JP2003190739A - Wet-type flue-gas desulfurization equipment - Google Patents

Wet-type flue-gas desulfurization equipment

Info

Publication number
JP2003190739A
JP2003190739A JP2001397044A JP2001397044A JP2003190739A JP 2003190739 A JP2003190739 A JP 2003190739A JP 2001397044 A JP2001397044 A JP 2001397044A JP 2001397044 A JP2001397044 A JP 2001397044A JP 2003190739 A JP2003190739 A JP 2003190739A
Authority
JP
Japan
Prior art keywords
gas
absorption tower
inlet duct
duct
outlet duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001397044A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishizaka
浩 石坂
Hirobumi Yoshikawa
博文 吉川
Motoomi Iwatsuki
元臣 岩月
Takanori Nakamoto
隆則 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001397044A priority Critical patent/JP2003190739A/en
Publication of JP2003190739A publication Critical patent/JP2003190739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide wet-type flue-gas desulfurization equipment which, when a rotary heat exchanger is used, can increase the flow rate of gas without unnecessarily increasing the internal volume of a circulation tank and can realize low cost of equipment and low operation cost. <P>SOLUTION: In the wet-type flue-gas desulfurization equipment, an outlet duct 3 is disposed just above an inlet duct 2. A partition plate 14 constitutes a face common to the outlet duct 3 and the inlet duct 2. The partition plate 14 is once extended horizontally into a gas absorbing part, is then bent downward, and is extended in this direction into a circulation tank 6 to such a height that is not below the surface of a liquid. Exhaust gas introduced through the inlet duct 2 first forms a downward flow in the gas absorption part, is passed through between the leading end of the partition plate 14 and the liquid surface, then ascends through an upward flow region 16 provided with spray nozzles 13 to remove sulfur oxide contained in the waste gas, and is then discharged through the outlet duct 3 disposed just above the inlet duct 2. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の有害成分を
除去する排ガス処理装置に係わり、特に、入口ダクトと
出口ダクトの一体化を図ることで回転式熱交換器への接
続を容易にした二室型湿式排煙脱硫装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treating apparatus for removing harmful components in exhaust gas, and in particular, an inlet duct and an outlet duct are integrated to facilitate connection to a rotary heat exchanger. The present invention relates to a two-chamber wet flue gas desulfurization device.

【0002】[0002]

【従来の技術】従来技術の二室型湿式排煙脱硫装置にお
ける吸収塔を図5に示す。この湿式排煙脱硫装置は、主
に吸収塔本体1、入口ダクト2、出口ダクト3、吸収液
循環ポンプ4、循環タンク6、攪拌機7、空気吹込み管
8、ミストエリミネータ9、吸収液抜出し管10、循環
配管11、スプレヘッダー12、スプレノズル13、仕
切板14、上昇流領域16及び下降流領域15等から構
成される。スプレノズル13は、ガス流れに対して直交
する断面内に複数個設置されており、更にガス流れ方向
に複数段設置されている。また、攪拌機7及び空気吹込
み管8は、吸収液が滞留する循環タンク6に設置され、
ミストエリミネータ9は出口ダクト3内に設置される。
2. Description of the Related Art An absorption tower in a conventional two-chamber wet flue gas desulfurization apparatus is shown in FIG. This wet flue gas desulfurization apparatus mainly includes an absorption tower main body 1, an inlet duct 2, an outlet duct 3, an absorbing liquid circulation pump 4, a circulation tank 6, an agitator 7, an air blowing pipe 8, a mist eliminator 9, and an absorbing liquid discharge pipe. 10, a circulation pipe 11, a spray header 12, a spray nozzle 13, a partition plate 14, an ascending flow region 16, a descending flow region 15, and the like. A plurality of spray nozzles 13 are installed in a cross section orthogonal to the gas flow, and a plurality of spray nozzles 13 are installed in the gas flow direction. Further, the agitator 7 and the air blowing pipe 8 are installed in the circulation tank 6 in which the absorbing liquid stays,
The mist eliminator 9 is installed in the outlet duct 3.

【0003】図示していないボイラから排出される排ガ
スは、図示していない脱硫ファンにより入口ダクト2か
ら吸収塔本体1にほぼ水平方向に導入され、出口ダクト
3から排出される。
Exhaust gas discharged from a boiler (not shown) is introduced into the absorption tower body 1 from the inlet duct 2 in a substantially horizontal direction by a desulfurization fan (not shown), and is discharged from the outlet duct 3.

【0004】スプレ方式による吸収塔の多くは、排ガス
と吸収液を向流接触させるために、吸収塔下部から導入
した排ガスを塔頂部から排出させるが、この従来技術は
吸収塔本体1内に仕切板14を設置し、出口ダクト3を
入口ダクト2とほぼ同じ高さに設けているため、入口ダ
クト2から導入された排ガスは仕切板14に遮られ、上
昇流領域16を上昇し、塔頂部で反転した後、下降流領
域15を下降する。
In most of the absorption towers of the spray system, the exhaust gas introduced from the lower part of the absorption tower is discharged from the top of the tower in order to bring the exhaust gas and the absorbent into countercurrent contact. Since the plate 14 is installed and the outlet duct 3 is provided at almost the same height as the inlet duct 2, the exhaust gas introduced from the inlet duct 2 is blocked by the partition plate 14 and rises in the ascending flow region 16, and the tower top After reversing at, the descending flow region 15 is descended.

【0005】この間、上昇流領域16および下降流領域
15では、吸収液循環ポンプ4から送られる炭酸カルシ
ウムを含んだ吸収液が、それぞれの領域に設けられたス
プレノズル13から噴射され、吸収液と排ガスの気液接
触が行われる。このとき吸収液は排ガス中の硫黄酸化物
(SO2)を選択的に吸収し、亜硫酸カルシウムを生成す
る。亜硫酸カルシウムを生成した吸収液は一旦循環タン
ク6に溜まり、酸化用攪拌機7によって攪拌されなが
ら、空気吹込み管8から供給される空気中の酸素により
亜硫酸カルシウムが酸化され硫酸カルシウム(石膏)を
生成する。
In the meantime, in the ascending flow region 16 and the descending flow region 15, the absorption liquid containing calcium carbonate sent from the absorption liquid circulation pump 4 is sprayed from the spray nozzle 13 provided in each region to absorb the absorption liquid and the exhaust gas. Gas-liquid contact is performed. At this time, the absorbing liquid selectively absorbs sulfur oxide (SO 2 ) in the exhaust gas and forms calcium sulfite. The absorption liquid that has generated calcium sulfite is temporarily stored in the circulation tank 6, and while being stirred by the oxidizing stirrer 7, the oxygen in the air supplied from the air blowing pipe 8 oxidizes the calcium sulfite to generate calcium sulfate (gypsum). To do.

【0006】炭酸カルシウム及び石膏が共存する循環タ
ンク6内の吸収液5の一部は、吸収液循環ポンプ4によ
って再びスプレノズル13に送られ、一部は吸収液抜き
出し管10より図示していない廃液処理・石膏回収系へ
と送られる。また、スプレノズル13からの噴射によっ
て微粒化された吸収液の中で、液滴径の小さいものは排
ガスに同伴されるが、出口ダクト3に設けられたミスト
エリミネータ9によって捕集される。
A part of the absorbing liquid 5 in the circulation tank 6 in which calcium carbonate and gypsum coexist is sent to the spray nozzle 13 again by the absorbing liquid circulating pump 4, and a part of the absorbing liquid is discharged from the absorbing liquid withdrawing pipe 10 (not shown). It is sent to the processing and gypsum recovery system. Further, among the absorbing liquids atomized by the spray from the spray nozzle 13, those having a small droplet diameter are entrained in the exhaust gas, but are collected by the mist eliminator 9 provided in the outlet duct 3.

【0007】この従来技術は、出口ダクト3が入口ダク
ト2とほぼ同じ低い高さに設けられているため、ミスト
エリミネータ9および出口ダクト3の図示していない支
持鉄骨が低く簡易なものになり、また、図示していない
熱交換器(再加熱側)に接続するためのダクトの長さも
短くて済む。
In this prior art, since the outlet duct 3 is provided at the same height as the inlet duct 2, the mist eliminator 9 and the supporting duct (not shown) of the outlet duct 3 are low and simple, In addition, the length of the duct for connecting to a heat exchanger (reheating side) not shown can be short.

【0008】しかし、この従来技術は、基本的に入口ダ
クト2と出口ダクト3が吸収塔本体の対向する壁面に配
置されており、熱交換器として入口ダクト2側に配置さ
れる熱回収器と出口ダクト3側に配置される再加熱器が
抱き合わせて隣接配置される回転式熱交換器を使用する
場合には適していない。図5に示す吸収塔構造で回転式
熱交換器を用いる場合には、図6に示すように、例えば
入口ダクト2を出口ダクト3の近傍まで長く伸ばして熱
回収器18を配置し、その近傍の出口ダクト3に再加熱
器19を配置した回転式熱交換器17を用いることが必
要である。
However, in this prior art, the inlet duct 2 and the outlet duct 3 are basically arranged on the opposite wall surfaces of the absorber main body, and a heat recovery device arranged on the inlet duct 2 side as a heat exchanger is used. This is not suitable when using a rotary heat exchanger in which the reheaters arranged on the side of the outlet duct 3 are arranged so as to be adjacent to each other. When the rotary heat exchanger is used in the absorption tower structure shown in FIG. 5, as shown in FIG. 6, for example, the inlet duct 2 is extended to the vicinity of the outlet duct 3 and the heat recovery unit 18 is arranged in the vicinity thereof. It is necessary to use a rotary heat exchanger 17 with a reheater 19 arranged in the outlet duct 3 of.

【0009】したがって、熱交換器が回転式熱交換器で
ある場合には、図7に示す入口ダクト2と出口ダクト3
が吸収塔本体1の同一壁面にある一般的な一室型湿式排
煙脱硫装置が採用されることが多い。しかし、近年、低
コスト化のために塔径を小さくし、しかも脱硫性能を上
げるために塔内ガス流速の高速化を図った湿式排煙脱硫
装置に対する要請が強くなっている。
Therefore, when the heat exchanger is a rotary heat exchanger, the inlet duct 2 and the outlet duct 3 shown in FIG. 7 are used.
However, a general one-chamber type wet flue gas desulfurization device located on the same wall surface of the absorption tower body 1 is often adopted. However, in recent years, there has been a strong demand for a wet flue gas desulfurization apparatus in which the tower diameter is reduced for cost reduction and the gas flow rate in the tower is increased for improving desulfurization performance.

【0010】ただし、高硫黄分の石炭が焚かれる場合、
吸収塔入口SO2濃度が高くなり、それに見合った循環タ
ンク6内での酸化に要する滞留時間を確保するために
は、図7に示すように吸収塔本体1のスプレ部の直径よ
りも循環タンク6の直径を大きくしなければならない場
合が多い。しかしながら、前記スプレ部の直径に対する
循環タンク6の直径の比には構造的な限界値があり、そ
れ以上に大きなタンク容積が必要な場合には液深を深く
しなければならない。そのため、循環タンク6の高さを
高くする必要があり、設備費の増加と空気吹込み管8か
ら吸収液中に導入する酸化空気のブロワ動力の増加を招
くことになる。
However, when high-sulfur coal is burned,
As shown in FIG. 7, the SO 2 concentration at the inlet of the absorption tower becomes high, and in order to secure the residence time required for the oxidation in the circulation tank 6 that corresponds to that, as shown in FIG. Often, the diameter of 6 must be increased. However, there is a structural limit to the ratio of the diameter of the circulation tank 6 to the diameter of the spray portion, and if a tank volume larger than that is required, the liquid depth must be increased. Therefore, it is necessary to increase the height of the circulation tank 6, resulting in an increase in equipment cost and an increase in the blower power of the oxidizing air introduced into the absorbing liquid from the air blowing pipe 8.

【0011】[0011]

【発明が解決しようとする課題】上記従来技術では、二
室型湿式排煙脱硫装置の回転式熱交換器17への対応
や、一室型湿式排煙脱硫装置の高濃度SO2排ガス条件下
での高ガス流速化に関して十分考慮されておらず、設備
費ならびに酸化空気ブロワの動力が増加する問題があっ
た。
In the above-mentioned conventional technique, the two-chamber type wet flue gas desulfurization apparatus is adapted to the rotary heat exchanger 17, and the one-chamber type wet flue gas desulfurization apparatus has a high concentration SO 2 exhaust gas condition. There was a problem that the equipment cost and the power of the oxidizing air blower increased, because the high gas flow rate at the plant was not fully considered.

【0012】本発明の課題は、回転式熱交換器が用いら
れる場合に、循環タンクの容量を必要以上に大きくする
ことなく高ガス流速化を図ることができる設備費ならび
に運転コストが低い湿式排煙脱硫装置を得ることにあ
る。
An object of the present invention is, when a rotary heat exchanger is used, a wet exhaust having a low equipment cost and a low operating cost that can achieve a high gas flow rate without increasing the capacity of the circulation tank more than necessary. To get a smoke desulfurizer.

【0013】[0013]

【問題点を解決するための手段】本発明の上記課題は、
吸収液を貯留する循環タンクと、その上側にボイラなど
の燃焼装置から排出される排ガスを導入する入口ダクト
と該入口ダクトから導入された排ガスと吸収液を気液接
触させて排ガス中の硫黄酸化物を吸収液中に吸収させる
ガス吸収部と該ガス吸収部から浄化されたガスを排出す
る出口ダクトとを有する吸収塔を備えた湿式排煙脱硫装
置において、入口ダクトと出口ダクトは水平方向に向い
たガス流路を備え、吸収塔には上下に重ね合って隣接し
て設けられ、入口ダクトと出口ダクトの隣接部は共通の
仕切部材で構成される湿式排煙脱硫装置により解決され
る。
The above problems of the present invention are as follows.
A circulation tank that stores the absorbing liquid, an inlet duct that introduces the exhaust gas discharged from the combustion device such as a boiler above the circulating tank, and the exhaust gas introduced from the inlet duct and the absorbing liquid are brought into gas-liquid contact, and sulfur oxidation in the exhaust gas In a wet flue gas desulfurization apparatus provided with an absorption tower having a gas absorbing part for absorbing a substance into an absorbing liquid and an outlet duct for discharging the gas purified from the gas absorbing part, the inlet duct and the outlet duct are horizontally arranged. The wet flue gas desulfurization device is provided with a facing gas flow path, which is provided adjacent to the absorption tower so as to be vertically overlapped with each other, and the adjoining portions of the inlet duct and the outlet duct are constituted by a common partition member.

【0014】入口ダクトと出口ダクトの隣接部に配置さ
れる前記仕切部材は入口ダクトと出口ダクトを仕切る水
平部分と、吸収塔のガス吸収部内で鉛直方向に向って循
環タンク内の液面上方まで伸びた鉛直部分とからなる構
成とすることができる。
The partition member disposed adjacent to the inlet duct and the outlet duct is a horizontal portion for partitioning the inlet duct and the outlet duct, and vertically in the gas absorbing portion of the absorption tower to a position above the liquid level in the circulation tank. It can be configured to include an extended vertical portion.

【0015】また、入口ダクトに排ガス温度を下げるた
めに配置される熱回収器と出口ダクトに排ガス温度を上
げるために配置される再加熱器が隣り合わせに配置され
る熱媒体回転式熱交換器が設置される。
Further, there is provided a heat medium rotary heat exchanger in which a heat recovery device arranged in the inlet duct for lowering the exhaust gas temperature and a reheater arranged in the outlet duct for increasing the exhaust gas temperature are arranged next to each other. Is installed.

【0016】さらに、入口ダクトは吸収塔内に導入され
るガスの下降流領域を形成するように吸収塔に設けら
れ、出口ダクトは吸収塔内から排出されるガスの上昇流
領域を形成するように吸収塔に設けられ、ガス吸収部に
はスプレノズルが設けられ、該ガス吸収部は出口ダクト
部に接続する吸収塔内のガスの上昇流領域に設けられる
構成としても良い。
Further, the inlet duct is provided in the absorption tower so as to form a downward flow area of the gas introduced into the absorption tower, and the outlet duct is formed so as to form an upward flow area of the gas discharged from the inside of the absorption tower. May be provided in the absorption tower, the gas absorption section may be provided with a spray nozzle, and the gas absorption section may be provided in an upward flow region of gas in the absorption tower connected to the outlet duct section.

【0017】また、前記ガスの下降流領域にもガス吸収
部を構成するスプレノズルを設置することもできる。
Further, it is possible to install a spray nozzle which constitutes a gas absorbing portion also in the downward flow region of the gas.

【0018】[0018]

【作用】本発明によれば出口ダクトと入口ダクトを仕切
る仕切板を設置することで、熱回収器(入口ダクト側)
と再加熱器(出口ダクト側)が抱き合わせて隣接配置さ
れる回転式熱交換器を排ガスダクト部に設置することが
でき、ダクトワークが容易になる。
According to the present invention, a heat recovery device (on the inlet duct side) is provided by installing a partition plate for partitioning the outlet duct and the inlet duct.
And the reheater (outlet duct side) can be installed adjacent to each other in the exhaust gas duct section, and the duct work can be facilitated.

【0019】また、本発明では、吸収塔内のスプレノズ
ルが配置されるガス吸収部は、出口ダクトが接続する側
の吸収塔内に設けられており、ガス吸収部の水平断面積
と入口ダクトが吸収塔内に臨む部分の吸収塔水平断面積
の合計の水平断面積を有する循環タンクを設置すること
ができる。そのため、前記合計水平断面積と同じ水平断
面積を有する循環タンクを設けることができる。従って
ガス吸収部の水平断面積を小さくしてガス流速を高めて
もその分前記入口ダクトが吸収塔内に臨む部分の水平断
面積を大きくすることで循環タンクの水平断面積を充分
な大きさにすることができ、吸収塔入口での排ガス中の
SO2濃度が比較的高い場合でも、循環タンクの液深を深
くすることなく、循環タンクの容量を大きくすることが
できる。
Further, in the present invention, the gas absorption section in the absorption tower in which the spray nozzle is arranged is provided in the absorption tower on the side to which the outlet duct is connected, and the horizontal sectional area of the gas absorption section and the inlet duct are A circulation tank having a total horizontal cross-sectional area of the absorption tower horizontal cross-sectional area facing the absorption tower can be installed. Therefore, a circulation tank having the same horizontal cross-sectional area as the total horizontal cross-sectional area can be provided. Therefore, even if the horizontal cross-sectional area of the gas absorption portion is reduced to increase the gas flow velocity, the horizontal cross-sectional area of the circulation tank is sufficiently increased by increasing the horizontal cross-sectional area of the portion where the inlet duct faces the absorption tower. Of the exhaust gas at the inlet of the absorption tower
Even when the SO 2 concentration is relatively high, the capacity of the circulation tank can be increased without increasing the liquid depth of the circulation tank.

【0020】こうして、循環タンク内における排ガスを
吸収した吸収液の滞留時間確保のために循環タンク内の
液深を深くする必要もなく、したがって水平断面積を比
較的大きくした大容量の循環タンクを設置する必要がな
い。そのため、設備費の増加と酸化空気ブロワの動力増
加を招くことなく高効率で脱硫を行える。
Thus, it is not necessary to deepen the liquid depth in the circulation tank in order to secure the residence time of the absorbing liquid that has absorbed the exhaust gas in the circulation tank, and thus a large-capacity circulation tank having a relatively large horizontal cross-sectional area can be provided. No need to install. Therefore, desulfurization can be performed with high efficiency without increasing the equipment cost and increasing the power of the oxidizing air blower.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて説明する。図1は本発明による実施の形
態の湿式排煙脱硫装置の吸収塔の側断面図であり、この
湿式排煙脱硫装置は、従来技術で説明した装置と同様
に、主に吸収塔本体1、入口ダクト2、出口ダクト3、
吸収液循環ポンプ4、循環タンク6、攪拌機7、空気吹
込み管8、ミストエリミネータ9、吸収液抜出し管1
0、循環配管11、スプレヘッダー12、スプレノズル
13、仕切板14、上昇流領域16及び下降流領域15
等から構成される。スプレノズル13は、ガス流れに対
して直交する断面内に複数個設置されており、更にガス
流れ方向に複数段設置されている。また、攪拌機7及び
空気吹込み管8は、吸収液5が滞留する循環タンク6に
設置され、ミストエリミネータ9は出口ダクト3内に設
置される。そして、図示していないボイラから排出され
る排ガスは、図示していない脱硫ファンにより入口ダク
ト2から吸収塔本体1にほぼ水平方向に導入され、出口
ダクト3から排出される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view of an absorption tower of a wet flue gas desulfurization apparatus according to an embodiment of the present invention. This wet flue gas desulfurization apparatus is mainly used in the absorption tower main body 1, like the apparatus described in the related art. Inlet duct 2, outlet duct 3,
Absorption liquid circulation pump 4, circulation tank 6, stirrer 7, air blowing pipe 8, mist eliminator 9, absorption liquid extraction pipe 1
0, circulation pipe 11, spray header 12, spray nozzle 13, partition plate 14, upflow region 16 and downflow region 15
Etc. A plurality of spray nozzles 13 are installed in a cross section orthogonal to the gas flow, and a plurality of spray nozzles 13 are installed in the gas flow direction. Further, the agitator 7 and the air blowing pipe 8 are installed in the circulation tank 6 in which the absorbing liquid 5 stays, and the mist eliminator 9 is installed in the outlet duct 3. Exhaust gas discharged from a boiler (not shown) is introduced from the inlet duct 2 into the absorber main body 1 in a substantially horizontal direction by a desulfurization fan (not shown), and is discharged from the outlet duct 3.

【0022】入口ダクト2と出口ダクト3は吸収塔本体
1の頂部に接続され、入口ダクト2の上側に仕切板14
を介して出口ダクト3が配置され、該仕切板14は上端
が吸収塔本体1に接続され、下端が循環タンク6内の液
面に突入しないように折れ曲がり状に配置されており、
該仕切板14を介して入口ダクト2と出口ダクト3の一
体化を図った吸収塔の側面を示したものである。
The inlet duct 2 and the outlet duct 3 are connected to the top of the absorber main body 1, and a partition plate 14 is provided above the inlet duct 2.
The outlet duct 3 is disposed through the partition plate 14, the partition plate 14 has an upper end connected to the absorption tower body 1, and a lower end arranged in a bent shape so as not to rush into the liquid surface in the circulation tank 6,
1 is a side view of an absorption tower in which an inlet duct 2 and an outlet duct 3 are integrated via a partition plate 14.

【0023】図2は図1における吸収塔の入口ダクト2
と出口ダクト3に回転式熱交換器17の熱回収器18
(入口ダクト側)と再加熱器19(出口ダクト側)を抱
き合わせて配置した構造を示す。
FIG. 2 shows the inlet duct 2 of the absorption tower in FIG.
And the heat recovery device 18 of the rotary heat exchanger 17 in the outlet duct 3.
The structure in which the (inlet duct side) and the reheater 19 (outlet duct side) are tied together is shown.

【0024】上記吸収塔の構成において入口ダクト2か
ら導入された排ガスは、仕切板14によって下向きに曲
げられ、下降流領域15を下降し、仕切板14の下端と
循環タンク6内の液面との間を通過した後、スプレノズ
ル13が配置された上昇流領域16を上昇し、出口ダク
ト3から排出される。したがって、入口ダクト2の途中
に配置される熱回収器18と出口ダクト3の途中に配置
される再加熱器19が隣接配置される回転式熱交換器1
7を用いることができる。
The exhaust gas introduced from the inlet duct 2 in the above-mentioned absorption tower structure is bent downward by the partition plate 14 and descends in the downward flow region 15, so that the lower end of the partition plate 14 and the liquid level in the circulation tank 6 are brought into contact with each other. After passing through the space, the ascending flow region 16 in which the spray nozzle 13 is arranged rises and is discharged from the outlet duct 3. Therefore, the rotary heat exchanger 1 in which the heat recovery unit 18 arranged in the middle of the inlet duct 2 and the reheater 19 arranged in the middle of the outlet duct 3 are arranged adjacent to each other
7 can be used.

【0025】このように図1と図2に示す例では、入口
ダクト2と出口ダクト3が仕切板14を介して上下に重
ねて配置されているので、入口ダクト2と出口ダクト3
の適所に回転式熱交換器17を設置することができ、ダ
クトワークが容易になる。
As described above, in the example shown in FIGS. 1 and 2, since the inlet duct 2 and the outlet duct 3 are vertically stacked with the partition plate 14 interposed therebetween, the inlet duct 2 and the outlet duct 3 are arranged.
The rotary heat exchanger 17 can be installed in a proper place, and duct work becomes easy.

【0026】また、図1と図2に示す吸収塔では、吸収
塔本体1内のスプレノズル13が配置されたスプレ部
(ガス吸収部)は出口ダクト3に接続しており、スプレ
部の水平断面積と入口ダクト2の吸収塔内に臨む水平断
面の合計の水平断面積を有する循環タンク6を設置する
ことができる。そのため、スプレ部の水平断面積を小さ
くしてガス流速を高めても循環タンク6の水平断面積を
大きくできるので、吸収塔入口での排ガス中のSO2濃度
が比較的高い場合でも、循環タンク6の液深を深くする
ことなく、循環タンク6の容量を大きくすることができ
る。
In the absorption tower shown in FIGS. 1 and 2, the spray section (gas absorption section) in the absorption tower main body 1 in which the spray nozzle 13 is arranged is connected to the outlet duct 3 so that the spray section is horizontally disconnected. It is possible to install a circulation tank 6 having a total horizontal cross-sectional area of the area and the horizontal cross-section of the inlet duct 2 which faces the absorption tower. Therefore, the horizontal cross-sectional area of the circulation tank 6 can be increased even if the horizontal cross-sectional area of the spray portion is reduced to increase the gas flow velocity. Therefore, even when the SO 2 concentration in the exhaust gas at the absorption tower inlet is relatively high, The volume of the circulation tank 6 can be increased without increasing the liquid depth of 6.

【0027】こうして、循環タンク6内における排ガス
を吸収した吸収液5の滞留時間確保のために循環タンク
6内の液深を深くする必要もなく、したがって大容量の
循環タンク6を設置する必要がない。そのため、設備費
の増加と酸化空気ブロワの動力増加を招くことなく高効
率で脱硫を行える。
Thus, it is not necessary to deepen the liquid depth in the circulation tank 6 in order to secure the residence time of the absorbing liquid 5 that has absorbed the exhaust gas in the circulation tank 6, and therefore it is necessary to install the large-capacity circulation tank 6. Absent. Therefore, desulfurization can be performed with high efficiency without increasing the equipment cost and increasing the power of the oxidizing air blower.

【0028】図3は本発明による他の実施の形態の吸収
塔の側断面図であり、吸収塔頂部に設けた入口ダクト2
の下側に仕切板14を介して出口ダクト3を配置した構
成である。
FIG. 3 is a side sectional view of an absorption tower according to another embodiment of the present invention, showing an inlet duct 2 provided at the top of the absorption tower.
The outlet duct 3 is arranged on the lower side of the partition plate 14 via the partition plate 14.

【0029】また、図4に示す例は、吸収塔の入口ダク
ト2から導入される排ガスの下降流領域15にもスプレ
ノズル13を配置した点で図1に示した実施の形態とは
異なる。下降流領域15は高ガス流速条件となるため、
硫黄酸化物(SO2)の吸収効率が高く、本実施の形態の
ように下降流領域15では吸収液5がガス流れと同じ向
きに噴射するようにスプレノズル13を配置すれば、吸
収液5が上昇流領域16におけるよりも低圧力損失で噴
射され、高い脱硫性能を得ることができるため、吸収塔
入口部での排ガス中のSO2濃度が高い条件でのSO2の粗取
り用として利用することができる。
Further, the example shown in FIG. 4 is different from the embodiment shown in FIG. 1 in that the spray nozzle 13 is also arranged in the downward flow region 15 of the exhaust gas introduced from the inlet duct 2 of the absorption tower. Since the downflow region 15 has a high gas velocity condition,
The absorption efficiency of sulfur oxide (SO 2 ) is high, and if the spray nozzle 13 is arranged so that the absorbing liquid 5 is jetted in the same direction as the gas flow in the downward flow region 15 as in the present embodiment, the absorbing liquid 5 is is injected at a low pressure loss than in upflow region 16, it is possible to obtain high desulfurization performance is used as a rough cut of the SO 2 in the SO 2 concentration is high condition in the exhaust gas in the absorption tower inlet be able to.

【0030】このように、本発明の上記実施の形態で
は、入口ダクト2の壁面の一部と出口ダクト3の壁面の
一部を1枚の部材で共用し、入口ダクト2と出口ダクト
3を一体化しているため、ダクト部材の軽減が可能であ
り、設備費を低減することができる。また、図1、図2
で説明したように上記実施の形態では、循環タンク6内
における排ガスを吸収した吸収液の滞留時間確保のため
に循環タンク6内の液深を深くする必要もなく、したが
って大容量の循環タンク6を設置する必要がない。その
ため、設備費の増加と酸化空気ブロワの動力増加を招く
ことなく高効率で脱硫を行える。
As described above, in the above embodiment of the present invention, a part of the wall surface of the inlet duct 2 and a part of the wall surface of the outlet duct 3 are shared by one member, and the inlet duct 2 and the outlet duct 3 are shared. Since they are integrated, the number of duct members can be reduced and the facility cost can be reduced. In addition, FIG.
As described above, in the above-described embodiment, it is not necessary to deepen the liquid depth in the circulation tank 6 to secure the retention time of the absorbing liquid that has absorbed the exhaust gas in the circulation tank 6, and thus the large-capacity circulation tank 6 Need not be installed. Therefore, desulfurization can be performed with high efficiency without increasing the equipment cost and increasing the power of the oxidizing air blower.

【0031】なお、上記実施の形態における吸収塔本体
1の水平断面形状は、円形を想定して記述しているが、
角型にしてもほぼ同等の効果が得られるものである。
Although the horizontal cross-sectional shape of the absorption tower body 1 in the above-mentioned embodiment is assumed to be circular,
Even if it is a square type, almost the same effect can be obtained.

【0032】また、本実施例では吸収塔内のスプレノズ
ル13が配置されたガス吸収部の水平断面積に対する循
環タンク6の水平断面積の比に制約がなく、循環タンク
6の直径を自由に設定することができるため、吸収塔入
口部での排ガス中のSO2濃度が高い条件でも、循環タン
ク6内の液深を深くすることなく、循環タンク6の容量
を大きくすることが可能であり、設備費の増加と酸化空
気ブロワの動力増加を招くようなこともない。したがっ
て、上記実施の形態例は回転式熱交換器が採用されるプ
ラントにおいて、最適な吸収塔構造であると言える。
Further, in the present embodiment, there is no restriction on the ratio of the horizontal cross-sectional area of the circulation tank 6 to the horizontal cross-sectional area of the gas absorption portion in which the spray nozzle 13 in the absorption tower is arranged, and the diameter of the circulation tank 6 can be freely set. Therefore, it is possible to increase the capacity of the circulation tank 6 without deepening the liquid depth in the circulation tank 6 even under the condition that the concentration of SO 2 in the exhaust gas at the inlet of the absorption tower is high. There is no increase in equipment cost and power of the oxidizing air blower. Therefore, it can be said that the above-described embodiment has an optimum absorption tower structure in the plant in which the rotary heat exchanger is adopted.

【0033】[0033]

【発明の効果】本発明によれば、回転式熱交換器が用い
られる場合でも、循環タンクの水平断面積を必要以上に
以上に大きくすることなく高ガス流速化を図ることがで
き、設備費ならびに運転コストが低い湿式排煙脱硫装置
を得ることが可能となる。
According to the present invention, even when a rotary heat exchanger is used, a high gas flow velocity can be achieved without increasing the horizontal cross-sectional area of the circulation tank more than necessary, and the facility cost can be reduced. In addition, it is possible to obtain a wet flue gas desulfurization device with low operating cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明になる実施の形態の入口ダクトと出口
ダクトが一体化した吸収塔構造の側断面図である。
FIG. 1 is a side sectional view of an absorption tower structure in which an inlet duct and an outlet duct according to an embodiment of the present invention are integrated.

【図2】 図1の実施の形態の入口ダクトと出口ダクト
に回転式熱交換器を配置した構成図である。
FIG. 2 is a configuration diagram in which rotary heat exchangers are arranged in the inlet duct and the outlet duct of the embodiment of FIG.

【図3】 本発明になる実施の形態の入口ダクトと出口
ダクトが一体化した吸収塔構造の側断面図である。
FIG. 3 is a side sectional view of an absorption tower structure in which an inlet duct and an outlet duct of the embodiment according to the present invention are integrated.

【図4】 本発明になる実施の形態の入口ダクトに接続
する吸収塔の下降流領域にもスプレノズルを配置した吸
収塔構造の側断面図である。
FIG. 4 is a side sectional view of an absorption tower structure in which a spray nozzle is also arranged in a downflow region of the absorption tower connected to the inlet duct according to the embodiment of the present invention.

【図5】 従来技術の二室型吸収塔構造の側断面図であ
る。
FIG. 5 is a side sectional view of a conventional two-chamber absorption tower structure.

【図6】 図5の二室型吸収塔構造の入口ダクトと出口
ダクトに回転式熱交換器を配置した構成図である。
6 is a configuration diagram in which rotary heat exchangers are arranged in an inlet duct and an outlet duct of the two-chamber absorption tower structure of FIG.

【図7】 従来技術の最も一般的な一室型湿式排煙脱硫
装置の側断面図である。
FIG. 7 is a side sectional view of the most common one-chamber type wet flue gas desulfurization apparatus of the prior art.

【符号の説明】[Explanation of symbols]

1 吸収塔本体 2 入口ダクト 3 出口ダクト 4 吸収液循環ポンプ 5 吸収液 6 循環タンク 7 攪拌機 8 空気吹込み管 9 ミストエリミネータ 10 吸収液抜出し管 11 循環配管 12 スプレヘッダー 13 スプレノズル 14 仕切板 15 下降流領域 16 上昇流領域 17 回転式熱交換器 18 熱回収器 19 再加熱器 1 Absorption tower main body 2 Entrance duct 3 Outlet duct 4 Absorbing liquid circulation pump 5 absorption liquid 6 circulation tank 7 Stirrer 8 Air blowing tube 9 Mist eliminator 10 Absorption liquid extraction pipe 11 Circulation piping 12 Spray header 13 Spray nozzle 14 Partition plate 15 Downflow area 16 Upflow area 17 Rotary heat exchanger 18 Heat recovery device 19 Reheater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩月 元臣 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 中本 隆則 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 4D002 AA02 AC01 BA02 CA01 DA05 DA16 EA12 FA03 4D020 AA06 BA02 BA09 BB03 CB27 CC09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Motoomi Iwatsuki             Babcock Hitachi 3-36 Takaracho, Kure City, Hiroshima Prefecture             Kure Institute Co., Ltd. (72) Inventor Takanori Nakamoto             Babcock Hitachi 6-9 Takaracho, Kure City, Hiroshima Prefecture             Kure Office Co., Ltd. F-term (reference) 4D002 AA02 AC01 BA02 CA01 DA05                       DA16 EA12 FA03                 4D020 AA06 BA02 BA09 BB03 CB27                       CC09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吸収液を貯留する循環タンクと、その上
側にボイラなどの燃焼装置から排出される排ガスを導入
する入口ダクトと該入口ダクトから導入された排ガスと
吸収液を気液接触させて排ガス中の硫黄酸化物を吸収液
中に吸収させるガス吸収部と該ガス吸収部から浄化され
たガスを排出する出口ダクトとを有する吸収塔を備えた
湿式排煙脱硫装置において、 入口ダクトと出口ダクトは水平方向に向いたガス流路を
備え、吸収塔には上下に重ね合って隣接して設けられ、
入口ダクトと出口ダクトの隣接部は共通の仕切部材で構
成されることを特徴とする湿式排煙脱硫装置。
1. A circulation tank for storing absorbing liquid, an inlet duct for introducing exhaust gas discharged from a combustion device such as a boiler above the tank, and the exhaust gas introduced from the inlet duct and the absorbing liquid are brought into gas-liquid contact with each other. In a wet flue gas desulfurization apparatus provided with an absorption tower having a gas absorbing part for absorbing sulfur oxides in exhaust gas into an absorbing liquid and an outlet duct for discharging purified gas from the gas absorbing part, an inlet duct and an outlet The duct is provided with a gas flow path that is oriented in the horizontal direction, and is provided in the absorption tower so as to be vertically stacked and adjacent to each other.
A wet flue gas desulfurization device, wherein the inlet duct and the outlet duct are adjacent to each other and are configured by a common partition member.
【請求項2】 入口ダクトと出口ダクトの隣接部に配置
される仕切部材は入口ダクトと出口ダクトを仕切る水平
部分と、吸収塔のガス吸収部内で鉛直方向に向って循環
タンク内の液面上方まで伸びた鉛直部分とからなること
を特徴とする請求項1記載の湿式排煙脱硫装置。
2. The partition member disposed adjacent to the inlet duct and the outlet duct is a horizontal portion for partitioning the inlet duct and the outlet duct, and vertically above the liquid level in the circulation tank in the gas absorption section of the absorption tower. The wet flue gas desulfurization apparatus according to claim 1, wherein the wet flue gas desulfurization apparatus comprises a vertical portion extending up to the point.
【請求項3】 入口ダクトに排ガス温度を下げるために
配置される熱回収器と出口ダクトに排ガス温度を上げる
ために配置される再加熱器が隣り合わせに配置される熱
媒体回転式熱交換器が設置されることを特徴とする請求
項1又は2記載の湿式排煙脱硫装置。
3. A heat medium rotary heat exchanger in which a heat recovery device arranged in the inlet duct to lower the exhaust gas temperature and a reheater arranged in the outlet duct to raise the exhaust gas temperature are arranged next to each other. The wet flue gas desulfurization apparatus according to claim 1 or 2, which is installed.
【請求項4】 入口ダクトは吸収塔内に導入されるガス
の下降流領域を形成するように吸収塔に設けられ、出口
ダクトは吸収塔内から排出されるガスの上昇流領域を形
成するように吸収塔に設けられ、ガス吸収部にはスプレ
ノズルが設けられ、該ガス吸収部は出口ダクト部に接続
する吸収塔内のガスの上昇流領域に設けられることを特
徴とする請求項1ないし3の何れかに記載の湿式排煙脱
硫装置。
4. The inlet duct is provided in the absorption tower so as to form a downward flow area of the gas introduced into the absorption tower, and the outlet duct is formed so as to form an upward flow area of the gas discharged from the inside of the absorption tower. 4. The absorption tower is provided in the absorption tower, the spray nozzle is provided in the gas absorption section, and the gas absorption section is provided in an upflow region of gas in the absorption tower connected to the outlet duct section. 5. The wet flue gas desulfurization device according to any one of 1.
【請求項5】 前記ガスの下降流領域にもガス吸収部を
構成するスプレノズルを設置したことを特徴とする請求
項1ないし4の何れかに記載の湿式排煙脱硫装置。
5. The wet flue gas desulfurization apparatus according to claim 1, further comprising a spray nozzle that constitutes a gas absorbing portion is installed in the downflow region of the gas.
JP2001397044A 2001-12-27 2001-12-27 Wet-type flue-gas desulfurization equipment Pending JP2003190739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001397044A JP2003190739A (en) 2001-12-27 2001-12-27 Wet-type flue-gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001397044A JP2003190739A (en) 2001-12-27 2001-12-27 Wet-type flue-gas desulfurization equipment

Publications (1)

Publication Number Publication Date
JP2003190739A true JP2003190739A (en) 2003-07-08

Family

ID=27602949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001397044A Pending JP2003190739A (en) 2001-12-27 2001-12-27 Wet-type flue-gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JP2003190739A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936677A (en) * 2013-02-21 2015-09-23 三菱重工业株式会社 System and method for recovering gas containing CO2 and H2S
CN107975817A (en) * 2017-12-07 2018-05-01 天津华赛尔传热设备有限公司 A kind of white absorption tower that disappears of flue gas heating
CN110404365A (en) * 2019-07-22 2019-11-05 陈杰 A kind of steel mill energy-saving vulcanizing tower
CN114110559A (en) * 2021-11-12 2022-03-01 东方电气集团东方锅炉股份有限公司 Smoke baffle arrangement structure of double reheat boiler and reheat steam temperature control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936677A (en) * 2013-02-21 2015-09-23 三菱重工业株式会社 System and method for recovering gas containing CO2 and H2S
US9840675B2 (en) 2013-02-21 2017-12-12 Mitsubishi Heavy Industries, Ltd. System and method for recovering gas containing CO2 and H2S
CN107975817A (en) * 2017-12-07 2018-05-01 天津华赛尔传热设备有限公司 A kind of white absorption tower that disappears of flue gas heating
CN110404365A (en) * 2019-07-22 2019-11-05 陈杰 A kind of steel mill energy-saving vulcanizing tower
CN114110559A (en) * 2021-11-12 2022-03-01 东方电气集团东方锅炉股份有限公司 Smoke baffle arrangement structure of double reheat boiler and reheat steam temperature control method
CN114110559B (en) * 2021-11-12 2023-05-23 东方电气集团东方锅炉股份有限公司 Flue gas baffle arrangement structure of secondary reheating boiler and reheat steam temperature control method

Similar Documents

Publication Publication Date Title
WO2007116714A1 (en) Wet-type exhaust gas desulfurizer
PH12015501897B1 (en) Seawater flue-gas desulfurization device and method for operating same
JPWO2007080676A1 (en) Wet flue gas desulfurization equipment
JPH119956A (en) Absorption tower of wet flue gas desulfurizer
JP2002136835A (en) Two-chamber type wet flue gas desulfurization apparatus
JP2001327831A (en) Wet type exhaust gas desulfurizer
JP2002248318A (en) Wet flue gas desulfurizing apparatus
JP2002253925A (en) Wet type stack gas desulfurization apparatus
JP2011031209A (en) Wet type flue gas desulfurization apparatus
JP2003190739A (en) Wet-type flue-gas desulfurization equipment
JP2003103139A (en) Wet process flue gas desulfurizer
JPH07155536A (en) Wet type flue gas desulfurization apparatus
JPH11104449A (en) Spray absorption tower and wet flue gas desulfurization apparatus having the same
JP2001157820A (en) Two room type wet flue gas desulfurization equipment and desulfurization method therefor
JP2002153727A (en) Double chamber type wet flue gas desulfurization device
JP3904771B2 (en) Two-chamber wet flue gas desulfurization system
JP3519497B2 (en) Wet flue gas desulfurization equipment
JPH09206550A (en) Wet stack gas desulfurizer
JP3907873B2 (en) Two-chamber wet flue gas desulfurization system
JP2001017827A (en) Double-chamber wet type flue gas desulfurization apparatus and method
JPH10192646A (en) Horizontal flow and wet type flue gas desulfurization device with mist removing function
JP3338209B2 (en) Absorption tower of wet flue gas desulfurization unit
JP2005342721A (en) Two-chamber type wet flue gas desulfurization apparatus and method
JP2001017829A (en) Double-chamber wet type flue gas desulfurization apparatus and method
JP3333031B2 (en) Wet exhaust gas desulfurization method