JPH0226528B2 - - Google Patents

Info

Publication number
JPH0226528B2
JPH0226528B2 JP59078903A JP7890384A JPH0226528B2 JP H0226528 B2 JPH0226528 B2 JP H0226528B2 JP 59078903 A JP59078903 A JP 59078903A JP 7890384 A JP7890384 A JP 7890384A JP H0226528 B2 JPH0226528 B2 JP H0226528B2
Authority
JP
Japan
Prior art keywords
tower
absorption tower
absorption
oxidation
towers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59078903A
Other languages
Japanese (ja)
Other versions
JPS60220126A (en
Inventor
Kazumi Hamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59078903A priority Critical patent/JPS60220126A/en
Publication of JPS60220126A publication Critical patent/JPS60220126A/en
Publication of JPH0226528B2 publication Critical patent/JPH0226528B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は単塔型の湿式排煙脱硫装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a single-column type wet flue gas desulfurization apparatus.

(従来技術) 現在普及している湿式排煙脱硫装置は、吸収装
置、酸化装置、原料供給装置およびその他の付属
装置から構成される。
(Prior Art) A currently popular wet flue gas desulfurization device is composed of an absorption device, an oxidation device, a raw material supply device, and other auxiliary devices.

吸収装置においては、硫黄酸化物を含むガスが
苛性ソーダ、亜硫酸ソーダ等の溶液、またはカル
シウムやマグネシム等のスラリーを含む吸収液と
接触、反応して亜硫酸塩を生成し、これを酸化装
置に導いて酸化し、硫酸塩とした後、無害化して
系外に排出するか、または石膏等の副生品として
回収利用される。
In the absorption device, gas containing sulfur oxides comes into contact with an absorption liquid containing a solution of caustic soda, sodium sulfite, etc., or a slurry of calcium, magnesium, etc., and reacts to produce sulfite, which is led to an oxidation device. After being oxidized and converted into sulfate, it is either rendered harmless and discharged from the system, or recovered and used as a by-product such as gypsum.

第1図は従来方式の典型的な排煙脱硫装置系統
の一例を示すもので、水酸化マグネシウムを吸収
剤とし、硫酸マグネシウムを排出する方式のもの
である。
FIG. 1 shows an example of a typical conventional flue gas desulfurization system, which uses magnesium hydroxide as an absorbent and discharges magnesium sulfate.

図において、原料タンク5から原料ポンプ21
により配管25を通して水酸化マグネシウムを含
むスラリーが吸収塔1に供給される。
In the figure, from the raw material tank 5 to the raw material pump 21
A slurry containing magnesium hydroxide is supplied to the absorption tower 1 through the pipe 25.

硫黄酸化物を含むガスは入口6から吸収塔1に
流入し、吸収液ポンプ20によつて配管24を通
して供給される吸収液と接触、反応し、硫黄酸化
物を吸収、除去されたのち排気筒2から大気に放
出される。
Gas containing sulfur oxides flows into the absorption tower 1 from the inlet 6, contacts and reacts with the absorption liquid supplied through the pipe 24 by the absorption liquid pump 20, absorbs and removes the sulfur oxides, and then passes through the exhaust stack. 2 is released into the atmosphere.

硫黄酸化物を吸収した液中には亜硫酸マグネシ
ウムが形成され、亜硫酸マグネシウムを含む液は
配管27を通して抜き出され、酸化塔3に送られ
る。ここで、亜硫酸マグネシウムはブロワ19か
ら配管22を通して送られる空気と接触して酸化
され、硫酸マグネシウムとなつて配管9を通り、
排液タンク4に流入する。ここで中和などの無害
化処理をされたのち排液ポンプ28により配管2
6を通して系外に放流されるか、または必要に応
じて浮遊固形分除去装置を通したのち放流され
る。
Magnesium sulfite is formed in the liquid that has absorbed the sulfur oxides, and the liquid containing magnesium sulfite is extracted through the pipe 27 and sent to the oxidation tower 3. Here, the magnesium sulfite is oxidized by contacting the air sent from the blower 19 through the piping 22, becomes magnesium sulfate, and passes through the piping 9.
The liquid flows into the drain tank 4. After being subjected to detoxification treatment such as neutralization, the pipe 2
6 to the outside of the system, or if necessary, after passing through a suspended solids removal device.

上記する排煙脱硫装置において、使用される吸
収剤や生成する副生品の種類によつて装置の構成
は異なるが、いずれの場合においても吸収塔(吸
収装置)、酸化塔(酸化装置)、原料タンク(原料
供給装置)、排液タンク(付属装置)などは従来
方式ではそれぞれ別個に設置され、相互に配管で
連結される点で共通する。
In the flue gas desulfurization equipment described above, the configuration of the equipment differs depending on the absorbent used and the type of byproduct produced, but in any case, an absorption tower (absorption equipment), an oxidation tower (oxidation equipment), In the conventional system, the raw material tank (raw material supply device), drain tank (attached device), etc. are installed separately and are connected to each other by piping.

この従来方式の湿式排煙脱硫装置において吸収
塔は一般にその機能上、配置上の理由によりかな
り背が高くなる場合が多く、風力や地震力に耐え
得るためには大きな強度を必要とし、このために
使用材料の重量も大となり、コストも高くなる。
In this conventional wet flue gas desulfurization system, the absorption tower is generally quite tall due to its functionality and layout, and requires great strength to withstand wind and earthquake forces. The weight of the materials used increases, and the cost also increases.

特に、吸収塔の上部に排気筒を接続する方式
は、煙突を吸収塔と別個に設置する場合に比較し
て経済的に有利となるので広く採用されている
が、この場合排気筒の高さが高くなるほど風力や
地震力に耐えるための吸収塔の強度を増す必要が
あり、その重量、コストが増大する。
In particular, the method of connecting the exhaust stack to the top of the absorption tower is widely adopted because it is economically advantageous compared to installing the chimney separately from the absorption tower. The higher the value, the stronger the absorption tower must be to withstand wind and earthquake forces, which increases its weight and cost.

たとえば背の低い塔の場合、その側壁を構成す
る鋼材の厚さは4〜6mm程度ですむのに対して、
数十mの高さの自立型の塔の場合には、その厚さ
が10数mm以上となる。このため高い塔の場合は第
2図に示すように吸収塔の外周に鉄骨により支持
架構を設ける例もあるが、この場合は鋼材所用量
が多くなり、設置面積も大きくなつて不経済であ
る。
For example, in the case of a short tower, the thickness of the steel material that makes up the side walls is only about 4 to 6 mm;
In the case of a free-standing tower several tens of meters high, the thickness will be more than ten millimeters. For this reason, in the case of tall towers, as shown in Figure 2, there are cases where a support frame is provided with a steel frame around the outer periphery of the absorption tower, but in this case, the amount of steel required is large, and the installation area is also large, making it uneconomical. .

今後、硫黄含有率の高い燃料の使用が進むにつ
れて、硫黄酸化物の排出基準を守るために排気筒
の高さは増大する傾向にあり、これに対応するた
めには、あまり鋼材使用量を増加せずに風力や地
震力による荷重に耐え得る経済的な装置が望まれ
る。
In the future, as the use of fuel with high sulfur content increases, the height of exhaust stacks will tend to increase in order to comply with sulfur oxide emission standards, and in order to cope with this, the amount of steel used will not increase. An economical device that can withstand the loads caused by wind and earthquake forces is desired.

一方、酸化塔についても機能、経済性やスペス
の点から竪型が有利でひろく採用されているが、
この場合酸化用空気の利用率を高めるためには塔
内の液の深さをある程度大きくするのが有利であ
り、このため塔形状は細長くなる傾向があり、吸
収塔と同様に風力や地震力による荷重に耐える構
造とする必要がある。
On the other hand, vertical oxidation towers are advantageous in terms of function, economy, and space, and are widely adopted.
In this case, in order to increase the utilization rate of oxidizing air, it is advantageous to increase the depth of the liquid in the tower to some extent, and for this reason, the shape of the tower tends to be elongated. It is necessary to have a structure that can withstand the load caused by

従来の吸収塔、酸化塔を別々に設置する方式で
は、それぞれが単独で荷重に耐える必要性から部
材の重量が大となるほか、設置面積も大となり、
基礎工事も各塔別のためコスト高となり、配置に
よつては各塔間の連絡配管も長くなるほか、塔の
点検歩廊なども各塔専用に設けるなど不経済な点
があつた。
In the conventional method of installing absorption towers and oxidation towers separately, each member has to bear the load independently, which increases the weight of the components and also requires a large installation area.
Foundation work was expensive because each tower was separate, and depending on the layout, connecting pipes between each tower were long, and inspection walkways for each tower were also provided for the exclusive use of each tower, which was uneconomical.

(発明の目的) この発明は上記の問題点について、吸収塔、酸
化塔がともに竪型の細長い形状であつてその配置
を自由に選択できる点に着目し、種々研究を重ね
た結果、これらの塔槽類を効果的に結合、一体化
することによつて従来方式よりもはるかに経済的
な装置を案出するに至つたもので、この発明の要
旨とするところは、吸収塔と、この吸収塔と組合
せ使用される酸化塔、およびその他の排煙脱硫装
置に必要な塔槽類を一体に接合することにより、
吸収塔にかかる荷重をこれら塔槽類の組合わせ構
造物に負担させ、単独の吸収塔が強度上必要な構
成部材量の軽減を図るとともに、設置面積の縮
小、配置計画の単純化、連絡配管の省略、歩廊の
共用化などにより現地工事の簡略化などによつて
装置全体のコストの低減を図るようにしたもので
ある。
(Objective of the Invention) This invention solves the above problem by focusing on the fact that both the absorption tower and the oxidation tower are vertical and elongated, and their arrangement can be freely selected, and as a result of various studies, these By effectively combining and integrating towers and tanks, we have devised a device that is much more economical than conventional systems.The gist of this invention is that the absorption tower and its By joining together the oxidation tower used in combination with the absorption tower and other towers and tanks necessary for flue gas desulfurization equipment,
The load on the absorption tower is borne by the combined structure of these towers and tanks, reducing the amount of structural parts required for a single absorption tower for strength, reducing the installation area, simplifying the layout plan, and improving connection piping. This is intended to reduce the overall cost of the equipment by simplifying on-site construction by omitting walkways and sharing walkways.

(発明の構成) 以下、この発明の実施例を図面に基づいて説明
する。
(Structure of the Invention) Hereinafter, embodiments of the present invention will be described based on the drawings.

第3図はこの発明の装置の斜視図を示す。 FIG. 3 shows a perspective view of the device of the invention.

第3図は一実施例を示すのみで、本願発明はこ
れに限定されるものではない。
FIG. 3 only shows one embodiment, and the present invention is not limited thereto.

吸収塔1はその外周に配する複数の柱に結合支
持され、風力、地震力などの荷重に耐えうる構造
となつている。
The absorption tower 1 is connected and supported by a plurality of columns arranged around its outer periphery, and has a structure capable of withstanding loads such as wind force and earthquake force.

酸化塔3はその必要な容量を複数に等分(図示
例では3等分)し、これを塔状にして吸収塔周り
に配する柱(3本)をそれぞれ構成する。(うち
1本は図示されていない。)排液タンク4と原料
タンク5は仕切板7を隔てて上下方向に接合され
た1本の円筒状に構成し、吸収塔周りに配する柱
(1本)を構成する。
The required capacity of the oxidation tower 3 is divided into a plurality of equal parts (in the illustrated example, three equal parts), and each of these is formed into a tower shape to form pillars (three) arranged around the absorption tower. (One of them is not shown.) The drain tank 4 and the raw material tank 5 are configured into a single cylindrical shape that is vertically joined with a partition plate 7 in between. book).

吸収塔1の上方に排気筒2を接合し、必要に応
じてその外周には支持用架構16を酸化塔3およ
び排液タンク4を利用して設置する。吸収塔周り
で酸化塔3、排液タンク4、および原料タンク5
は接合部材15によつて互いに接合し、吸収塔1
と酸化塔3、排液タンク4または原料タンク5と
は接合部材18により接合し、排気筒2と架構1
6とは接合部材17により接合して、吸収塔1お
よび排気筒2にかかる荷重は酸化塔3、排液タン
ク4、原料タンク5および架構16による組合せ
構造物が負担しうるように構成する。
An exhaust pipe 2 is connected above the absorption tower 1, and a supporting frame 16 is installed on the outer periphery of the exhaust pipe 2, if necessary, using an oxidation tower 3 and a drain tank 4. Around the absorption tower, there is an oxidation tower 3, a waste liquid tank 4, and a raw material tank 5.
are joined to each other by a joining member 15, and the absorption tower 1
and the oxidation tower 3, the drain tank 4, or the raw material tank 5 are joined by a joining member 18, and the exhaust pipe 2 and the frame 1 are connected to each other by a joining member 18.
6 is joined by a joining member 17, and the load applied to the absorption tower 1 and the exhaust pipe 2 is constructed so that a combined structure including the oxidation tower 3, the drain tank 4, the raw material tank 5, and the frame 16 can bear the load.

然して、原料タンク5に貯蔵された吸収剤13
は原料ポンプ21により配管25を通して吸収塔
1に供給され、吸収塔底部には吸収液10が貯留
される。
Therefore, the absorbent 13 stored in the raw material tank 5
is supplied to the absorption tower 1 through a pipe 25 by a raw material pump 21, and an absorption liquid 10 is stored at the bottom of the absorption tower.

硫黄酸化物を含むガスは入口6から吸収塔1に
流入し、吸収液ポンプ20により配管24を通し
ノズル14を介して供給される吸収液と接触、反
応して硫黄酸化物を吸収除去し、排気筒2から大
気へ放出される。
The gas containing sulfur oxides flows into the absorption tower 1 from the inlet 6, contacts and reacts with the absorption liquid supplied via the nozzle 14 through the pipe 24 by the absorption liquid pump 20, and absorbs and removes the sulfur oxides. It is released into the atmosphere from the exhaust stack 2.

吸収液は吸収塔1内で硫黄酸化物を吸収して亜
硫酸塩を形成し、この一部は配管27を通して酸
化塔3に送られる。酸化塔3の内部には必要な深
さまで吸収液11が貯留される。ここで吸収液は
ブロア19により配管22を通しノズル23を介
し塔下部から送られる空気と接触して酸化され、
硫酸塩となつて排出口8から配管9を通り排液タ
ンク4に流入する。ここで排液12は中和などの
必要な処理をされたのち、配管26を通して系外
に放流されるか、または必要に応じて浮遊固形分
除去装置などに送られたのち放流される。
The absorption liquid absorbs sulfur oxides in the absorption tower 1 to form sulfites, and a part of this is sent to the oxidation tower 3 through the pipe 27. The absorption liquid 11 is stored inside the oxidation tower 3 to a required depth. Here, the absorption liquid is oxidized by the blower 19 through the pipe 22 and in contact with the air sent from the bottom of the tower through the nozzle 23.
It becomes sulfate and flows into the drain tank 4 from the outlet 8 through the pipe 9. Here, the waste liquid 12 is subjected to necessary treatments such as neutralization, and then is discharged to the outside of the system through a pipe 26, or, if necessary, is sent to a suspended solid content removal device and then discharged.

尚、排煙脱硫の作用については従来方式の場合
と同じである。
Note that the action of flue gas desulfurization is the same as in the conventional method.

(発明の効果) この発明は上記のごとく構成され、その特長は
つぎのとおりである。
(Effects of the Invention) The present invention is constructed as described above, and its features are as follows.

(1) 吸収塔と酸化塔が接合、一体化されるので、
これらがそれぞれ独立の自立型の場合に比較し
て吸収塔自身のうける荷重が酸化塔等の組合せ
構造物に負担され、吸収塔の強度上必要な部材
重量が大幅に減少する。
(1) Since the absorption tower and oxidation tower are joined and integrated,
Compared to the case where these are independent and self-supporting, the load of the absorption tower itself is borne by the combined structure such as the oxidation tower, and the weight of the members necessary for the strength of the absorption tower is significantly reduced.

(2) 吸収塔上部に高い排気筒を接合する場合で
も、その外周の支持用架構の設置が酸化塔、そ
の他の塔槽類を利用してきわめて容易にでき、
重量、コストが軽減される。また高層煙突で問
題となる振動などの対策も容易である。
(2) Even when a high exhaust stack is connected to the upper part of the absorption tower, it is extremely easy to install a supporting frame around its periphery by using the oxidation tower and other tower vessels.
Weight and cost are reduced. It is also easy to take measures against vibrations, which are a problem in high-rise chimneys.

(3) 酸化塔と吸収塔が近接しているので相互の連
絡配管がきわめて短くてすむ。
(3) Since the oxidation tower and absorption tower are close to each other, the connecting piping between them can be extremely short.

(4) 塔槽類の点検、操作用歩廊、階段などが共用
にできるので、従来の個別に設置する場合より
も経済的である。又架構を利用して高所での歩
廊の設置も容易である。
(4) Since the inspection and operation walkways and stairs for towers and tanks can be shared, it is more economical than the conventional case where they are installed individually. It is also easy to install walkways at high places using the frame.

(5) 装置の主要部分が一体にまとめられ、設置面
積も少なくてすみ、基礎工事費も低減される。
(5) The main parts of the device are integrated, requiring less installation space and reducing foundation construction costs.

(6) 酸化塔のほかに、原料タンク、排液タンクな
ども吸収塔に一体化することができるので、省
スペースとなり、排液タンクは高所に設けるこ
とにより送液の際にその落差を有効に利用でき
る。(排液ポンプの省略も可能である。) 尚、酸化塔が複数に分けられる場合、単独設置
の場合より若干重量、コストが増加するが、吸収
塔、排気筒の重量、コストの減少がこれを補つて
余りあるので、全体としては有利である。
(6) In addition to the oxidation tower, raw material tanks and drainage tanks can also be integrated into the absorption tower, which saves space, and by installing the drainage tank in a high place, the head difference during liquid transfer can be reduced. Can be used effectively. (It is also possible to omit the drain pump.) If the oxidation tower is divided into multiple units, the weight and cost will increase slightly compared to when installed alone, but this will reduce the weight and cost of the absorption tower and exhaust stack. This more than compensates for this, so it is advantageous overall.

以上、説明したように、この発明によれば吸収
塔と酸化塔などの塔槽類を接合し、一体化してこ
れらを吸収塔の荷重負担用部材として活用するこ
とにより、それぞれを単独に設置する場合に比較
してはるかに経済的な装置を提供することができ
る。
As explained above, according to the present invention, the absorption tower and the oxidation tower, etc., are connected and integrated, and these are used as load-bearing members of the absorption tower, so that each can be installed independently. A much more economical device can be provided.

(実施例) 設計例として、処理ガス量6万Nm3/H、入口
硫黄酸化物濃度1500ppm、排気筒高さ地上45m、
脱硫率95%の場合に吸収塔、排気筒、酸化塔及び
架構などの所用鋼材の合計重量を比較すると、本
願方式の場合は従来方式の約80%に減少した。
(Example) As a design example, the processing gas amount is 60,000 Nm 3 /H, the inlet sulfur oxide concentration is 1500 ppm, the height of the exhaust stack is 45 m above ground,
Comparing the total weight of the steel materials required for the absorption tower, exhaust stack, oxidation tower, frame, etc. when the desulfurization rate is 95%, in the case of the present method, it is reduced to about 80% of the conventional method.

上記実施例では酸化塔を3基、排液タンク及び
原料タンクをまとめて1基とし、各塔共円筒形と
したが、本願発明はこれに限定されるものではな
く、吸収塔酸化塔などはその構造に応じて最適の
水平断面形状とし、その設置後も自由に選択する
ことができる。荷重を負担する柱材としては酸化
塔のみで構成してもよいし、実施例のように原料
タンク、排液タンクなどに利用することもでき
る。
In the above embodiment, there were three oxidation towers, one waste liquid tank and one raw material tank, and each tower was cylindrical. However, the present invention is not limited to this, and the absorption tower, oxidation tower, etc. The optimal horizontal cross-sectional shape can be selected according to the structure, and the shape can be freely selected even after installation. The column material that bears the load may be composed of only the oxidation tower, or it may be used for the raw material tank, the drain tank, etc. as in the embodiment.

この発明における吸収塔と酸化塔などとの接合
の方法としては第3図に示す実施例のように接合
部材によつて接合する方法のほか、第4図に示す
方法をとることもできる。
In addition to the method of joining the absorption tower and the oxidation tower of the present invention using a joining member as shown in the embodiment shown in FIG. 3, the method shown in FIG. 4 can also be used.

即ち、第4図は吸収塔と4基の酸化塔とを組み
合わせた実施例における装置の水平断面を示す一
例であつて、この場合は吸収塔の側壁1′が酸化
塔3の側壁に直接溶接などの方法で接合される。
That is, FIG. 4 shows an example of a horizontal cross section of an apparatus in which an absorption tower and four oxidation towers are combined, and in this case, the side wall 1' of the absorption tower is directly welded to the side wall of the oxidation tower 3. It is joined by methods such as

吸収塔を酸化塔、その他の塔槽類に接合する方
法については、各塔の形状、寸法、施工の難易度
や施工に要する費用などを考慮して最適の方法を
選択することができる。
Regarding the method of joining the absorption tower to the oxidation tower and other towers and vessels, the optimal method can be selected by considering the shape, dimensions, difficulty of construction, cost required for construction, etc. of each tower.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の湿式排煙脱硫装置の一例として
の水酸化マグネシウムを吸収剤とし、硫酸マグネ
シウムを排出する方式の排煙脱硫装置の系統図、
第2図は吸収塔の外周に鉄骨による支持架構を設
ける従来例の構成図、第3図はこの発明の実施例
を示す装置の組立図、第4図はこの発明の別の実
施例を示す吸収塔と酸化塔との接合部分の水平断
面を示す構成図である。 1……吸収塔、2……排気筒、3……酸化塔、
4……排液タンク、5……原料タンク、6……入
口、7……仕切板、8……排出口、9……配管、
10……吸収液、11……吸収液、12……排
液、13……吸収剤、14……ノズル、15……
接合部材、16……架構、17……接合部材、1
8……接合部材、19……ブロワ、20……吸収
液ポンプ、21……原料ポンプ、22……配管、
23……ノズル、24……配管、25……配管、
26……配管、27……配管、28……排液ポン
プ。
Figure 1 is a system diagram of a conventional wet flue gas desulfurization system that uses magnesium hydroxide as an absorbent and discharges magnesium sulfate.
Fig. 2 is a configuration diagram of a conventional example in which a steel support frame is provided around the outer periphery of an absorption tower, Fig. 3 is an assembled diagram of a device showing an embodiment of the present invention, and Fig. 4 shows another embodiment of the invention. It is a block diagram which shows the horizontal cross section of the joint part of an absorption tower and an oxidation tower. 1... Absorption tower, 2... Exhaust stack, 3... Oxidation tower,
4... Drainage tank, 5... Raw material tank, 6... Inlet, 7... Partition plate, 8... Outlet, 9... Piping,
10... Absorption liquid, 11... Absorption liquid, 12... Drainage liquid, 13... Absorbent, 14... Nozzle, 15...
Joining member, 16... Frame, 17... Joining member, 1
8... Joining member, 19... Blower, 20... Absorption liquid pump, 21... Raw material pump, 22... Piping,
23... Nozzle, 24... Piping, 25... Piping,
26...Piping, 27...Piping, 28...Drainage pump.

Claims (1)

【特許請求の範囲】[Claims] 1 湿式排煙脱硫装置用吸収塔周りに、該吸収塔
と組合せ使用される単一または複数の酸化塔、そ
の他の排煙脱硫装置に必要な塔槽類を配し、吸収
塔の受ける荷重をこれら塔槽類が負担し得るよう
に接合、一体化したことを特徴とする湿式排煙脱
硫装置。
1. Around the absorption tower for wet flue gas desulfurization equipment, single or multiple oxidation towers used in combination with the absorption tower and other towers and tanks necessary for flue gas desulfurization equipment are arranged to reduce the load on the absorption tower. A wet flue gas desulfurization system characterized by being joined and integrated so that these towers and tanks can carry the load.
JP59078903A 1984-04-18 1984-04-18 Wet waste gas desulfurization apparatus Granted JPS60220126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078903A JPS60220126A (en) 1984-04-18 1984-04-18 Wet waste gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078903A JPS60220126A (en) 1984-04-18 1984-04-18 Wet waste gas desulfurization apparatus

Publications (2)

Publication Number Publication Date
JPS60220126A JPS60220126A (en) 1985-11-02
JPH0226528B2 true JPH0226528B2 (en) 1990-06-11

Family

ID=13674785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078903A Granted JPS60220126A (en) 1984-04-18 1984-04-18 Wet waste gas desulfurization apparatus

Country Status (1)

Country Link
JP (1) JPS60220126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686571U (en) * 1993-04-13 1994-12-20 チトセ株式会社 student desk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686571U (en) * 1993-04-13 1994-12-20 チトセ株式会社 student desk

Also Published As

Publication number Publication date
JPS60220126A (en) 1985-11-02

Similar Documents

Publication Publication Date Title
US9089812B2 (en) Process vessels and plant for gas capture
JPWO2007080676A1 (en) Wet flue gas desulfurization equipment
EP1849515A3 (en) Flue gas desulfurization apparatus, flue gas desulfurization system, and method for operating flue gas desulfurization apparatus
CN104226099A (en) Efficient desulfurization single-tower double-circulation system and method
CN101352652B (en) Desulfuration chimney capable of integrally dissembling
JPH0226528B2 (en)
CN205796922U (en) A kind of compound dust removal integrated purifying column of efficient energy-saving desulphurization denitration
CN209254482U (en) A kind of energy-saving desulfurization mentions effect device
CN201261959Y (en) Integrally detachable desulfuration chimney
CN2793572Y (en) Structure of multifunctional purified gas wetting reactor
CN101590366B (en) Wet method fume desulfurizing device and control method thereof
JP4014063B2 (en) Self-supporting spray absorption tower and wet flue gas desulfurization equipment
CN204746026U (en) Modular defogging dust removal and desulfurization device
CN105797554B (en) A kind of compound dust removal integrated purifying column of efficient energy-saving desulphurization denitration
CN107335389A (en) A kind of Novel SCR Benitration reactor
CN211659716U (en) Steel structure supporting device of waste incineration flue gas purification system
CN213078010U (en) Horizontal downstream spray desulfurizing tower and desulfurization system
CN219879546U (en) Air lifting device with efficient dedusting and demisting functions
CN208244458U (en) Sulfur-containing smoke gas converter
CN215610542U (en) Desulfurizing tower thick liquid pond subregion oxidation unit
CN111841311A (en) Denitration reactor capable of reducing occupied space and installation method
JP2003190739A (en) Wet-type flue-gas desulfurization equipment
CN104607011A (en) Double-circulating flue gas dust removal desulfurization reactor and flue gas desulfurization method
CN201200862Y (en) Desulfurizing device suitable for wet flue gas desulfurization
CN217490333U (en) Desulfurization efficiency-improving energy-saving device for thermal power plant unit