JPH02265740A - Manufacture of polyester resin film-laminated steel sheet - Google Patents

Manufacture of polyester resin film-laminated steel sheet

Info

Publication number
JPH02265740A
JPH02265740A JP8699289A JP8699289A JPH02265740A JP H02265740 A JPH02265740 A JP H02265740A JP 8699289 A JP8699289 A JP 8699289A JP 8699289 A JP8699289 A JP 8699289A JP H02265740 A JPH02265740 A JP H02265740A
Authority
JP
Japan
Prior art keywords
steel sheet
polyester resin
resin film
plating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8699289A
Other languages
Japanese (ja)
Other versions
JP2803837B2 (en
Inventor
Yashichi Oyagi
大八木 八七
Tomohiko Hayashi
林 知彦
Hiroshi Nishida
浩 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8699289A priority Critical patent/JP2803837B2/en
Publication of JPH02265740A publication Critical patent/JPH02265740A/en
Application granted granted Critical
Publication of JP2803837B2 publication Critical patent/JP2803837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To make it possible to manufacture a laminated steel sheet with a low cost and excellent characteristics by performing tin plating on one face of a steel sheet, performing metal plating contg. one or two or more of Sn, Ni, Cr, Al and Zn on another face, performing chromate treatment on the surface of the metal plating and laminating a polyester resin film thereon. CONSTITUTION:As a polyester resin film, a satd. polyester resin contg. no double bond in the molecular chain is used. For laminating this resin film on a steel sheet, e.g. a thin steel sheet with a thickness of 0.28mm is degreased and washed with an acid and tin plating is performed on one face thereof by using an acidic tin plating soln. Then, nickel plating is performed on another face and furthermore, chromate treatment having metal chromium and a hydrated chromium oxide is performed thereon and the treated sheet is washed and dried. This steel sheet is then heated by means of electricity-energizing heating and a polyester resin film with an amorphous structure at low temp. is temporarily adhered on the surface and when the sheet temp. becomes to 220 deg.C, it is quenched in water. A resin film laminated steel sheet with excellent DI moldability and a coating of good quality is obtd. thereby.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は缶容器、特にビール、炭酸飲料等の容器用鋼板
の製造方法に関するもので、特にDI法(絞りとしごき
加工)により製造される缶用材料の製造法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing can containers, particularly steel sheets for containers such as beer and carbonated beverages, and in particular, relates to a method for manufacturing steel sheets for containers such as beer and carbonated beverages, and in particular, the invention relates to a method for manufacturing steel sheets for containers such as cans and carbonated beverages, and in particular, a steel plate manufactured by the DI method (drawing and ironing). This invention relates to a method for manufacturing can materials.

[従来の技術] DI缶に現在使用されているぶりきの加工性は、アルミ
ニウムと遜色のないまでに研究が進み、実用的にも全く
問題ないレベルに達しているが、耐食性に関しては必ず
しも十分でなく、腐食性の強い内容物の場合、二回の内
面塗装(ダブルコート)が必要とされている。このダブ
ルコートは、工程数を増やし、生産性を低下させると同
時に缶コストアップの要因となり、シングルコート、更
にはゼロコート(製缶工程で内面塗装を行わない製缶法
)で使用出来るDI缶用鋼板の出現が待望されている。
[Conventional technology] Research has progressed to the point where the workability of the tin metal currently used for DI cans is comparable to that of aluminum, and it has reached a level where there is no problem in practical use, but it is not necessarily sufficient in terms of corrosion resistance. However, if the contents are highly corrosive, two internal coatings (double coating) are required. This double coating increases the number of processes, lowers productivity, and increases can costs. The appearance of industrial steel sheets is eagerly awaited.

こうした要望に応えるべく、例えば特開昭54−945
85号公報や特開昭54−132683号公報に見られ
るように、塗装鋼板をDI加工する方法が開示されてい
るが、実用性能、特に耐食性が十分でなく実用化に至っ
ていない。耐食性の観点からは、樹脂フィルムを積層さ
せたラミネート鋼板製缶体が、フィルム厚の選択により
優れた耐食性を発揮することが期待できる。このような
技術が、例えば特開昭60−168643号公報、特開
昭60−170532号公報に開示されている。しかし
ながら、このような先行技術においても、耐食性、製造
コスト等の点で問題があり、実用化されていない。
In order to meet these demands, for example, JP-A-54-945
As seen in Japanese Patent No. 85 and Japanese Patent Application Laid-open No. 54-132683, a method of DI processing a painted steel plate is disclosed, but the practical performance, particularly the corrosion resistance, is insufficient and it has not been put to practical use. From the viewpoint of corrosion resistance, it can be expected that a can body made of laminated steel sheets in which resin films are laminated will exhibit excellent corrosion resistance depending on the selection of the film thickness. Such techniques are disclosed in, for example, Japanese Patent Application Laid-Open No. 60-168643 and Japanese Patent Application Laid-Open No. 60-170532. However, even such prior art has problems in terms of corrosion resistance, manufacturing cost, etc., and has not been put to practical use.

[発明が解決しようとするB題] 本発明は、ラミネート鋼板の経済性および品質改善を行
うことにより、DI加工性に優れ、かつシングルコート
、更にはゼロコートで耐食性の良いDr缶用鋼板を提供
しようとするものである。即ち、従来のラミネート鋼板
は、ブリキ、ティンフリースチール等の表面処理鋼板を
製造後、別個のラミネート鋼板製造ラインにて低速で生
産され、性能は良くてもコスト高のため実用には至らな
かった。
[Problem B to be solved by the invention] The present invention improves the economy and quality of laminated steel sheets, thereby creating a steel sheet for Dr cans that has excellent DI workability and has good corrosion resistance with single coating or even zero coating. This is what we are trying to provide. In other words, conventional laminated steel sheets are produced at low speed on a separate laminated steel sheet manufacturing line after manufacturing surface-treated steel sheets such as tinplate and tin-free steel, and even if the performance is good, the cost is high and it has not been put into practical use. .

本発明者らは、現行のブリキラインを利用可能とする高
速生産の方法を種々検討し、低コストで優ねた性能を有
するラミネート鋼板の製造方法を見いだす必要があった
The present inventors investigated various high-speed production methods that would make it possible to utilize the current tinplate line, and needed to find a method for producing laminated steel sheets with excellent performance at low cost.

〔課題を解決するための手段] 本発明は、まず第1に、鋼板の片面に錫めっきを行い、
もう片方の而に錫、ニッケル、クロム、アルミニウム、
亜鉛の1種または2種以上を含む金属めっきを施し、該
金属めっき面上にクロメート処理を行ったのち、ポリエ
ステル樹脂フィルムを積層する。クロメート処理として
は、クロム水和酸化物あるいは金属クロムとクロム水和
酸化物皮膜の両者を有する皮膜が望ましい。金属めっき
およびクロメート処理の浴組成、温度、電流密度等の製
造条件については、特に限定するものではない。
[Means for Solving the Problems] The present invention first provides tin plating on one side of a steel plate,
On the other hand, tin, nickel, chromium, aluminum,
After applying metal plating containing one or more types of zinc and performing chromate treatment on the metal plating surface, a polyester resin film is laminated. As the chromate treatment, it is desirable to use a chromium hydrated oxide or a film containing both metallic chromium and a chromium hydrated oxide film. Manufacturing conditions such as bath composition, temperature, and current density for metal plating and chromate treatment are not particularly limited.

次に、鋼板に積層する樹脂特性を限定した理由について
以下に述べる。
Next, the reason for limiting the characteristics of the resin laminated to the steel plate will be described below.

01缶は周知のように、絞り加工(Draw)→再校り
加工(Redraw) 4しごき加工(Ironing
) と言う工程を経て成形される。樹脂フィルムを有す
る鋼板のor成形性は、絞り加工及び再絞り加工の段階
においては、材料の伸びが伴わないため、かなりの種類
のラミネート鋼板が一応加工可能である。しごき加工の
場合、例えば板fg0.3mmのものが缶!■部の最も
薄い部分はO,bnm程度にまで加工されるため、加工
時にかなりの発熱が伴うことが知られている。従って、
融点が低い樹脂1例えば融点165℃のポリプロピレン
なとでは、加工パンチより成形缶体が抜けない、いわゆ
るストリップアウト性不良となり、缶上端部が潰れ正常
な缶体は出来ない。このストリップアウト性不良は、単
に樹脂の融点たけでなく、樹脂自体の硬軟も影響してい
ることは言うまでもない。
As is well known, 01 cans undergo drawing processing (Draw) → Redraw processing (Redraw) 4 Ironing processing (Ironing)
) is molded through the process. Regarding the formability of a steel sheet having a resin film, there is no elongation of the material during the drawing and re-drawing stages, so it is possible to process a considerable number of types of laminated steel sheets. In the case of ironing, for example, a plate fg0.3mm can be used! It is known that the thinnest part of the part (2) is processed to a thickness of about O.bnm, and therefore a considerable amount of heat is generated during processing. Therefore,
If the resin 1 has a low melting point, such as polypropylene with a melting point of 165° C., the molded can body will not be able to be removed from the processing punch, resulting in poor strip-out properties, the upper end of the can will collapse, and a normal can body will not be formed. It goes without saying that this poor strip-out property is affected not only by the melting point of the resin but also by the hardness and softness of the resin itself.

掛かる意味において、DI加工時の発熱に耐え、また樹
脂自体が比較的硬い樹脂としてポリエステル樹脂が最も
DI成形性に優れていることを、発明者らは見いだした
In this sense, the inventors have found that polyester resin has the best DI moldability as a resin that can withstand heat generation during DI processing and is relatively hard in itself.

本発明におけるポリエステル樹脂フィルムは、分子鎖中
に二重結合を含まない飽和ポリエステル樹脂で周知のよ
うに飽和多価カルボン酸と飽和多価アルコールとの重合
体である。飽和多価カルボン酸としてテレフタル酸、イ
ソフタル酸、フタル酸、アジピン酸、セバシン酸等が、
飽和多価アルコールとしてエチレングツコール、ジエチ
レングリコール、トリエチレングリコール、1.4 ブ
タジオール、ポリアルキレンゲリコールの話導体等があ
り、これらのホモポリマー、コーポリマーの単体及びブ
レンドか適用される。
The polyester resin film in the present invention is a saturated polyester resin that does not contain a double bond in its molecular chain, and is a polymer of a saturated polyhydric carboxylic acid and a saturated polyhydric alcohol, as is well known. Saturated polycarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, adipic acid, sebacic acid, etc.
Examples of saturated polyhydric alcohols include conductors of ethylene glycol, diethylene glycol, triethylene glycol, 1.4 butadiol, and polyalkylene gelylcol, and homopolymers and copolymers of these can be used alone or in blends.

しかしながら、全てのポリエステル樹脂が(丑ねた特性
を発揮するわけではなく、以下に示すような限定が必要
である。
However, not all polyester resins exhibit the same characteristics, and the following limitations are required.

DI加工は、しごき加工工程で激しい伸び加工を伴い、
瞬時に約300を程度材料が延ばされる。この伸びに対
し、ポリエステル樹脂フィルムが強い結晶構造を有して
いる場合には加工に耐えられず、缶壁部の皮膜に数多く
の亀裂欠陥が生じる。この亀裂欠陥は、結晶構造あるい
は延伸フィルムのような配向結晶状態を存する時に最も
激しく発生し、時には缶壁部が加工の途中で破断する場
合がある。
DI processing involves intense elongation during the ironing process,
The material is instantly stretched by about 300 degrees. In response to this elongation, if the polyester resin film has a strong crystal structure, it cannot withstand processing, and many crack defects occur in the film on the can wall. These crack defects occur most severely when the can wall has a crystalline structure or an oriented crystalline state such as a stretched film, and sometimes the can wall may break during processing.

発明者等は種々研究の結果、このような現象がポリエス
テル樹脂の結晶構造に起因するものであることを解明し
た。この解明に基づいて発明者等は、缶壁部の積層皮膜
に亀裂欠陥の生じない、もしくは生じても軽微であるた
めには、積層されるポリエステル樹脂フィルムの密度は
、1.36以下で非晶質化する必要があることを見いだ
したものである。
As a result of various studies, the inventors have found that this phenomenon is caused by the crystal structure of polyester resin. Based on this understanding, the inventors have determined that the density of the polyester resin films to be laminated should be 1.36 or less to ensure that cracks do not occur in the laminated film on the can wall, or that cracks are only minor. It was discovered that it was necessary to crystallize it.

この様な樹脂は、T−ダイにより押しだし急冷し所定厚
みのフィルムに仕上げるか、T−ダイにより押しだし後
、1軸あるいは2軸延伸を行い所定厚みのフィルムにし
た後、熱処理を行いアモルファス化することで得ること
が出来る。
Such resins are either extruded through a T-die and rapidly cooled to form a film of a specified thickness, or extruded through a T-die, uniaxially or biaxially stretched to form a film of a specified thickness, and then heat-treated to become amorphous. You can get it by doing this.

積層される樹脂の構造が、ラミネート作業時にアモルフ
ァスである必要性は、缶外面に相当する錫めっき面の問
題からである。DI成形は、非常に厳しい成形であり、
缶外面側の潤滑性は極めて重要である。結晶性を有する
フィルムを原材料として使用する場合、その結晶構造を
破壊するため、樹脂を融点以上のかなり高い温度にまで
加熱する必要が生じる。その温度は、賜の融点(232
℃)をはるかに超える、例えば250℃以上にならざる
を得ない。その際、既に非ラミネート面にめっきされて
いる錫と鉄の間に合金化反応が進み、錫めフき面の潤滑
性に問題を生じる事になる。例えば、1.0g/m”の
錫が合金層として存在すれば、実質的なOf成形性はな
くなってしまうため合金層の成長は絶対に避けなければ
ならない。そのために、本発明では、ラミネート作業時
の鋼板温度を230℃以下に限定するものであり、その
温度にて十分な接着強度かえられる樹脂組成が選択され
る。
The need for the structure of the resin to be laminated to be amorphous during lamination is due to the problem of the tin-plated surface corresponding to the outer surface of the can. DI molding is very strict molding,
Lubricity on the outside of the can is extremely important. When a crystalline film is used as a raw material, it is necessary to heat the resin to a considerably high temperature above its melting point in order to destroy its crystal structure. Its temperature is the melting point (232
℃), for example, 250℃ or higher. At that time, an alloying reaction progresses between the tin and iron that have already been plated on the non-laminated surface, causing problems with the lubricity of the tin-plated surface. For example, if 1.0 g/m'' of tin is present as an alloy layer, the growth of the alloy layer must be absolutely avoided because the formability of the material will be lost.For this reason, in the present invention, the lamination process The temperature of the steel plate at that time is limited to 230° C. or less, and a resin composition that can provide sufficient adhesive strength at that temperature is selected.

合金層の成長を避けるもう一つの手段としては、ラミネ
ート作業後に錫めっきを行う方法か考えられるが、これ
は現実的ではない。なぜなら、ラミネート作業後のポリ
エステル皮膜は極めて柔らかく疵が入りやすいものであ
り、その反対向に錫めっきする場合、極めて清浄なめっ
き液を必要とされる。工業的なめっき液中には多数の金
属酸化物、水酸化物が浮遊しているし、更にはめつきラ
イン全体を無塵室にすることは、コスト的に大きな問題
となるためである。ラミネート作業は、錫めっき・クロ
メート処理・乾燥後の鋼板表面に、局部無塵室にて積層
し、即コイルに巻取る方が優れていることはいうまでも
ない。
Another possible way to avoid the growth of the alloy layer is to perform tin plating after the lamination process, but this is not practical. This is because the polyester film after lamination is extremely soft and prone to scratches, and when tin plating on the opposite side, an extremely clean plating solution is required. This is because a large number of metal oxides and hydroxides are floating in industrial plating solutions, and furthermore, making the entire plating line a dust-free chamber poses a major problem in terms of cost. It goes without saying that it is better for lamination work to laminate the surface of the steel plate after tin plating, chromate treatment, and drying in a local dust-free room and immediately wind it into a coil.

もう一つの大きな問題は、アモルファス構造を有するフ
ィルムを加熱した場合、結晶化し加工性の劣化をもたら
すことである。これを避けるために、本発明者らは数多
くの試行を繰り返した結果、加熱時間を極めて短時間化
することで回避できることを見いだした。即ち、有機高
分子が動き結晶化する前にラミネート作業を完了させる
事が肝要である。そのための条件として10℃/秒以上
の加熱速度で加熱し、230℃以下にてラミネート作業
を完了させれば、初期のアモルファス構造を実質的に変
化させることがないことが確認された。従って、本発明
では10℃/秒以上の加熱速度、更に更に望ましくは2
0℃/秒以上で加熱することは必須の条件である。
Another major problem is that when a film having an amorphous structure is heated, it crystallizes, resulting in deterioration of workability. In order to avoid this, the inventors of the present invention have repeated numerous trials and found that it can be avoided by extremely shortening the heating time. That is, it is important to complete the lamination work before the organic polymer moves and crystallizes. It has been confirmed that the initial amorphous structure will not be substantially changed if the conditions for this are heating at a heating rate of 10° C./second or higher and completing the lamination operation at 230° C. or lower. Therefore, in the present invention, the heating rate is 10°C/second or more, and even more preferably 2°C/second.
Heating at 0° C./second or higher is an essential condition.

次に、樹脂の冷結晶化熱(Δ(1c)を7 cal/g
以下に限定した理由について述べる。
Next, the heat of cold crystallization (Δ(1c)) of the resin is 7 cal/g.
The reason for this limitation will be explained below.

本発明で適用されるポリエステル樹脂フィルムの結晶構
造は、鋼板に積層された状態では、非晶質のものである
ことは前述した通りである。非晶質状態の樹脂を示差走
査熱量計(DSG)で熱的特性を調べると、樹脂によっ
て異なるか約100〜150℃に発熱ピークが見られる
。このピークが冷結晶化温度てありピークの大きさ(面
積)が冷結晶化熱くΔUC)である。この冷結晶化熱は
cal/gで表され、樹脂1g中の非晶質樹脂から結晶
化するt+1の尺度を示している。
As described above, the crystal structure of the polyester resin film applied in the present invention is amorphous when laminated on a steel plate. When examining the thermal characteristics of an amorphous resin using a differential scanning calorimeter (DSG), an exothermic peak is seen at about 100 to 150° C., which varies depending on the resin. This peak is at the cold crystallization temperature, and the size (area) of the peak is ΔUC). This heat of cold crystallization is expressed in cal/g and represents the time t+1 of crystallization from an amorphous resin in 1 g of resin.

DI加工においては、この非晶質状、態のまま加工され
るのが理想的であることは言うまでもないが、結晶性樹
脂の場合、しごき加工時の熱と伸びが、非晶質を配向結
晶化させ、る。この配向結晶化への変化はアイアニング
率が約30%を超えた時点から起こり始めるため、それ
以上のしごき加工を行う場合には缶壁部のアイアニング
率の高い部分の積層樹脂フィルムは前述した亀裂欠陥が
発生する。
In DI processing, it goes without saying that it is ideal to process this amorphous state, but in the case of crystalline resins, the heat and elongation during ironing process transforms the amorphous into oriented crystals. Let's make it. This change to oriented crystallization begins to occur when the ironing rate exceeds approximately 30%, so if ironing is performed further than this, the laminated resin film in the areas of the can wall with a high ironing rate will crack as described above. Defects occur.

その場合、冷結晶化熱が7 cal/g以下の樹脂であ
ると、缶壁部の亀裂欠陥は生じることなく良好なりI成
形缶が得られる。しかしながら、積層したポリエステル
樹脂の冷結晶化熱が、7 cal/gを超えると、缶壁
部の樹脂フィルムに欠陥が生じ始め、耐食性の点で必要
な性能が得られない。
In this case, if the resin has a cold crystallization heat of 7 cal/g or less, a good I-shaped can can be obtained without causing crack defects in the can wall. However, when the heat of cold crystallization of the laminated polyester resin exceeds 7 cal/g, defects begin to occur in the resin film of the can wall, making it impossible to obtain the required performance in terms of corrosion resistance.

次に融解熱(ΔHf)であるが、本発明において積層さ
れるポリエステル樹脂の融解熱はxocal/g以下と
する必要がある。この融解熱が大きいことは結晶性の強
い樹脂であることを示しており、l。
Next, regarding the heat of fusion (ΔHf), the heat of fusion of the polyester resin laminated in the present invention must be xocal/g or less. This large heat of fusion indicates that the resin has strong crystallinity, and l.

cal/g以下であれば、DI加工時に缶壁部の亀裂欠
陥は生じることなく、又、生じても軽微であり耐食性の
点で実用に耐えるものが得られる。
If it is below cal/g, crack defects will not occur in the can wall during DI processing, and even if they occur, they will be slight and a product that can withstand practical use in terms of corrosion resistance can be obtained.

本発明における冷結晶化熱及び融解熱は、鋼板に積層さ
れたDI加工前のフィルムをDSCで5℃/分昇温速度
で測定し、そのカーブから冷結晶化熱(ΔHc)及び融
解熱(Δ1(f)を求めるが、本発明の場合は鋼板に積
層する前の元々のポリエステル樹脂フィルムをDSCで
融点(Ts)を測定し、次いで同一フィルムをTm+3
0℃に昇温した後、直ちに急冷し非晶質化したものを作
成、この非晶質化した樹脂を再度DSCカーブを測定し
そのカーブから冷結晶化熱、及び融解熱を求めたもので
代替することも可能である。
The cold crystallization heat and fusion heat in the present invention are determined by measuring the film laminated on the steel plate before DI processing using DSC at a heating rate of 5°C/min, and using the curves to determine the cold crystallization heat (ΔHc) and the heat of fusion ( To determine Δ1(f), in the case of the present invention, the melting point (Ts) of the original polyester resin film before being laminated to the steel plate is measured using DSC, and then the same film is heated to Tm+3.
After raising the temperature to 0°C, it was immediately quenched to make it amorphous, and the DSC curve of this amorphous resin was measured again, and the heat of cold crystallization and heat of fusion were determined from the curve. It is also possible to substitute.

以下に本発明におけるフィルム厚みの影響につき述べる
The influence of film thickness in the present invention will be described below.

DI加工後の缶壁部はしごき加工によりアイアニング率
に応じて薄くなっている。積層される樹脂フィルムも同
じで、例えばアイアニング率50%の場合は、素地鋼板
もフィルムも加工前板厚の約半分になっている。従って
、下限値10IJm以下では、DI加工後の皮膜に加工
による傷が素地鋼板に達する場合があり、耐食性能が十
分確保出来ない。
After DI processing, the can wall is ironed and becomes thinner depending on the ironing rate. The same applies to the laminated resin films; for example, when the ironing rate is 50%, both the base steel sheet and the film are approximately half the thickness of the sheet before processing. Therefore, if the lower limit is less than 10 IJm, damage caused by processing may reach the base steel plate in the coating after DI processing, and sufficient corrosion resistance cannot be ensured.

又、上限値60μmを超えても、耐食性に対してさほど
有効ではなく、性能的には飽和してくる傾向にある。但
し、本発明ではフィルム厚みは特に制限するものではな
く、アイアニング率、及び鋼板へのめっき皮膜の有無に
よって耐食性への効果、影響は異なり、状況に応じて設
計する必要があることはいうまでもない。
Moreover, even if it exceeds the upper limit of 60 μm, it is not so effective for corrosion resistance, and the performance tends to be saturated. However, in the present invention, the film thickness is not particularly limited, and the effect and influence on corrosion resistance differs depending on the ironing rate and the presence or absence of a plating film on the steel sheet, and it goes without saying that it is necessary to design it according to the situation. do not have.

[実施例1] 板厚0.28mmの薄鋼板を脱脂・酸洗後、その片面に
酸性錫めっき液を用い2.8g/a+2の付Rffiの
錫めっきを行った。その後、もう片方の面上に0.35
g/II+2の付着量のニッケルめっきを行い、更にそ
の上に金属クロム35mg/m″、水和酸化クロム18
mg/m2を有するクロメート処理を行い水洗・乾燥し
た。
[Example 1] After degreasing and pickling a thin steel plate with a thickness of 0.28 mm, tin plating was performed on one side of the plate using an acidic tin plating solution at an Rffi of 2.8 g/a+2. Then add 0.35 on the other side.
Nickel plating with a coating weight of g/II+2 is performed, and on top of that, metallic chromium 35mg/m'' and hydrated chromium oxide 18
It was subjected to chromate treatment with a concentration of mg/m2, washed with water, and dried.

以上のごとくして製造された片面に錫めっき皮膜、もう
片方の面にニッケルめっきおよびクロメート皮膜を有す
る鋼板は、通電加熱法により加熱され、低温にて、冷結
晶化熱が4.3cal/g、融解熱が4.8cal/g
でX線にてアモルファス構造を有するポリエステル樹脂
フィルム(厚さ40μm)がその表面に仮接着され、板
温か220℃になったところで水中に急冷された。
The steel sheet manufactured as described above, which has a tin plating film on one side and a nickel plating and chromate film on the other side, is heated by an electric current heating method, and the heat of cold crystallization is 4.3 cal/g at a low temperature. , heat of fusion is 4.8 cal/g
A polyester resin film (thickness: 40 μm) having an amorphous structure was temporarily adhered to the surface using X-rays, and when the plate temperature reached 220° C., it was rapidly cooled in water.

室温より220℃までの加熱は5.3秒であり、加熱速
度は約り8℃/秒であった。作成されたラミネート鋼板
の表面より樹脂を削りとり、再度DSC測定(加熱速度
5℃/分)を行ったところ、冷結晶化熱が4.1cal
/g、融解熱が4.9cal/gであり、ポリエステル
樹脂の構造に大きな変化は認められなかった。錫めっき
面の錫鉄合金量を測定したところ、O,15g/a+”
のもので全く問題のないレベルであった。
Heating from room temperature to 220°C took 5.3 seconds, and the heating rate was approximately 8°C/second. When the resin was scraped off from the surface of the laminated steel plate created and DSC measurement was performed again (heating rate 5°C/min), the cold crystallization heat was 4.1 cal.
/g, and the heat of fusion was 4.9 cal/g, and no major change was observed in the structure of the polyester resin. When the amount of tin-iron alloy on the tin-plated surface was measured, it was O.15g/a+"
It was at a level with no problems at all.

この鋼板を用い、ブランク寸法t39mmφよりスター
トし、缶外径65IIIIIIφ、缶高さ126mmの
01缶(側壁最小板厚0.085mm )の成形試験を
行った。
Using this steel plate, a forming test was carried out on a 01 can (minimum side wall thickness: 0.085 mm), starting from a blank size t of 39 mm, and having a can outer diameter of 65 III and a can height of 126 mm.

200缶の連続製缶試験の結果、缶外面側は極めて優れ
た光沢であり、かじり等の発生もなく、塗装・印刷下地
として申し分のないものであった。
As a result of a continuous can making test of 200 cans, the outer surface of the cans had an extremely high gloss and no galling occurred, making them perfect as a base for painting or printing.

缶の内面については、活性剤を含む1%食塩水を缶内に
充満し、電極を挿入後流れる電流値(電圧6v印荷)を
測定したところ、0.04mAであり、ビール缶として
十分な健全性を有する皮膜と判断された。
Regarding the inner surface of the can, we filled the can with 1% saline solution containing an activator and measured the current flowing after inserting the electrode (voltage 6V applied), which was 0.04 mA, which is sufficient for a beer can. The film was judged to be sound.

[比較例1] 実施例1と同様のめっき皮膜を有する鋼板を作成後、同
一のポリエステル樹脂フィルムを用い、鋼板を熱風加熱
により35秒にて225℃まで加熱しラミネート作業を
行った。この際の加熱速度は、5.7℃/秒であり、ラ
ミネート後のポリエステル樹脂皮膜を削り取りDSC測
定を行ったところ、冷結晶化熱は1.0cal/g以下
であり、かなり結晶化が進行したことが知れた。
[Comparative Example 1] After creating a steel plate having the same plating film as in Example 1, the same polyester resin film was used to heat the steel plate to 225° C. for 35 seconds by hot air heating to perform a lamination operation. The heating rate at this time was 5.7°C/sec, and when the polyester resin film after lamination was scraped off and DSC measurement was performed, the cold crystallization heat was less than 1.0 cal/g, indicating that crystallization had progressed considerably. I found out what happened.

この鋼板の連続製缶試験の結果は、成形性は何部問題な
く行われたが、缶内面の通電池は200ffi^より大
きく実用性のないものであった。
The results of a continuous can making test of this steel plate showed that although the formability was satisfactory in some parts, the conductivity inside the can was greater than 200ffi^ and was not practical.

[比較例2] 実施例1と同様のめっき皮膜を有する鋼板を作成後、2
軸延伸配向性を存する融点260℃のポリエチレンテレ
フタレートフィルムを通電加熱法によりラミネートした
。2軸延伸配向構造を破壊し、アモルファス構造を得る
ためには鋼板温度を290℃まで上げる必要があった。
[Comparative Example 2] After creating a steel plate having the same plating film as in Example 1, 2
A polyethylene terephthalate film having an axial stretching orientation and a melting point of 260°C was laminated by an electrical heating method. In order to destroy the biaxially stretched oriented structure and obtain an amorphous structure, it was necessary to raise the steel plate temperature to 290°C.

この樹脂は、冷結晶化熱が8 、5 ca 17g、融
解熱が11.6cal/gであり、本発明の対象外の樹
脂であった。
This resin had a cold crystallization heat of 8.5 cal/g and a heat of fusion of 11.6 cal/g, and was a resin outside the scope of the present invention.

この鋼板の錫めっき面に生成した合金量を調べたところ
、1.7g/m2であり、めっきされた錫の半分以上は
合金化していた。実施例1と同様の条件で連続成形試験
を行おうとしたが、缶外面に合金層に起因すると考えら
れるかじり疵が発生し、実用可能なものは出来なかった
When the amount of alloy formed on the tin-plated surface of this steel plate was examined, it was found to be 1.7 g/m2, and more than half of the plated tin was alloyed. An attempt was made to conduct a continuous molding test under the same conditions as in Example 1, but galling defects thought to be caused by the alloy layer occurred on the outer surface of the can, and a product that could not be used for practical purposes could not be obtained.

[比較例3] 板J50.28mmの薄鋼板を脱脂・酸洗後、その両面
に酸性銀めっき液を用い片面当り2.8g/m2の錫め
っきを行った。クロメート処理を行わずに実施例1と同
様の条件でポリエステル樹脂フィルムを通電加熱法によ
り、215℃にてラミネートした。加熱速度は27℃/
秒で問題なく、樹脂構造の変化は小さかったが、連続成
形試験にて、密着性不良に起因するフィルム剥離が缶内
面にて発生した。
[Comparative Example 3] After degreasing and pickling a thin steel plate of J50.28 mm, tin plating was performed on both sides of the plate at a rate of 2.8 g/m 2 using an acidic silver plating solution. A polyester resin film was laminated at 215° C. by an electrical heating method under the same conditions as in Example 1 without performing chromate treatment. Heating rate is 27℃/
There was no problem in seconds, and the change in the resin structure was small, but in a continuous molding test, film peeling occurred on the inner surface of the can due to poor adhesion.

[発明の効果] 以上説明したように本発明の製造方法によれば、DI成
形性に優れかつ良好な品質の被覆を有するポリエステル
樹脂フィルム積層鋼板を提供することが可能となり、そ
の工業的価値は極めて大きい。
[Effects of the Invention] As explained above, according to the manufacturing method of the present invention, it is possible to provide a polyester resin film laminated steel sheet having excellent DI formability and a coating of good quality, and its industrial value is Extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1、鋼板の片面に錫めっきを施し、もう片方の面に錫、
ニッケル、クロム、アルミニウム、亜鉛の1種または2
種以上含む金属めっきを行った後クロメート処理を行い
、該クロメート処理面上に、冷結晶化熱が7cal/g
以下であること、融解熱が10cal/g以下であるこ
とのいずれか一方または双方を満足し、X線回折的に非
晶質の結晶状態を有し、その密度が1.36以下である
飽和ポリエステル樹脂フィルムを、加熱速度10℃/秒
以上、鋼板温度230℃以下で積層することを特徴とす
るDI成形性に優れたポリエステル樹脂フィルム積層鋼
板の製造方法。
1. Tin plating is applied to one side of the steel plate, and tin is applied to the other side.
One or two of nickel, chromium, aluminum, and zinc
After performing metal plating containing more than one species, chromate treatment is performed, and the cold crystallization heat is 7 cal/g on the chromate treated surface.
or less, and the heat of fusion is 10 cal/g or less, or has an amorphous crystalline state according to X-ray diffraction, and has a saturated density of 1.36 or less. A method for producing a polyester resin film laminated steel sheet with excellent DI formability, comprising laminating polyester resin films at a heating rate of 10° C./second or more and a steel plate temperature of 230° C. or less.
JP8699289A 1989-04-07 1989-04-07 Manufacturing method of polyester resin film laminated steel sheet Expired - Lifetime JP2803837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8699289A JP2803837B2 (en) 1989-04-07 1989-04-07 Manufacturing method of polyester resin film laminated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8699289A JP2803837B2 (en) 1989-04-07 1989-04-07 Manufacturing method of polyester resin film laminated steel sheet

Publications (2)

Publication Number Publication Date
JPH02265740A true JPH02265740A (en) 1990-10-30
JP2803837B2 JP2803837B2 (en) 1998-09-24

Family

ID=13902368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8699289A Expired - Lifetime JP2803837B2 (en) 1989-04-07 1989-04-07 Manufacturing method of polyester resin film laminated steel sheet

Country Status (1)

Country Link
JP (1) JP2803837B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111350A1 (en) * 2015-01-09 2016-07-14 新日鐵住金株式会社 Steel sheet for container and method for producing steel sheet for container
WO2016111349A1 (en) * 2015-01-09 2016-07-14 新日鐵住金株式会社 Steel sheet for container and method for producing steel sheet for container
WO2020045627A1 (en) * 2018-08-31 2020-03-05 東洋鋼鈑株式会社 Metal plate for cell container, and method for manufacturing metal plate for cell container

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111350A1 (en) * 2015-01-09 2016-07-14 新日鐵住金株式会社 Steel sheet for container and method for producing steel sheet for container
WO2016111349A1 (en) * 2015-01-09 2016-07-14 新日鐵住金株式会社 Steel sheet for container and method for producing steel sheet for container
JP5994960B1 (en) * 2015-01-09 2016-09-21 新日鐵住金株式会社 Steel plate for container and method for producing steel plate for container
JP6066030B2 (en) * 2015-01-09 2017-01-25 新日鐵住金株式会社 Steel plate for container and method for producing steel plate for container
WO2020045627A1 (en) * 2018-08-31 2020-03-05 東洋鋼鈑株式会社 Metal plate for cell container, and method for manufacturing metal plate for cell container
JPWO2020045627A1 (en) * 2018-08-31 2021-09-09 東洋鋼鈑株式会社 Metal plate for battery container and method for manufacturing this metal plate for battery container

Also Published As

Publication number Publication date
JP2803837B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
JP5673860B2 (en) Laminated metal plate and canned food containers
EP2962951B1 (en) Laminated metal plate for two-piece cans and two-piece laminated can body
JP5403195B1 (en) Laminated metal plate and canned food containers
TW201217578A (en) Steel sheet for container and method for manufacturing therefor
JP6011753B1 (en) Laminated metal plate for containers
JPH0225784B2 (en)
JPH01192545A (en) Laminated steel plate for can excellent in processability and corrosion resistance
US5094924A (en) Polyester resin film laminated steel sheet for drawn and ironed can
JPH01249331A (en) Manufacture of metallic sheet coated with polyester resin superior in processability
JP5920279B2 (en) LAMINATED METAL PLATE, METHOD FOR PRODUCING LAMINATED METAL PLATE, AND FOOD CANNED CONTAINER
JPH02265740A (en) Manufacture of polyester resin film-laminated steel sheet
JPH0333506B2 (en)
EP0415345B1 (en) Composite steel sheet having high workability for drawn and ironed cans
JP2790647B2 (en) Composite coated steel sheet excellent in DI formability and method for producing the same
JP4345189B2 (en) Laminated steel sheet for general cans
JPH0270430A (en) Metallic plate coated with polyester resin for use in draw-forming can
JP3034811B2 (en) Thermoplastic polyester resin coated surface treated steel sheet and method for producing the same
JPH03212433A (en) Production of metal plate coated with polyester resin having excellent heat resistance
JPH01299718A (en) Method for forming di can by laminated steel sheet
JPH02169246A (en) Composite steel plate for can and processed can
JP3714177B2 (en) Film laminated metal plate for containers
JP2807482B2 (en) Double coated steel sheet for can making and its manufacturing method
JPH01180336A (en) Preparation of composite steel excellent in di moldability
JPH0585618B2 (en)
JPH0310835A (en) Double-side coated steel sheet for drawn can and manufacture thereof