JPH02264733A - Preparation of 2,6-dimethylnaphthalene - Google Patents

Preparation of 2,6-dimethylnaphthalene

Info

Publication number
JPH02264733A
JPH02264733A JP8575089A JP8575089A JPH02264733A JP H02264733 A JPH02264733 A JP H02264733A JP 8575089 A JP8575089 A JP 8575089A JP 8575089 A JP8575089 A JP 8575089A JP H02264733 A JPH02264733 A JP H02264733A
Authority
JP
Japan
Prior art keywords
dimethylnaphthalene
oil
dmn
raw material
1ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8575089A
Other languages
Japanese (ja)
Other versions
JP2649412B2 (en
Inventor
Kazuhito Tate
楯 一仁
Yoichi Sasaki
洋一 佐々木
Teruhiko Sasaki
佐々木 照彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Mitsubishi Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Oil Co Ltd filed Critical Mitsubishi Oil Co Ltd
Priority to JP8575089A priority Critical patent/JP2649412B2/en
Publication of JPH02264733A publication Critical patent/JPH02264733A/en
Application granted granted Critical
Publication of JP2649412B2 publication Critical patent/JP2649412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To readily and profitably prepare the subject highly pure compound substantially not containing impurities such as sulfur and useful as a raw material for polyethylene naphthalate by subjecting a heavy naphtha having a specific amount of sulfur content, etc., as a raw material to a catalytic reformation reaction. CONSTITUTION:A heavy naphtha containing 5-20wt.% of a distillate having boiling points of 170-210 deg.C as a heavy oil distillate, a sulfur content of <=1ppm and a nitrogen content of <=1ppm is subjected to a catalytic reformation reaction to prepare a catalytically reformed oil having a sulfur content of <=1ppm and a nitrogen content of <=1ppm, which is mixed with 10 volume parts of a mixture of methanol and 1-butanol per volume part of the prepared 2,6- dimethylnaphthalene-containing oil and cooled at -5 to 5 deg.C to separate the solid 2,6-dimethylnaphthalene useful as a raw material for high quality engineering plastics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリエチレンナフタレートの原料として有用
な2.6−ジメチルナフタレンの製造に関するものであ
る。(以下、ジメチルナフタレンをDMNと略記する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to the production of 2,6-dimethylnaphthalene, which is useful as a raw material for polyethylene naphthalate. (Hereinafter, dimethylnaphthalene will be abbreviated as DMN.

) (従来技術及び発明が解決しようとする課題)ポリエチ
レンナフタレートはエンジニアリングプラスチックとし
て、耐熱性が高い、破断強度が強い2等の特徴があり、
新規素材として注目されているが、現在はその原材料の
ひとつである高純度の2.[1−D M Nの入手が困
難なため開発は停滞している。
) (Prior art and problems to be solved by the invention) As an engineering plastic, polyethylene naphthalate has the characteristics of high heat resistance and high breaking strength.
It is attracting attention as a new material, and currently one of its raw materials, high purity 2. [Due to difficulty in obtaining 1-DMN, development has stalled.

2.6−D M Nは沸点262℃、融点112℃の炭
化水素であり、石油または石炭タール系の各種留分中に
他のDMN異性体との混合物として含まれている。そし
てその濃縮2分離、精製1等は既に種々検討されている
。たとえば、コールタールの分留によって得られる留分
中にはDMNが含まれているが、一般に石炭系留分中に
は硫黄などのへテロ原子が多量に含まれており、たとえ
ば特開昭62−230735号、特開昭62−2H73
6号、特開昭62−2:10737号、に見られるよう
に炭化水素化合物を利用する場合は脱硫あるいは、脱窒
素が重要な課題になってくる。また、石油の接触分解油
にもDMNが含有されているが、この留分にも通常数百
pp■硫黄分が含有されている。しかも、これらコール
タール系あるいは接触分解油系のDMN留分に含まれて
いる硫黄分、窒素分はいずれもヘテロ環構造をとる化合
物として含有されているものが主体であり、共存する2
,6−D M Nに影響することなく合成高分子の原料
となる2,6−D M Nの品質を満足するような脱硫
、脱窒素を行なうことは容易ではない。
2.6-DMN is a hydrocarbon with a boiling point of 262°C and a melting point of 112°C, and is contained in various petroleum or coal tar-based fractions as a mixture with other DMN isomers. Various methods such as concentration 2 separation and purification 1 have already been studied. For example, the fraction obtained by fractional distillation of coal tar contains DMN, but coal-based fractions generally contain large amounts of heteroatoms such as sulfur. No.-230735, JP-A-62-2H73
No. 6, JP-A No. 62-2: 10737, desulfurization or denitrification becomes an important issue when using hydrocarbon compounds. Further, catalytic cracking oil of petroleum also contains DMN, but this fraction also usually contains several hundred ppm of sulfur. Moreover, the sulfur and nitrogen content contained in these coal tar-based or catalytic cracked oil-based DMN fractions are mainly contained as compounds with a heterocyclic structure, and two coexisting two
, 6-DM N It is not easy to perform desulfurization and denitrification that satisfies the quality of 2,6-DM N, which is a raw material for synthetic polymers, without affecting 2,6-DM N.

しかるに、2,6−D M Nを出発原料としてポリエ
チレンナフタレートを製造する際には不純物として含有
される硫黄分、窒素分は製品の着色あるいは製品の物性
、副生成物の生成など、悪影響を与えるため充分精製さ
れた高純度2.6−D M Nであることが要求される
。一方、石油工業においてオクタン価の高い自動車用の
ガソリンの生産、および石油化学用原料となる芳香族の
生産にナフサの接触改質反応が広く採用されている。し
かし、この反応は種々複雑な反応で構成されるが、その
主反応は炭素数8から10の炭化水素を原料として環化
脱水素反応、異性化反応、水素化分解反応を行ない芳香
族化合物を製造するのが目的である。
However, when producing polyethylene naphthalate using 2,6-DMN as a starting material, the sulfur and nitrogen content contained as impurities can have an adverse effect on the coloring of the product, the physical properties of the product, and the formation of by-products. It is required that highly purified 2.6-D M N be sufficiently purified in order to give a high purity 2.6-DMN. On the other hand, in the petroleum industry, the catalytic reforming reaction of naphtha is widely used in the production of gasoline for automobiles with a high octane number and in the production of aromatics used as raw materials for petrochemicals. However, this reaction consists of various complex reactions, but the main reaction is to perform cyclodehydrogenation reaction, isomerization reaction, and hydrogenolysis reaction using hydrocarbons with 8 to 10 carbon atoms as raw materials to produce aromatic compounds. The purpose is to manufacture.

通常、重質な芳香族はど副反応として触媒の活性低下の
原因となるコーク生成反応が起こり易く、炭素数11以
上の場合は急激な触媒の活性低下を引き起こし易いため
、DMNの原料となりうる炭素数it以上の炭化水素は
用いられない。
Normally, heavy aromatics tend to cause a coke formation reaction as a side reaction, which causes a decrease in catalyst activity.If the number of carbon atoms is 11 or more, it tends to cause a sudden decrease in catalyst activity, so they can be used as raw materials for DMN. Hydrocarbons having a carbon number of more than it are not used.

一般にナフサの接触改質としては、沸点70〜170℃
の留分が利用され、ガソリンの材源またはベンゼン・キ
シレン等の石油化学用芳香族の製造に利用されている。
Generally, for catalytic reforming of naphtha, the boiling point is 70 to 170℃.
The fraction is used as a source of gasoline or in the production of aromatics for petrochemicals such as benzene and xylene.

しかし、この通常の沸点範囲のナフサを原料とした場合
、生成してく、るDMN留分は極く少量であり、DMN
製造原料さしては不適当である。しかし、沸点の高い留
分は上述の如く改質反応の際、副生ずる炭素質のために
触媒の活性維持が難しくなることが知られている。
However, when naphtha with a normal boiling point range is used as a raw material, the DMN fraction produced is extremely small;
It is not suitable as a manufacturing raw material. However, as mentioned above, it is known that it is difficult to maintain the activity of the catalyst in a high-boiling-point fraction due to carbonaceous substances produced as by-products during the reforming reaction.

このように、従来石油留分を原料としてDMNを工業的
に製造することは不可能であった。
Thus, conventionally it has been impossible to industrially produce DMN using petroleum fractions as raw materials.

上記やような事実に鑑み、鋭意検討した結果、成る沸点
留分を加えることにより、接触改質法により触媒に影響
を与えることなく、DMNの生成を著しく増加できるこ
とを見いだした。
In view of the above-mentioned facts, as a result of intensive studies, it was discovered that by adding the following boiling point fractions, the production of DMN can be significantly increased by the catalytic reforming method without affecting the catalyst.

一方、DMHには10種類の異性体があるが、石油系原
料油2石炭タール系原料油中には、これらが全て混在し
ており、その物理的及び化学的性状が接近しているため
、分離は極めて困難である。
On the other hand, there are 10 types of isomers of DMH, but all of these are mixed in petroleum-based feedstock oil and coal tar-based feedstock oil, and their physical and chemical properties are similar. Separation is extremely difficult.

従来、分離方法としては精密蒸留法が行なわれ、近時、
錯体形成による分離法(例えば特公昭47−29894
号)、圧力晶析法(特開昭63−275528号)が研
究されている。しかし、精密蒸留法は分離が不十分であ
り、錯体形成法は操作の煩雑さから、圧力晶析法は性能
面から、ある程度以上の2,6−D MNの濃度を有す
るものでなければ適用できなかった。このような事実に
対処すべく種々検討した結果、特定の混合比のアルコー
ルを使用することにより、2,6−D M Nを選択的
に抽出濃縮できることを見出した。本発明を利用するこ
とにより、又さらに、以後の工程と組合わせることによ
り容易に高純度2.6−D M Nを製造することが可
能となる。
Traditionally, precision distillation has been used as a separation method, and recently,
Separation method by complex formation (for example, Japanese Patent Publication No. 47-29894)
(No.) and pressure crystallization method (Japanese Unexamined Patent Publication No. 63-275528) have been studied. However, the precision distillation method does not provide sufficient separation, the complex formation method is complicated to operate, and the pressure crystallization method is not suitable for performance unless the concentration of 2,6-D MN exceeds a certain level. could not. As a result of various studies to deal with this fact, it was discovered that 2,6-DMN can be selectively extracted and concentrated by using alcohol at a specific mixing ratio. By utilizing the present invention, and further by combining it with subsequent steps, it becomes possible to easily produce highly purified 2.6-DMN.

(課題を解決するための手段) 本発明は、ある一定割合の重質留分を含む重質ナフサの
接触改質により、製造したDMN留分を用いることを特
徴とし、これから2.6−D M Nを分離することに
より、硫黄分、窒素分等の不純物をほとんど含まない高
純度2.6−D M Nの製造方法を提供するものであ
る。
(Means for Solving the Problems) The present invention is characterized by using a DMN fraction produced by catalytic reforming of heavy naphtha containing a certain proportion of heavy fraction, and from which 2.6-D The present invention provides a method for producing high-purity 2.6-D MN that contains almost no impurities such as sulfur and nitrogen by separating MN.

即ち、重質留分を含むナフサを接触改質することにより
DMNを含有する留分を得て、これから2.6−D M
 Nを分離する方法において、原料DMN含有油として
硫黄分1 ppff1以下、窒素分lppm以下の石油
系接触改質油を用いることを特徴とする2、6−DMN
の製造方法である。即ち、石油系重質ナフサ分としては
沸点170〜210℃の留分を30容量%以下、好まし
くは5〜20容量%含み、かつ硫黄分1.ppm以下、
窒素分1 ppm以下、さらに好ましくは、いずれもが
0.5ppm以下を含む重質ナフサを原料とし、これを
通常の方法で接触改質するのがよい。
That is, a DMN-containing fraction is obtained by catalytically reforming naphtha containing a heavy fraction, and 2.6-D M
A method for separating N, characterized in that a petroleum-based catalytically reformed oil having a sulfur content of 1 ppff1 or less and a nitrogen content of 1 ppm or less is used as the raw material DMN-containing oil.
This is a manufacturing method. That is, the petroleum-based heavy naphtha content contains a fraction with a boiling point of 170 to 210°C at 30% by volume or less, preferably 5 to 20% by volume, and has a sulfur content of 1. ppm or less,
It is preferable to use heavy naphtha as a raw material containing 1 ppm or less of nitrogen, more preferably 0.5 ppm or less, and catalytically reform this using a conventional method.

この際、接触改質反応は、例えば市販のアルミナ担持白
金触媒、あるいは白金レニウム触媒などを用い、温度4
50〜550℃、圧力5〜40kg/cd。
At this time, the catalytic reforming reaction is carried out using, for example, a commercially available platinum catalyst supported on alumina or a platinum rhenium catalyst at a temperature of 4.
50-550°C, pressure 5-40 kg/cd.

水素/炭化水素モル比2〜7.液空間速度0.5〜4h
r”で行なわれる。本反応によりDMN含有量は通常の
場合に比較し10倍以上に増加する。
Hydrogen/hydrocarbon molar ratio 2-7. Liquid space velocity 0.5~4h
This reaction increases the DMN content by more than 10 times compared to the usual case.

2.6−D M Nの分離の方法は、特に限定されるも
のではないが、本発明の目的を達成し得る範囲内で任意
に選択することができる。
The method for separating 2.6-D M N is not particularly limited, but can be arbitrarily selected within the range that can achieve the object of the present invention.

例えば、反応生成物は蒸留により沸点200℃未満と2
00℃以上の留分に分け、前者は通常のガソリン財源、
あるいは芳香族製造原料として利用される。  200
℃以上の留分けDMN原料として用いる。
For example, the reaction product can be distilled to a boiling point of less than 200°C and 200°C.
Divided into fractions above 00°C, the former is used as a regular gasoline source,
Alternatively, it is used as a raw material for producing aromatics. 200
It is used as a raw material for DMN distilled at temperatures above ℃.

このようにして得た200℃以上の留分を、還流比10
ノ1〜50/1.10ma+Hgから常圧下で精密蒸留
し、D M N 75重量%以上、好ましくは85重量
%以上の留分を得る。通常この中には2,6−D M 
Nが5〜30重量%含まれている。尚、D M N 7
5重量%未満では次の分離操作が煩雑となる。
The thus obtained fraction at a temperature of 200°C or higher is heated at a reflux ratio of 10
Precise distillation is performed under normal pressure from No. 1 to 50/1.10 ma+Hg to obtain a fraction having a D M N of 75% by weight or more, preferably 85% by weight or more. Usually this includes 2,6-DM
It contains 5 to 30% by weight of N. Furthermore, D M N 7
If it is less than 5% by weight, the subsequent separation operation will be complicated.

DMNを濃縮した留分を10℃以下、好ましくは−5〜
5℃に冷却し、2,6−D M Nを主体とする結晶を
分離する。結晶としてのD M Nの回収を考えれば、
低温に冷却すればする程それだけ回収率は向上するが、
結晶となるDMNが増えるだけ2,6−DMNの選択性
は悪化する。
The DMN-concentrated fraction is heated to 10°C or lower, preferably from -5 to
It is cooled to 5° C. and crystals mainly composed of 2,6-DM N are separated. Considering the recovery of D M N as a crystal,
The lower the temperature, the higher the recovery rate.
As the amount of DMN crystallized increases, the selectivity of 2,6-DMN deteriorates.

しかしながら、本発明によれば成る特定の溶媒を使用す
ることにより、2,6−D M Nの回収率および選択
率を上げることができる。
However, by using specific solvents according to the present invention, the recovery and selectivity of 2,6-DM N can be increased.

この方法によりば、接触改質油に限らず、2,6−DM
Nを5〜70重量%含有する液状炭化水素であれば、例
えば分解系油2石炭タール系油でも適用可能である。
According to this method, not only catalytic reformed oil but also 2,6-DM
As long as it is a liquid hydrocarbon containing 5 to 70% by weight of N, for example, cracked oil, coal tar oil, etc. can be used.

使用する溶媒としては、アルコール類が良く、例えばメ
タノール、エタノール、プロパツール、ブタノールある
いはエチレングリコールを単独、又は、混合し、用いる
ことができる。しかし、−射的にDMNはアルコールに
対しある程度溶解し、なお且つアルコールのアルキル基
の長い程溶解度が高い。
The solvent to be used is preferably alcohol, such as methanol, ethanol, propatool, butanol or ethylene glycol, which may be used alone or in combination. However, shotically, DMN is soluble in alcohol to some extent, and the longer the alkyl group of the alcohol, the higher the solubility.

従って、回収率に関しては、メタノールを少量使用する
のが良いことになるが、メタノールと他のアルコールの
混合アルコールを用いることにより、2,6−D M 
Nの回収率2選択率、共に向上することを見出した。
Therefore, in terms of recovery rate, it is better to use a small amount of methanol, but by using a mixed alcohol of methanol and other alcohols, 2,6-DM
It has been found that both the N recovery rate and the selectivity are improved.

このうちでも、メタノールと1−ブタノールの混合液を
溶媒として用いた場合には特異的に効果がある。メタノ
ールと1−ブタノールの混合比は、1−ブタノール1容
量部に対しメタノール1〜lO倍容量部が用いられ、特
に、3〜6容量部の混合比が好ましい。この混合アルコ
ールをDMN溶液1容量部に対し2.1〜10容量部、
特に、3〜B容量部を加えることにより、2.6−D 
M Nの回収率及び2゜8−D M Nの濃度を高める
ことができる。
Among these, a mixture of methanol and 1-butanol is particularly effective when used as a solvent. The mixing ratio of methanol and 1-butanol is 1 to 10 parts by volume of methanol to 1 part by volume of 1-butanol, and a mixing ratio of 3 to 6 parts by volume is particularly preferred. 2.1 to 10 parts by volume of this mixed alcohol per 1 part by volume of DMN solution,
In particular, by adding 3 to B capacitance parts, 2.6-D
The recovery rate of M N and the concentration of 2°8-D M N can be increased.

成るいは又、ゼオライトを用いた吸着分離により2,6
−DMNを高度に濃縮することもできる。ゼオライトは
金属イオンで置換したものを用いてもよい。
Alternatively, 2,6
- DMN can also be highly concentrated. Zeolite substituted with metal ions may also be used.

このようにして、2.6−DMNの濃度を70〜90重
量%に濃縮した留分から種々の方法で高純度2,6−D
MNを分離することができる。
In this way, high purity 2,6-D can be obtained by various methods from the fraction concentrated to a concentration of 2,6-DMN of 70 to 90% by weight.
MN can be separated.

例えば、濃縮の段階で用いた溶媒を使用し再度結晶化を
行なうことにより2.6−D M NO高純度化が可能
であり、或いは、圧力晶析をたとえば、温度80〜12
0℃、圧力500〜2000Kg/c−で行なうことに
より高純度2,6−D M Nを得ることができる。
For example, it is possible to highly purify 2.6-D M NO by performing crystallization again using the solvent used in the concentration step, or by performing pressure crystallization at a temperature of 80 to 12
High purity 2,6-DMN can be obtained by carrying out the reaction at 0°C and a pressure of 500 to 2000 kg/c-.

或いは又、錯体を形成することにより2.6−D M 
Nの分離精製を行なってもよい。例えば、メタニトロ安
息香酸、 2.4.7−ドリニトロー9−フルオレノン
(以下、TNFと略記する。)、ビスチアジアゾロテト
ラシアノキノジメタン、無水トリメリット酸、無水ピロ
メリット酸等と、2,6−D M Nが選択的に錯体を
形成することを利用して2.6−D M Nの稀薄溶液
からの濃縮あるいは、2.6−D M N高濃度溶液か
ら高純度2,6−D M Nの分離あるいは精製を。
Alternatively, by forming a complex, 2.6-D M
N may be separated and purified. For example, metanitrobenzoic acid, 2.4.7-dolinitro-9-fluorenone (hereinafter abbreviated as TNF), bisthiadiazolotetracyanoquinodimethane, trimellitic anhydride, pyromellitic anhydride, etc. Utilizing the fact that 6-DMN selectively forms complexes, it is possible to concentrate 2.6-DMN from a dilute solution or to obtain highly purified 2,6-DMN from a highly concentrated 2.6-DMN solution. Separation or purification of D M N.

行なう。Let's do it.

このようにして、硫黄分、窒素分、いずれもlppm以
下かつ純度98.5重量%以上の高純度2,6−DMN
を得ることができる。
In this way, high purity 2,6-DMN with both sulfur content and nitrogen content of 1 ppm or less and a purity of 98.5% by weight or more is produced.
can be obtained.

(実施例) 以下に本発明を実施例により説明するが、本発明はこれ
に限定されるものではない。
(Example) The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

(参考例) 本発明に用いる重質ナフサの製造方法を以下に示す。(Reference example) The method for producing heavy naphtha used in the present invention is shown below.

直留ナフサ沸点70〜220℃(硫黄分3801)pl
l =窒素分1.5ppm )を市販のアルミナ担持コ
バルトモリブデン触媒を用い、温度320℃、圧力20
Kg/ d 。
Straight-run naphtha boiling point 70-220℃ (sulfur content 3801) pl
l = nitrogen content 1.5 ppm) using a commercially available alumina-supported cobalt molybdenum catalyst at a temperature of 320°C and a pressure of 20°C.
Kg/d.

水素/炭化水素モル比300scf/ BM 、液空間
速度3.0hr−1の条件で水素化精製した。生成油の
硫黄分は0.3ppm 、窒素分は0.4ppmであっ
た。当該精製ナフサを蒸留し沸点範囲の異なる3種類の
試料を調整した。試料A、B、Cの性状は第1表に示す
Hydrorefining was carried out under the conditions of a hydrogen/hydrocarbon molar ratio of 300 scf/BM and a liquid hourly space velocity of 3.0 hr-1. The sulfur content of the produced oil was 0.3 ppm, and the nitrogen content was 0.4 ppm. The purified naphtha was distilled to prepare three types of samples with different boiling point ranges. The properties of samples A, B, and C are shown in Table 1.

第  1 表 実施例1 参考例に示した試料Aにつき、市販アルミナ担持白金触
媒を用い、温度495℃、圧力10.5Kg/ cd 
Table 1 Example 1 For sample A shown in the reference example, a commercially available platinum catalyst supported on alumina was used at a temperature of 495°C and a pressure of 10.5 kg/cd.
.

水素/炭化水素モル比4.0.液空間速度0,6hr−
’の条件で接触改質反応を実施した。
Hydrogen/hydrocarbon molar ratio 4.0. Liquid space velocity 0.6hr-
A catalytic reforming reaction was carried out under the following conditions.

接触改質の生成油の収率は第2表に示す。The yield of oil produced by catalytic reforming is shown in Table 2.

当該接触改質油を原料として精密蒸留を行なった。理論
段数30段の蒸留塔を用い、沸点210℃までは常圧、
還流比lO/1で留出させた。その後、この釜残油を理
論段数100段の蒸留塔に張込み、塔頂圧力10hmH
g 、還流比30/1で常圧換算254〜266℃の留
分(第4表の留分A)を得た。これは、釜残油の14重
量%に相当する。この留分中のDMN含有量は85.0
重量%であり、2,6−D M N含有量は12.0重
量%で、2,6−D M N / 2.7−D M N
の比は1.1あつた。本留出油100gにメタノール(
JIS K8891 )  500gと1−ブタノール
(JIS K8810 )100gの混合アルコールを
加え0℃に冷却した。生じた結晶を吸引ろ過分離した。
Precision distillation was performed using the catalytically reformed oil as a raw material. Using a distillation column with 30 theoretical plates, normal pressure up to the boiling point of 210°C,
Distillation was carried out at a reflux ratio of 1O/1. After that, this pot residual oil was charged into a distillation column with 100 theoretical plates, and the column top pressure was 10hmH.
A fraction (fraction A in Table 4) having a temperature of 254 to 266°C in terms of normal pressure was obtained at a reflux ratio of 30/1. This corresponds to 14% by weight of the pot residue. The DMN content in this fraction is 85.0
% by weight, and the 2,6-DMN content is 12.0% by weight, and the 2,6-DMN/2.7-DMN content is 12.0% by weight.
The ratio was 1.1. Methanol (
A mixed alcohol of 500 g of JIS K8891) and 100 g of 1-butanol (JIS K8810) was added, and the mixture was cooled to 0°C. The resulting crystals were separated by suction filtration.

2,6−D M Nの回収率は70重量%有り、結晶の
組成は2,6−D M N 71.2重量%、 2.7
−DMN 9.5重量%、その他19,3重量%であっ
た。この結晶5gを採り、ジクロロメタンに溶解し、こ
れにT N F 80hgを添加し、室温にて5時間混
合撹拌した。生成した沈澱物をろ別しn−ヘキサンで洗
浄後、減圧乾燥した。この錯体を含む固体を15avH
gの減圧下115〜120℃で加熱分解し、発生ガスを
冷却して分離油を回収した。
The recovery rate of 2,6-DM N was 70% by weight, and the composition of the crystals was 2,6-DM N 71.2% by weight, 2.7
-DMN was 9.5% by weight, and others were 19.3% by weight. 5 g of this crystal was taken and dissolved in dichloromethane, 80 hg of TN F was added thereto, and the mixture was mixed and stirred at room temperature for 5 hours. The generated precipitate was filtered, washed with n-hexane, and then dried under reduced pressure. The solid containing this complex was
The mixture was thermally decomposed at 115 to 120° C. under a reduced pressure of 1.5 g, and the generated gas was cooled to recover separated oil.

分離油をガスクロマトグラフにより分析した結果、2,
6−D M N 98,6重量%、 2.7−DMN 
0.6重量%、その他0.6重量%であった。
As a result of analyzing the separated oil by gas chromatography, 2.
6-DMN 98.6% by weight, 2.7-DMN
0.6% by weight, and 0.6% by weight of others.

実施例2 参考例に示した試料Bを用いて実施例1と同様に接触改
質を実施した。生成油性状は第2表に示す。
Example 2 Catalytic modification was carried out in the same manner as in Example 1 using Sample B shown in Reference Example. The properties of the produced oil are shown in Table 2.

更に、この改質油をもとに実施例1と同様な操作を行な
い、純度98.9重量%の2,6−D M Nを得た。
Furthermore, the same operation as in Example 1 was performed using this reformed oil to obtain 2,6-DMN with a purity of 98.9% by weight.

比較例1 参考例に示した試料Cを用いて実施例1と同じ条件で接
触改質を実施した。生成油性状は第2表に示すとおりD
MN含有量が本発明の実施例の1/10以下であった。
Comparative Example 1 Catalytic modification was carried out under the same conditions as in Example 1 using Sample C shown in Reference Example. The properties of the produced oil are D as shown in Table 2.
The MN content was 1/10 or less of the example of the present invention.

第  2 表 る。Part 2 table Ru.

第  3 表 比較例2.3 石油系接触分解油の沸点250〜275℃の留分を、市
販のアルミナ担持コバルトモリブデン触媒を用いて水素
化精製した。結果を第3表に示す。
Table 3 Comparative Example 2.3 A fraction of petroleum-based catalytic cracking oil with a boiling point of 250 to 275°C was hydrorefined using a commercially available alumina-supported cobalt-molybdenum catalyst. The results are shown in Table 3.

結果から明らかなように、硫黄分、窒素分合有量は低下
しているが、同時にD M Nも低下してい比較例4.
5 実施例1で製造した接触改質油を実施例1と同様な方法
で精密蒸留し、DMNを主成分とする留分(留分A)を
得た。これを原料とし、溶媒使用比を変えて0℃におけ
る結晶化分離を行なった。
As is clear from the results, the combined amounts of sulfur and nitrogen decreased, but at the same time, D M N also decreased.
5 The catalytically reformed oil produced in Example 1 was precision distilled in the same manner as in Example 1 to obtain a fraction containing DMN as the main component (Fraction A). Using this as a raw material, crystallization separation was performed at 0° C. by changing the ratio of solvent used.

結果を第4表に示す。The results are shown in Table 4.

第  4  表 ることができる。Table 4 can be done.

Claims (1)

【特許請求の範囲】 1 重質油留分として沸点170〜210℃の留分を5
〜20重量%含み、かつ硫黄分1ppm以下、窒素分1
ppm以下の重質ナフサを接触改質反応を行ない、硫黄
分1ppm以下、窒素分1ppm以下の接触改質油を得
、当該接触改質油から2,6−ジメチルナフタレンを分
離することを特徴とする2,6−ジメチルナフタレンの
製造方法。 2 2,6−ジメチルナフタレン含有油1容量部に対し
てメタノールと1−ブタノールの混合アルコールを1〜
10倍容量部添加し、−5〜5℃に冷却して、生成する
固体を分離することを特徴とする2,6−ジメチルナフ
タレンの濃縮方法。 3 当該接触改質油から2,6−ジメチルナフタレンを
濃縮する方法として2,6−ジメチルナフタレン5〜2
0重量%含有油1容量部にメタノールと1−ブタノール
の混合アルコールを1〜10倍容量部添加し、−5〜5
℃に冷却して生成する固体を分離することを特徴とする
特許請求の範囲第1項記載の2,6−ジメチルナフタレ
ンの製造方法。
[Claims] 1. 5 fractions with a boiling point of 170 to 210°C as heavy oil fractions.
Contains ~20% by weight, sulfur content 1 ppm or less, nitrogen content 1
ppm or less heavy naphtha is subjected to a catalytic reforming reaction to obtain a catalytically reformed oil with a sulfur content of 1 ppm or less and a nitrogen content of 1 ppm or less, and 2,6-dimethylnaphthalene is separated from the catalytically reformed oil. A method for producing 2,6-dimethylnaphthalene. 2 1 to 1 volume part of 2,6-dimethylnaphthalene-containing oil mixed alcohol of methanol and 1-butanol
A method for concentrating 2,6-dimethylnaphthalene, which comprises adding 10 parts by volume, cooling to -5 to 5°C, and separating the produced solid. 3 As a method for concentrating 2,6-dimethylnaphthalene from the catalytic reformed oil, 2,6-dimethylnaphthalene 5-2
1 to 10 times the volume part of mixed alcohol of methanol and 1-butanol is added to 1 volume part of oil containing 0% by weight, and -5 to 5% by volume is added.
2. A method for producing 2,6-dimethylnaphthalene according to claim 1, characterized in that the solid produced is separated by cooling to .degree.
JP8575089A 1989-04-06 1989-04-06 Method for producing 2,6-dimethylnaphthalene Expired - Lifetime JP2649412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8575089A JP2649412B2 (en) 1989-04-06 1989-04-06 Method for producing 2,6-dimethylnaphthalene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8575089A JP2649412B2 (en) 1989-04-06 1989-04-06 Method for producing 2,6-dimethylnaphthalene

Publications (2)

Publication Number Publication Date
JPH02264733A true JPH02264733A (en) 1990-10-29
JP2649412B2 JP2649412B2 (en) 1997-09-03

Family

ID=13867530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8575089A Expired - Lifetime JP2649412B2 (en) 1989-04-06 1989-04-06 Method for producing 2,6-dimethylnaphthalene

Country Status (1)

Country Link
JP (1) JP2649412B2 (en)

Also Published As

Publication number Publication date
JP2649412B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
KR101930328B1 (en) Process for the production of para-xylene
KR100379348B1 (en) Crystallization Method of 2,6-Dimethylnaphthalene
US2872492A (en) Production of aromatics in the presence of nitrogen compounds
KR960004868B1 (en) Process for production of dimethylnaphthalenes
US2632739A (en) Catalyst for producing aromatic hydrocarbons
US2560373A (en) Recovery and purification of durene
AU624770B2 (en) Process for removing impurities from an aromatic stream
US2475977A (en) Production of polycyclic aromatics
US3249644A (en) Process for the production of 2, 6-dimethylnaphthalene
JP2020513401A (en) Method for producing hexadecahydropyrene
JP2649412B2 (en) Method for producing 2,6-dimethylnaphthalene
JPS6247852B2 (en)
US3322843A (en) Treatment of paraffinic fractions
JP2952789B2 (en) Method for producing oxidation resistant solvent
JPH02304034A (en) Production of 2,6-dimethylnaphthalene
CA1240945A (en) Straight chain paraffin producing material
US5059742A (en) Process for separating 2,6-dimethylnaphthalene
JPH02311428A (en) Production of 2,6-dimethylnaphthalene
JP2520723B2 (en) Method for producing methylnaphthalene
JP3402488B2 (en) Process for producing a fraction rich in methylnaphthalene and dimethylnaphthalenes
JP2520725B2 (en) Method for producing dimethylnaphthalene
EP0346842B1 (en) Process for separating 2,6-dimethylnaphthalene
JPH02247293A (en) Production of high boiling point, high aromatic solvent
JPS622566B2 (en)
JPS62250094A (en) Method for separating and purifying aromatic component