JPH02264870A - Current detector - Google Patents

Current detector

Info

Publication number
JPH02264870A
JPH02264870A JP1086455A JP8645589A JPH02264870A JP H02264870 A JPH02264870 A JP H02264870A JP 1086455 A JP1086455 A JP 1086455A JP 8645589 A JP8645589 A JP 8645589A JP H02264870 A JPH02264870 A JP H02264870A
Authority
JP
Japan
Prior art keywords
light
voltage
current
detecting
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086455A
Other languages
Japanese (ja)
Inventor
Kazuo Shimooka
一夫 下岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1086455A priority Critical patent/JPH02264870A/en
Publication of JPH02264870A publication Critical patent/JPH02264870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To enable highly-precise and stable detection of a current flowing through a body to be detected, by providing an electrooptical effect element connecting two detecting terminals and a detecting means of a light transmitted through the element and by inputting a voltage between two points of the test specimen to the detecting terminals. CONSTITUTION:A detecting member 10 detects a current to be detected and outputs a light signal proportional to the current, and a processing member 20 sends a light to the detecting member 10 while receiving an output light from the detecting member 10 and subjecting it to an amplification processing. These detecting member 10 and processing member 20 are connected by an optical fiber 30. An electric field corresponding to a voltage between detecting terminals 16 and 17 to which a voltage between two points of a test specimen is inputted is generated in an electrooptical effect element 13 of the detecting member 10. Thereby an electrooptical effect element 13 of the detecting member 10. Thereby an electrooptical effect is produced in the element 13, a refractive index thereof is changed, and the intensity of a transmitted light in a magnitude proportional to the voltage between the terminals 16 and 17 changes in comparison with a state wherein said effect is not produced. Accordingly, a change in a voltage between transparent electrodes 13a and 13b of the element 13 can be detected by the transmitted light sent from a light-emitting element 21 of the processing member 20 to a light-sensing element 22 through a polarizer 11 and an analyzer 14.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は電流検出装置に関し、より詳細には、被検出
体に流れる電流をポッケルス効果、カー効果等の電気光
学効果を利用して検出する電流検出装置に関するもので
ある。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a current detection device, and more specifically, the present invention relates to a current detection device that detects a current flowing through a detected object by using electro-optic effects such as Pockels effect and Kerr effect. This invention relates to a current detection device.

〔従来の技術] 被溶接物に電流を流しながら溶接を行う電気溶接では、
作業中に接合部分に流れる電流値が変化すると溶接状態
が均一でなくなるため、被溶接物に流れる溶接電流を検
出して設定値と比較し、電流値の変動を電源側にフィー
ドバックすることにより、溶接電流が常に一定となるよ
うに制御している。
[Prior art] In electric welding, welding is performed while passing an electric current through the workpiece.
If the value of the current flowing through the joint part changes during work, the welding condition will not be uniform, so by detecting the welding current flowing through the workpiece, comparing it with the set value, and feeding back the fluctuation of the current value to the power source, The welding current is controlled so that it is always constant.

従来、この種の電流検出装置としては、電流検出素子と
してコイルあるいはホール効果素子を使用し、当該素子
に発生する電圧または電流を測定することにより電流を
検出する装置が知られている。しかし、この装置では、
電流検出素子に連なる電流検出用電気回路が電磁誘導の
影響を受けやすく、検出結果の信転性が極めて低いとい
う難点があった。
Conventionally, as this type of current detection device, a device is known that uses a coil or a Hall effect element as a current detection element and detects a current by measuring the voltage or current generated in the element. However, with this device,
The current detection electric circuit connected to the current detection element is susceptible to electromagnetic induction, and the reliability of the detection results is extremely low.

そこで、このような難点を解消した高周波溶接における
装置として、オープンパイプの両エツジに高周波電流を
供給する一対の導体リード構体に配設した光ファラデー
素子により、溶接電流によって被溶接物の近傍に発生す
る磁界の強さを検出し、当該磁界の強さに応じて強度変
調した光信号を光ファイバーを介して、前記導体リード
構体から離隔配置した溶接電流検出部に伝達するように
構成した溶接電流検出装置も提案されている(特開昭6
3−165083号公報参照)。この装置では、高周波
大電流による電磁誘導の影響をまったく受けずに溶接電
流を高精度に検出できるという利点を有するものである
Therefore, as a device for high-frequency welding that solves these difficulties, an optical Faraday element is installed in a pair of conductor lead structures that supply high-frequency current to both edges of an open pipe. a welding current detection device configured to detect the strength of a magnetic field and transmit an optical signal whose intensity is modulated according to the strength of the magnetic field to a welding current detection section spaced apart from the conductor lead structure via an optical fiber; A device has also been proposed (Japanese Unexamined Patent Application Publication No. 6
3-165083). This device has the advantage of being able to detect welding current with high precision without being affected by electromagnetic induction caused by high frequency large current.

〔発明が解決しようとする課題] しかし、前記従来の装置は、溶接電流により発生する磁
界を検出して溶接電流を測定するため、磁界が周囲温度
の変化によって変化すると、その影響が検出電流値に直
接現れ、検出結果が不安定である難点があった。
[Problems to be Solved by the Invention] However, since the conventional device measures the welding current by detecting the magnetic field generated by the welding current, if the magnetic field changes due to changes in the ambient temperature, the effect will be on the detected current value. The problem was that the detection results were unstable.

そこでこの発明は、被検出体に流れる電流により生起す
る電磁誘導現象や、周囲温度の変化による影響をまった
く受けることがなく、被検出体に流れる電流を高精度で
安定して検出できる電流検出装置を提供することを目的
とする。
Therefore, this invention has developed a current detection device that can stably detect the current flowing through a detected object with high precision without being affected by electromagnetic induction phenomena caused by the current flowing through the detected object or changes in ambient temperature. The purpose is to provide

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、この発明では、二つの検出端
子を接続した電気光学効果素子と、前記電気光学効果素
子の透過光を検出する手段とを設け、前記検出端子には
被検出体の二点間の電圧を入力するように構成したこと
を特徴とするものである。
In order to achieve the above object, the present invention includes an electro-optic effect element having two detection terminals connected to each other, and a means for detecting transmitted light of the electro-optic effect element, and the detection terminal has two detection terminals connected to each other. The device is characterized in that it is configured to input the voltage between points.

前記電気光学効果素子の入射側には偏光子を設け、透過
側には旋光子及び検光子を設けることができる。
A polarizer may be provided on the incident side of the electro-optic effect element, and an optical rotator and an analyzer may be provided on the transmission side.

また、前記電気光学効果素子は、ポッケルス効果、カー
効果等の電気光学効果を生起する素子であればよいが、
ポッケルス効果を生起する素子とするのが好ましい。
Further, the electro-optic effect element may be any element that produces an electro-optic effect such as Pockels effect or Kerr effect;
It is preferable to use an element that causes the Pockels effect.

ポッケルス効果を示す素子としては、例えばBSO,L
N等が挙げられる。
Examples of elements exhibiting the Pockels effect include BSO, L
Examples include N.

また、カー効果を示す素子としては、例えばコバルト(
GdCo)、単結晶Gd1(1,、多結晶BiGaYI
G等を使用できる。
In addition, as an element exhibiting the Kerr effect, for example, cobalt (
GdCo), single crystal Gd1 (1,, polycrystalline BiGaYI)
G etc. can be used.

[作用〕 以上のように構成すると、電気光学効果素子には雨検出
端子間の電圧に応じた電界が発生する。
[Function] With the above configuration, an electric field is generated in the electro-optic effect element according to the voltage between the rain detection terminals.

この電界によって当該素子内に電気光学効果が生起し、
電気光学効果素子の屈折率が変化するため、この状態で
当該素子に光を透過させると、前記効果が生起しない状
態に比べて透過光強度が変化する。この透過光強度の変
化の大きさは、前記電界の強さすなわち雨検出端子間の
電圧に比例している。
This electric field causes an electro-optic effect within the element,
Since the refractive index of the electro-optic effect element changes, when light is transmitted through the element in this state, the intensity of the transmitted light changes compared to a state where the effect does not occur. The magnitude of this change in transmitted light intensity is proportional to the strength of the electric field, that is, the voltage between the rain detection terminals.

そこで、電気光学効果素子の雨検出端子間に印加される
電圧変化を検出することにより、被検出体に流れる電流
を検出することができることになる。
Therefore, by detecting the voltage change applied between the rain detection terminals of the electro-optic effect element, it is possible to detect the current flowing through the object to be detected.

この発明では、電気光学効果素子内の電界を検出するの
で、温度による影響を受ける恐れはなく、また電磁誘導
により発生する磁界の影響を受けることもない。
In this invention, since the electric field within the electro-optic effect element is detected, there is no fear of being affected by temperature or by the magnetic field generated by electromagnetic induction.

〔実施例〕〔Example〕

以下、添付図面に基づいてこの発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第1図において、この発明の電流検出装置(1)は、被
検出電流を検出して電流に比例する光信号を出力する検
出部(10)と、当該検出部(10)に光を送ると共に
検出部(10)からの出力光を受けてこれを増幅・処理
する処理部(20)とから構成され、前記検出部(10
)と処理部(20)は二本の光ファイバー(30)によ
って接続されている。
In FIG. 1, a current detection device (1) of the present invention includes a detection section (10) that detects a current to be detected and outputs an optical signal proportional to the current, and a detection section (10) that sends light to the detection section (10). It is composed of a processing section (20) that receives the output light from the detection section (10), amplifies and processes it, and the detection section (10)
) and the processing section (20) are connected by two optical fibers (30).

前記検出部(10)は、第1図及び第2図に示すように
、4個の光学部品で構成されている。すなわち、光が送
られる上流側から下流側に向かって、偏光子(11)、
π/4旋光子(12)、電気光学効果素子(13)及び
検光子(14)が配置されており、これらの光学部品は
すべてセラミック類のケーシング(15)内に収容され
ている。
The detection section (10) is composed of four optical components, as shown in FIGS. 1 and 2. That is, from the upstream side where the light is sent to the downstream side, the polarizer (11),
A π/4 optical rotator (12), an electro-optic effect element (13), and an analyzer (14) are arranged, and all of these optical components are housed in a ceramic casing (15).

偏光子(11)には、処理部(20)に設けた発光素子
(21)から生じた自然光が、前記光ファイバー(30
)を通って入射され、偏光子(11)はこの自然光を直
線偏光に変換する作用を行う。この直線偏光は次にπ/
4旋光子(12)に入射される。
The polarizer (11) allows natural light generated from the light emitting element (21) provided in the processing section (20) to pass through the optical fiber (30).
), and the polarizer (11) functions to convert this natural light into linearly polarized light. This linearly polarized light is then π/
The light is incident on the four optical rotators (12).

π/4旋光子(12)は、入射した直線偏光にπ/4の
位相差を与えて直線偏光を円偏光に変換する作用をする
ものである。こうして変換された円偏光が、電気光学効
果素子(13)に入射される。
The π/4 optical rotator (12) functions to convert the linearly polarized light into circularly polarized light by giving a phase difference of π/4 to the incident linearly polarized light. The circularly polarized light thus converted is incident on the electro-optic effect element (13).

電気光学効果素子(13)は、電気光学効果を示す素子
であればいずれも適用可能であるが、この実施例では、
ポッケルス効果を示す薄板状のB50(Bi+zSiO
□。)単結晶から形成され、その対向する両面に透明電
極(13a) (13b)が形成しである。両電極(1
3a) (13b)には、それぞれ金属導線から成る検
出端子(16) (17)が接続されており、第4図に
示すように雨検出端子(16) (17)はケーシング
(15)の外部に突き出ている。
The electro-optic effect element (13) can be any element that exhibits an electro-optic effect, but in this example,
Thin plate-like B50 (Bi+zSiO) exhibiting the Pockels effect
□. ) It is formed from a single crystal, and transparent electrodes (13a) (13b) are formed on both opposing surfaces. Both electrodes (1
Detection terminals (16) and (17) made of metal conductors are connected to 3a) and (13b), respectively, and as shown in Fig. 4, rain detection terminals (16) and (17) are connected to the outside of the casing (15). sticking out.

両端子(16) (17)は、電流の検出時に一方を基
準電圧側に接触し、他方を被検出電流側に接触するもの
で、両端子(16) (17)間の電圧が電気光学効果
素子(13)の電極(13a) (13b)間に印加さ
れることになる。この電圧により、当該素子(13)内
に電界が発生する。
When detecting current, one of both terminals (16) (17) is in contact with the reference voltage side and the other with the detected current side, and the voltage between both terminals (16) (17) is due to the electro-optic effect. It will be applied between the electrodes (13a) and (13b) of the element (13). This voltage generates an electric field within the element (13).

BSO単結晶は、ポッケルス効果により、前記電極(1
3a) (13b)間に電圧を印加した状態ではその二
つの結晶軸例えば<oii>と〈OTl〉との間に屈折
率差が生じており、この単結晶に入射した円偏光が楕円
偏光に変換される。このとき、前記屈折率差は単結晶内
に生じる電界に比例するため、両電極(13a) (1
3b)間の電圧変化を透過光の屈折率変化に変換して、
単結晶の透過光によって検出することができることにな
る。
BSO single crystal has the above-mentioned electrode (1) due to the Pockels effect.
3a) When a voltage is applied between (13b), there is a refractive index difference between the two crystal axes, for example <oii> and <OTl>, and the circularly polarized light incident on this single crystal becomes elliptically polarized light. converted. At this time, since the refractive index difference is proportional to the electric field generated within the single crystal, both electrodes (13a) (1
Converting the voltage change between 3b) into a refractive index change of transmitted light,
This means that it can be detected by light transmitted through the single crystal.

検光子(14)は、電気光学効果素子(13)を透過し
て生じた楕円偏光を光強度に変換する作用をするもので
ある。検光子(I4)の透過光は、光ファイバー (3
0)を介して処理部(20)の受光素子(22)に送ら
れる。
The analyzer (14) functions to convert the elliptically polarized light generated by passing through the electro-optic effect element (13) into light intensity. The transmitted light of the analyzer (I4) is transmitted through the optical fiber (3
0) to the light receiving element (22) of the processing section (20).

電気光学効果素子(13)によって円偏光が楕円偏光に
変換されたときには、検光子(14)を透過した光の強
度が、入射光が円偏光のとき(ポッケルス効果が生じて
いないとき)を基準とすると、前記電極(13a) (
13b)間の電圧の大きさに比例して変動する。従って
、電気光学効果素子(13)の両電極(13a) (1
3b)間に印加される電圧によって、検光子(14)の
透過光の強度を変調させることができることになり、こ
の透過光強度を検出すれば、電気光学効果素子(13)
の両電極(13a) (13b)間の電圧すなわち被検
出電流を検出することができる。
When circularly polarized light is converted to elliptically polarized light by the electro-optic effect element (13), the intensity of the light transmitted through the analyzer (14) is based on the intensity when the incident light is circularly polarized light (when the Pockels effect does not occur). Then, the electrode (13a) (
13b) varies in proportion to the magnitude of the voltage between them. Therefore, both electrodes (13a) (1
3b) The intensity of the transmitted light of the analyzer (14) can be modulated by the voltage applied between them, and if this transmitted light intensity is detected, the electro-optic effect element (13)
The voltage between the two electrodes (13a) (13b), that is, the current to be detected can be detected.

入力電圧が交流の場合、直流光Pdcに交流光Pacが
重畳し、透過光強度Pは第5図に示すようになる。この
振幅変調の特性は次式で与えられる。
When the input voltage is AC, AC light Pac is superimposed on DC light Pdc, and the transmitted light intensity P becomes as shown in FIG. The characteristics of this amplitude modulation are given by the following equation.

P=Po (1+m) m=π・V/Vπ・f (V) f (V) =sin  (g (V)  ) / g
 (V)g (V) 〔(π・V/Vπ)”+(2θ。・a)2)I/1ここ
で、Poは基準光強度、mは変調度(=Pdc/Pac
)、VはBSO単結晶への印加電圧、■πは半波長電圧
と呼ばれる材料固有の定数、θ。は自然旋光能、dはB
SO単結晶の厚さである。
P=Po (1+m) m=π・V/Vπ・f (V) f (V) = sin (g (V) ) / g
(V) g (V) [(π・V/Vπ)”+(2θ.・a)2) I/1 Here, Po is the reference light intensity, m is the modulation degree (=Pdc/Pac
), V is the voltage applied to the BSO single crystal, ■π is a material-specific constant called the half-wave voltage, and θ. is the natural optical rotation power, d is B
This is the thickness of SO single crystal.

波長0.87μmの光をBSO単結晶に透過させる場合
、■πは6800V、θ。は10.56/ m mであ
る。
When light with a wavelength of 0.87 μm is transmitted through a BSO single crystal, ■π is 6800 V and θ. is 10.56/mm.

印加電圧Vが半波長電圧Vπより十分小さい範囲では、
変調度mは印加電圧■にほぼ比例する。
In the range where the applied voltage V is sufficiently smaller than the half-wavelength voltage Vπ,
The modulation degree m is approximately proportional to the applied voltage ■.

印加電圧■と出力電圧の関係を第6図に示す。FIG. 6 shows the relationship between the applied voltage (■) and the output voltage.

処理部(20)には、発光ダイオード等からなる発光素
子(21)とPINフォトダイオード等からなる受光素
子(22)が設けてあり、発光素子(21)により生じ
た光は一方の光ファイバー(30)を介して検出部(1
0)の偏光子(11)に送られる。また検出部(10)
の検光子(14)からの出力光は、他方の光ファイバー
(30)を介して受光素子(22)に送られ、ここで電
気信号に変換される。この電気信号は、その後、増幅器
(23)によって増幅され、演算器(24)に人力され
る。演算器(24)は、前記電気信号を解析して電流値
に変換する。
The processing section (20) is provided with a light emitting element (21) made of a light emitting diode etc. and a light receiving element (22) made of a PIN photodiode etc., and the light generated by the light emitting element (21) is transmitted to one optical fiber (30). ) through the detection unit (1
0) is sent to the polarizer (11). Also, the detection part (10)
The output light from the analyzer (14) is sent to the light receiving element (22) via the other optical fiber (30), where it is converted into an electrical signal. This electrical signal is then amplified by an amplifier (23) and input to a computing unit (24). A computing unit (24) analyzes the electrical signal and converts it into a current value.

演算器(24)の出力信号は、オシロスコープ等のCR
T表示器(25)及びレコーダー(26)に出力される
。こうして、被検出電流の確認及び記録を行うことがで
きる。
The output signal of the arithmetic unit (24) is a CR of an oscilloscope, etc.
It is output to the T display (25) and recorder (26). In this way, the current to be detected can be confirmed and recorded.

以上の構成・を持つ処理部(20)は、従来より公知の
装置を用いて任意に構成することができる。
The processing unit (20) having the above configuration can be arbitrarily configured using conventionally known devices.

また光ファイバー(30)としては、公知のものを使用
することができるが、マルチモードステップインデック
ス型石英ファイバーが好ましい。
Further, as the optical fiber (30), any known optical fiber can be used, but a multimode step index type quartz fiber is preferable.

次に、以上のように構成した電流検出装置(1)の使用
状態を、電気溶接機に適用した場合を例にとって説明す
る。
Next, the usage state of the current detection device (1) configured as described above will be explained, taking as an example the case where it is applied to an electric welding machine.

第3図及び第4図において、(31)はロボットの形式
とした電気溶接機であり、アーム(32)の先端に溶接
用トーチ(33)が取り付けである。アーム(32)に
は、溶接用トーチ(33)の近傍において、取付部材(
34)によって電流検出装置(1)の検出部(10)が
取り付けである。溶接用トーチ(33)の下方には、2
枚の板状の被溶接物(35)が配置しである。溶接用ト
ーチ(33)の内部には、絶縁体(38)によってトー
チ(33)に移動可能に支持された溶接棒(37)が貫
通しである。この溶接棒(37)は、十電極を兼ねるも
のである。なお溶接時には、被溶接物(35)自体が一
電極となる。
In FIGS. 3 and 4, (31) is an electric welding machine in the form of a robot, and a welding torch (33) is attached to the tip of an arm (32). The arm (32) has a mounting member (
34), the detection part (10) of the current detection device (1) is attached. Below the welding torch (33), there are 2
A plate-shaped object to be welded (35) is arranged. A welding rod (37) movably supported on the torch (33) by an insulator (38) passes through the interior of the welding torch (33). This welding rod (37) also serves as a ten electrode. Note that during welding, the object to be welded (35) itself serves as one electrode.

検出部(10)の二つの端子(16) (17)は、一
方の端子(16)が溶接用トーチ(33)の側壁に設け
た孔(39)を貫通して内部の溶接棒(37)に接して
あり、他方の端子(17)は被溶接物(35)の表面に
接しである。
Two terminals (16) and (17) of the detection part (10) have one terminal (16) that passes through a hole (39) provided in the side wall of the welding torch (33) and connects the welding rod (37) inside the welding torch (33). The other terminal (17) is in contact with the surface of the workpiece (35).

この状態で、溶接棒(37)と被溶接物(35)の間に
電圧を印加して溶接作業を開始すると、溶接棒(37)
は溶けて被溶接物(35)の開先に充填され、ビード(
36)が形成されて両方の被溶接物(35)が接合され
る。
In this state, when a voltage is applied between the welding rod (37) and the object to be welded (35) to start welding, the welding rod (37)
is melted and filled into the groove of the workpiece (35), forming a bead (
36) is formed and both objects to be welded (35) are joined.

このとき、溶接電流が溶接棒(37)と被溶接物(35
)に流れるが、被溶接物(35)に生じる電圧降下によ
り、溶接棒(37)から検出端子(16)を通じて検出
される電圧と、被溶接物(35)から検出端子(17)
を通じて検出される電圧の間には一定の差が生じている
。この電圧は、検出部(10)の電気光学効果素子(1
3)の電極(13a) (13b)に印加され、当該素
子(13)に電気光学効果を発生させるので、この効果
によって当該素子(13)を透過する光の強度が変化せ
しめられる。
At this time, the welding current flows between the welding rod (37) and the workpiece (35).
), but due to the voltage drop occurring across the workpiece (35), the voltage is detected from the welding rod (37) through the detection terminal (16) and from the workpiece (35) to the detection terminal (17).
There is a certain difference between the voltages detected through. This voltage is applied to the electro-optic effect element (1) of the detection unit (10).
3) is applied to the electrodes (13a) and (13b) to generate an electro-optic effect in the element (13), and this effect changes the intensity of the light that passes through the element (13).

この透過光強度の変化は処理部(20)に送られ、光電
変換及び増幅された後、演算器(24)で処理される。
This change in transmitted light intensity is sent to a processing unit (20), photoelectrically converted and amplified, and then processed by a computing unit (24).

この処理結果は表示器(25)で容易に確認することが
できる。従って、作業中の溶接電流の変化を容易にかつ
高精度で知ることができ、また必要に応じてレコーダー
(26)で記録することもできる。
This processing result can be easily confirmed on the display (25). Therefore, changes in welding current during work can be easily and highly accurately known, and can also be recorded with a recorder (26) if necessary.

なお以上の説明では、電流検出装置(1)を電気溶接機
(31)に適用した場合について説明したが、時間に対
する電流の変化を検出する用途であれば、他の任意の機
器にも通用できることは勿論である。
In the above explanation, the current detection device (1) was applied to an electric welding machine (31), but it can also be applied to any other device as long as it detects changes in current over time. Of course.

(発明の効果) 以上の説明から明らかなように、この発明の電流検出装
置(1)は、被検出電流の変動により発生する電磁誘導
現象や、周囲温度の変化による影響をまったく受けるこ
とがなく、被検出体の電流を高精度で安定して検出する
ことができるものである。
(Effects of the Invention) As is clear from the above explanation, the current detection device (1) of the present invention is completely unaffected by electromagnetic induction phenomena caused by fluctuations in the current to be detected and by changes in ambient temperature. , the current of the object to be detected can be detected stably with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の電流検出装置の一実施例
を示すもので、第1図はその全体構成を示すブロック図
、第2図は同装置の検出部の内部構成を示す説明図であ
る。 第3図及び第4図は同装置を溶接作業に適用した場合の
使用例を示すもので、第3図は概略説明図、第4図は第
3図の溶接トーチの近傍を拡大して示す部分拡大説明図
である。 第5図は、電気光学効果素子への入力電圧と透過光強度
の関係を示すグラフである。。 第6図は、電気光学効果素子への印加電圧と処理部の出
力電圧の関係を示すグラフである。 (1)・・・電流検出装置 (10)・・・検出部 (12)・・・π/4旋光子 (13a) (13b) −電極 (15)・・・ケーシング (20)・・・処理部 (22)・・・受光素子 (24)・・・演算器 (26)・・・レコーダー (31)・・・電気溶接機 ・(33)・・・溶接用トーチ (35)・・・被溶接物 (11)・・・偏光子 (13)・・・電気光学効果素子 (14)・・・検光子 (16) (17)・・・検出端子 (21)・・・発光素子 (23)・・・増幅器 (25)・・・表示器 (30)・・・光ファイバー (32)・・・アーム (34)・・・取付部材 (36)・・・ビード (37)・・・溶接棒 (38)・・・絶縁体 く39)・・・穴
1 and 2 show an embodiment of the current detection device of the present invention, FIG. 1 is a block diagram showing its overall configuration, and FIG. 2 is an explanation showing the internal configuration of the detection section of the device. It is a diagram. Figures 3 and 4 show an example of how the device is applied to welding work, with Figure 3 being a schematic illustration and Figure 4 showing an enlarged view of the vicinity of the welding torch in Figure 3. It is a partially enlarged explanatory diagram. FIG. 5 is a graph showing the relationship between the input voltage to the electro-optic effect element and the transmitted light intensity. . FIG. 6 is a graph showing the relationship between the voltage applied to the electro-optic effect element and the output voltage of the processing section. (1)... Current detection device (10)... Detection unit (12)... π/4 optical rotator (13a) (13b) - Electrode (15)... Casing (20)... Processing Part (22)... Light receiving element (24)... Arithmetic unit (26)... Recorder (31)... Electric welding machine (33)... Welding torch (35)... Target Welding object (11)...Polarizer (13)...Electro-optic effect element (14)...Analyzer (16) (17)...Detection terminal (21)...Light emitting element (23) ... Amplifier (25) ... Display (30) ... Optical fiber (32) ... Arm (34) ... Mounting member (36) ... Bead (37) ... Welding rod ( 38)...Insulator 39)...Hole

Claims (1)

【特許請求の範囲】 1、二つの検出端子を接続した電気光学効果素子と、前
記電気光学効果素子の透過光を検出する手段とを設けて
成り、前記検出端子には被検出体の二点間の電圧を入力
するように構成したことを特徴とする電流検出装置。 2、前記電気光学効果素子の入射側に偏光子を設け、透
過側に旋光子及び検光子を設けた請求項1に記載の電流
検出装置。 3、前記電気光学効果素子が、ポッケルス効果素子であ
る請求項1または2に記載の電流検出装置。
[Claims] 1. An electro-optic effect element having two detection terminals connected thereto, and a means for detecting transmitted light of the electro-optic effect element, the detection terminal being connected to two points on the object to be detected. A current detection device characterized in that it is configured to input a voltage between the two. 2. The current detection device according to claim 1, wherein a polarizer is provided on the incident side of the electro-optic effect element, and an optical rotator and an analyzer are provided on the transmission side. 3. The current detection device according to claim 1 or 2, wherein the electro-optic effect element is a Pockels effect element.
JP1086455A 1989-04-04 1989-04-04 Current detector Pending JPH02264870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086455A JPH02264870A (en) 1989-04-04 1989-04-04 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086455A JPH02264870A (en) 1989-04-04 1989-04-04 Current detector

Publications (1)

Publication Number Publication Date
JPH02264870A true JPH02264870A (en) 1990-10-29

Family

ID=13887417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086455A Pending JPH02264870A (en) 1989-04-04 1989-04-04 Current detector

Country Status (1)

Country Link
JP (1) JPH02264870A (en)

Similar Documents

Publication Publication Date Title
CA1199068A (en) Voltage and electric field measuring device using light
EP0210716B1 (en) Drift compensation technique for a magneto-optic current sensor
EP0083196B1 (en) Voltage and electric field measuring device using light
KR100243779B1 (en) Electric field sensor
US6952107B2 (en) Optical electric field or voltage sensing system
JP4585740B2 (en) Magnetic recording / reproducing device
JPH0221272A (en) Method and apparatus for amount of electricity/ magnetism by light
JPH04332878A (en) Electromagnetic field intensity measuring device
US6285182B1 (en) Electro-optic voltage sensor
US4956607A (en) Method and apparatus for optically measuring electric current and/or magnetic field
US4982151A (en) Voltage measuring apparatus
JP2810976B2 (en) Electrical signal measuring method and apparatus
JPH02264870A (en) Current detector
JPH0721512B2 (en) Optical parts for optical sensors
US5012183A (en) Electrooptic effect element and electrical signal waveform measuring apparatus using the same
Li et al. Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate
JP3130187B2 (en) Electric field detector
Koo et al. An analysis of a fiber-optic magnetometer with magnetic feedback
JPH0386382A (en) Welding inspection instrument for resistance welding
JPH02143173A (en) Optical dc transformer
JPS5935156A (en) Optical current transformer
JPS63133068A (en) Apparatus for detecting voltage of circuit
JPH09251036A (en) Optical electric-field sensor and transformer for optical instrument using sensor thereof
JPH01276074A (en) Optical demodulator
JPH11174089A (en) Probe