves the problems of conventional methods, such as, and is extremely superior industrially. The present invention will be further explained below with reference to Examples, but the present invention is not limited to these Examples. Examples 1 to 4 200 ml of benzyl alcohol was added to 200 ml of an aqueous solution containing 20.0 g of ethylene amines and 40.0 g of sodium chloride (NaCl), and after shaking for 10 minutes, static separation was performed to obtain the following results. In addition, NaCl in the organic phase
In all cases, the amount was 1 g/or less.

【表】 実施例 5 TETA:100g/、NaCl:200g/の水溶
液200mlにベンジルアルコール130mlを含むn―ブ
タノール混合液200mlを加え、10分間振盪した後、
静定分離した。 その結果、TETA:53.8g/、NaCl:0.5
g/の有機相230mlとTETA:44.8g/、
NaCl:235g/の水相170mlを得た。 次に、該有機相150mlに純水15mlを加え、水飽
和の炭酸ガスを100ml/minの速度で2時間吹き
込み、静定分離し、TETAを全量炭酸塩として
水相に逆抽出した。 更に、逆抽出して得た水相の15mlを参考例と同
じ操作で加熱分解し、TETA:355g/、
CO2:32g/の水溶液を得た。 実施例 6 EDA:90g/、CaCl2:111g/の水溶液
200mlにベンジルアルコール133mlを含むシクロヘ
キサノン混合液200mlを加え、10分間振盪した後、
静定分離した。 その結果、EDA:61.8g/、CaCl2:0.4g/
の有機相222mlとEDA:24.0g/、CaCl2
124g/の水相178mlを得た。 実施例 7 EDA:90g/、CaCl2:170g/、NH3
170g/の水溶液200mlにベンジルアルコール
133mlを含むシクロヘキサノン混合液200mlを加
え、10分間振盪した後、静定分離した。 その結果、EDA:66.9g/の有機相240mlと
EDA:12.2g/、CaCl2:210g/、NH3
185g/の水相160mlを得た。 実施例 8 EDA・HCl:145g/、NH3:170g/の
水溶液200mlにベンジルアルコール133mlを含むシ
クロヘキサノン混合液200mlを加え、10分間振盪
した後、静定分離した。 その結果、EDA:64.9g/の有機相224mlと
EDA:19.7g/、HCl:61.1g/、NH3
171g/の水相176mlを得た。 実施例 9 二塩化エタン(EDC)とアンモニア水溶液の
反応によつて得られた反応水溶液に50%水酸化カ
ルシウムケークを加えて得られた、EDA:65
g/、DETA:28g/、TETA:16g/、
TEPA:6.0g/、ペンタエチレンヘキサミン
(PEHA):4.0g/、N―アミノエチルピペラ
ジン(N―AEP):4.0g/、CaCI2:176g/
、NH3:108g/の水溶液200mlにベンジル
アルコール133mlを含むシクロヘキサノン混合液
200mlを加え、10分間振盪した後、静定分離した。 その結果、EDA:47.2g/、DETA:18.4
g/、TETA:10.5g/、TEPA:3.8g/
、PEHA:2.5g/、N―AEP:2.2g/を
含む有機相240mlを得た。 実施例 10 EDA:90g/、CaCl2:111g/の水溶液
に対して、ベンジルアルコールとシクロヘキサノ
ンの2:1(容量比)混合溶剤を2倍容量用いて、
3段の向流多段抽出を行なつた。 その結果、有機相へのEDAの抽出率は99%以
上であり、塩化カルシウムの抽出率は1.0%であ
つた。 次に、EDAを抽出した有機相100mlに水を10ml
加え、10分振盪した後、静定分離したところ有機
相に塩化カルシウムは存在せず、完全に除くこと
ができた。 参考例 実施例1で得られた有機相180mlに純水15mlを
加え、水飽和の炭酸ガスを100ml/minの速度で
2時間吹き込み、静定分離し、EDAを全量炭酸
塩として、水相に逆抽出した。 次に、該水相の15mlを冷却器を備えた50mlの三
つ口丸底フラスコに入れ、マントルヒーターで加
熱し、沸点で全環流方式によるEDA炭酸塩の加
熱分解を2時間行ない、EDA:335g/、
CO2:50g/の水溶液を得た。
[Table] Example 5 200 ml of an n-butanol mixture containing 130 ml of benzyl alcohol was added to 200 ml of an aqueous solution of TETA: 100 g/, NaCl: 200 g/, and after shaking for 10 minutes,
Separated statically. As a result, TETA: 53.8g/, NaCl: 0.5
g/230ml of organic phase and TETA: 44.8g/,
170 ml of an aqueous phase containing 235 g of NaCl was obtained. Next, 15 ml of pure water was added to 150 ml of the organic phase, water-saturated carbon dioxide gas was blown in at a rate of 100 ml/min for 2 hours, static separation was performed, and the entire amount of TETA was back-extracted into the aqueous phase as carbonate. Furthermore, 15 ml of the aqueous phase obtained by back extraction was thermally decomposed in the same manner as in the reference example, and TETA: 355 g/,
CO 2 :32 g/aqueous solution was obtained. Example 6 Aqueous solution of EDA: 90g/, CaCl2 : 111g/
Add 200 ml of cyclohexanone mixture containing 133 ml of benzyl alcohol to 200 ml and shake for 10 minutes.
Separated statically. As a result, EDA: 61.8g/, CaCl2 : 0.4g/
222ml of organic phase and EDA: 24.0g/, CaCl2 :
178 ml of 124 g/aqueous phase was obtained. Example 7 EDA: 90g/, CaCl 2 : 170g/, NH 3 :
Add benzyl alcohol to 200ml of 170g/aqueous solution.
200 ml of a cyclohexanone mixture containing 133 ml was added, shaken for 10 minutes, and then statically separated. As a result, 240 ml of organic phase with EDA: 66.9 g/
EDA: 12.2g/, CaCl 2 : 210g/, NH 3 :
160 ml of 185 g/aqueous phase was obtained. Example 8 200 ml of a cyclohexanone mixture containing 133 ml of benzyl alcohol was added to 200 ml of an aqueous solution of 145 g of EDA/HCl and 170 g of NH 3 , and after shaking for 10 minutes, static separation was performed. As a result, 224 ml of organic phase with EDA: 64.9 g/
EDA: 19.7g/, HCl: 61.1g/, NH3 :
171 g/176 ml of aqueous phase were obtained. Example 9 EDA: 65 obtained by adding 50% calcium hydroxide cake to the reaction aqueous solution obtained by the reaction of ethane dichloride (EDC) and ammonia aqueous solution
g/, DETA: 28g/, TETA: 16g/,
TEPA: 6.0g/, Pentaethylenehexamine (PEHA): 4.0g/, N-aminoethylpiperazine (N-AEP): 4.0g/, CaCI 2 : 176g/
, cyclohexanone mixture containing 133 ml of benzyl alcohol in 200 ml of an aqueous solution of 108 g/NH 3
After adding 200 ml and shaking for 10 minutes, static separation was performed. As a result, EDA: 47.2g/, DETA: 18.4
g/, TETA: 10.5g/, TEPA: 3.8g/
240 ml of an organic phase containing 2.5 g/PEHA and 2.2 g/N-AEP was obtained. Example 10 For an aqueous solution of EDA: 90 g/, CaCl 2 : 111 g/, twice the volume of a mixed solvent of benzyl alcohol and cyclohexanone (2:1 (volume ratio)) was used,
A three-stage countercurrent multi-stage extraction was performed. As a result, the extraction rate of EDA into the organic phase was 99% or more, and the extraction rate of calcium chloride was 1.0%. Next, add 10ml of water to 100ml of the organic phase from which EDA was extracted.
In addition, after shaking for 10 minutes, static separation was performed, and no calcium chloride was present in the organic phase, which could be completely removed. Reference example 15 ml of pure water was added to 180 ml of the organic phase obtained in Example 1, and water-saturated carbon dioxide gas was blown in at a rate of 100 ml/min for 2 hours for static separation, and the entire amount of EDA was converted into carbonate and added to the aqueous phase. Back extracted. Next, 15 ml of the aqueous phase was put into a 50 ml three-necked round bottom flask equipped with a condenser, heated with a mantle heater, and the EDA carbonate was thermally decomposed at the boiling point by a total reflux method for 2 hours. 335g/,
An aqueous solution containing 50 g of CO 2 was obtained.

Claims (1)

【特許請求の範囲】 1 エチレンアミン類と無機塩化物を含む水溶液
からベンジルアルコールあるいはベンジルアルコ
ールと炭素数3〜8ケの脂肪族アルコール及び/
またはケトン基を有する有機溶剤との混合溶剤を
用いて、エチレンアミン類を選択的に有機相に抽
出することを特徴とするエチレンアミン類と塩化
物の分離方法。 2 ベンジルアルコールとして、エチレンアミン
類のアミノ基に対し、0.3モル倍以上の量用いる
特許請求の範囲第1項記載の方法。
[Claims] 1. Benzyl alcohol or benzyl alcohol and aliphatic alcohol having 3 to 8 carbon atoms and/or benzyl alcohol from an aqueous solution containing ethylene amines and inorganic chlorides.
Alternatively, a method for separating ethyleneamines and chlorides, which comprises selectively extracting ethyleneamines into an organic phase using a mixed solvent with an organic solvent having a ketone group. 2. The method according to claim 1, wherein the benzyl alcohol is used in an amount of 0.3 times or more by mole relative to the amino group of the ethyleneamine.
JP57130483A 1982-07-28 1982-07-28 Separation of ethyleneamines from chlorides Granted JPS5920254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57130483A JPS5920254A (en) 1982-07-28 1982-07-28 Separation of ethyleneamines from chlorides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57130483A JPS5920254A (en) 1982-07-28 1982-07-28 Separation of ethyleneamines from chlorides

Publications (2)

Publication Number Publication Date
JPS5920254A JPS5920254A (en) 1984-02-01
JPH0226619B2 true JPH0226619B2 (en) 1990-06-12

Family

ID=15035327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57130483A Granted JPS5920254A (en) 1982-07-28 1982-07-28 Separation of ethyleneamines from chlorides

Country Status (1)

Country Link
JP (1) JPS5920254A (en)

Also Published As

Publication number Publication date
JPS5920254A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
DE3366589D1 (en) New process for the preparation of propargyl amines
EP0096571B1 (en) Process for recovering ethyleneamines
JPH0226619B2 (en)
US3852344A (en) Process for recovering iminodiacetic acid from sodium chloride solutions
US2768060A (en) Manufacture of potassium bicarbonate by use of strongly basic amines
JPH0226618B2 (en)
JPS60120842A (en) Preparation of ethyleneamines from ethyleneamine carbonates
KR950001631B1 (en) Process for preparing glycine
US3274245A (en) Recovery of acrylamide from its salt by vaporization with an inert gas
US3904585A (en) Process for recovering glycine and beta-alanine from sodium sulfate solutions
JPH0229070B2 (en) ECHIRENAMINRUIENNONOSHUKUHOHO
US3111379A (en) Manufacture of potassium bicarbonate
JPH0220622B2 (en)
JP2550569B2 (en) Method for producing sodium dicyanamide
US3962408A (en) Dehydration of magnesium chloride
CA1200820A (en) Removal of oxazole from acetonitrile
CA1166597A (en) Method of separating off acids and bases which have been carried along in the vapours formed during distillation
US2520619A (en) Preparation of triethylenemelamine
JPS58157751A (en) Recovery of monomethylhydrazine
US4162297A (en) Recovery of magnesium chloride from brines
JPH0229668B2 (en)
JPH0471904B2 (en)
JPH0229069B2 (en)
JPH0230298B2 (en)
US4656271A (en) Process for producing cyanuric acid from urea hydrohalides