JPH02264141A - Method and device for controlling fuel injection - Google Patents

Method and device for controlling fuel injection

Info

Publication number
JPH02264141A
JPH02264141A JP8315089A JP8315089A JPH02264141A JP H02264141 A JPH02264141 A JP H02264141A JP 8315089 A JP8315089 A JP 8315089A JP 8315089 A JP8315089 A JP 8315089A JP H02264141 A JPH02264141 A JP H02264141A
Authority
JP
Japan
Prior art keywords
fuel injection
cylinder
intake air
air amount
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8315089A
Other languages
Japanese (ja)
Other versions
JP2755671B2 (en
Inventor
Masami Nagano
正美 永野
Takeshi Atago
阿田子 武士
Kuniaki Sawamoto
沢本 国章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP8315089A priority Critical patent/JP2755671B2/en
Publication of JPH02264141A publication Critical patent/JPH02264141A/en
Application granted granted Critical
Publication of JP2755671B2 publication Critical patent/JP2755671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the occurrence of a fluctuation in an air-fuel ratio between cylinders and at each cycle by a method wherein an intake air amount at each suction stroke of each cylinder is sampled and integrated a plurality of times to detect an intake air amount, which is used as next fuel amount calculating data. CONSTITUTION:In a control unit 15, a cylinder under a suction stroke is discriminated by a cylinder discriminating means A by means of a crank signal, an intake air amount detected at a suction stroke by means of an airflow sensor is sampled a plurality of times and at intervals of a given time and integrated by a detecting means B. The intake air amount is detected as an amount of intake air to the cylinder, and the pulse width of next fuel injection is calculated by a calculating means C, and stored in a memory means D. At a next fuel injection timing based on a crank angle signal, a fuel injection pulse width signal is read from the memory means D, and the injector of the cylinder is driven and controlled through a fuel injection valve drive means E. This constitution prevents production of unevenness in an air-fuel ratio between cylinders and a fluctuation in an air-fuel ratio between cycles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エンジンの燃料噴射制御方法及び装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an engine fuel injection control method and apparatus.

〔従来の技術〕[Conventional technology]

従来の自動車エンジンの燃料噴射制御の例を第13図に
より説明する。
An example of conventional fuel injection control for an automobile engine will be explained with reference to FIG.

第13図は、従来の燃料噴射制御におけるタイミングチ
ャートを示し、吸入空気量のサンプリング時期、燃料噴
射パルス幅の算出時期、エンジンの行程と燃料噴射タイ
ミングの関係などを表わしている。
FIG. 13 shows a timing chart in conventional fuel injection control, showing the sampling timing of the intake air amount, the calculation timing of the fuel injection pulse width, the relationship between the engine stroke and the fuel injection timing, etc.

この従来例は、多点燃料噴射(MI)I)方式で各気筒
毎に独立のタイミングで燃料噴射を実行する独立噴射方
式の例で、各気筒の燃料噴射は、図に示すように排気行
程の後半のタイミングで実行している。また、吸入空気
量のサンプリングは、時間取り込みで、4 m sの作
業単位(以下ジョブと称する)でサンプリングされ、燃
料噴射パルス幅Tiは、4ms毎のジョブでサンプリン
グされた吸入空気量qa(サンプリングデータ)を用い
て10m5毎のジョブで処理(算出)される。
This conventional example is an example of an independent injection method in which fuel injection is performed at independent timing for each cylinder using a multi-point fuel injection (MI) method, and fuel injection for each cylinder is performed during the exhaust stroke as shown in the figure. It is executed in the second half of . In addition, the sampling of the intake air amount is timed, and is sampled in work units of 4 ms (hereinafter referred to as jobs), and the fuel injection pulse width Ti is the intake air amount qa (sampling) sampled in the job every 4 ms. data) is processed (calculated) in a job every 10m5.

そして、10m5毎のジョブで算出された燃料噴射パル
ス幅のうちで、燃料噴射時期直前に算出された燃料噴射
パルス幅T iを基に燃料噴射が実行される。また燃料
噴射パルス幅Tiの算出に用いる吸入空気量のデータq
aは、Ti算出に際しての最新のものが取り込まれる。
Then, fuel injection is performed based on the fuel injection pulse width T i calculated immediately before the fuel injection timing among the fuel injection pulse widths calculated for every 10 m5 job. In addition, intake air amount data q used to calculate the fuel injection pulse width Ti
The latest value of a is taken in when calculating Ti.

例えば、No、1気筒に噴射される燃料量(燃料噴射パ
ルス幅Ti)は、N002気筒の吸入行程のa点でサン
プリングされた吸入空気量により算出され、No、3気
筒に噴射される燃料量は、No、1気筒の吸入行程のb
点でサンプリングされた吸入空気量により算出される。
For example, the amount of fuel injected into No. 1 cylinder (fuel injection pulse width Ti) is calculated from the intake air amount sampled at point a of the intake stroke of cylinder No. 2, and the amount of fuel injected into No. 3 cylinder. is No. b of the intake stroke of one cylinder
Calculated from the amount of intake air sampled at the point.

なお、その他の従来例としては、特開昭5543292
号公報に開示されるようにクランク角360度間隔で吸
入空気量を検出して、燃料噴射パルス幅を算出する方式
などがある。
In addition, as other conventional examples, Japanese Patent Application Laid-Open No. 5543292
As disclosed in the above publication, there is a method of detecting the intake air amount at intervals of 360 degrees of crank angle and calculating the fuel injection pulse width.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前述の従来技術のうち、第13図に示したも
のは、燃料噴射時期直前の吸入空気量データ(サンプリ
ングデータ)に基づき燃料パルス幅を演算するため、運
転応答性の良い燃料噴射制御を行ない得るが、次のよう
な改善すべき点があった・ 第1には、各気筒の吸入空気量は、各気筒がそれぞれ個
性があるため、定常運転走行のような場合であっても気
筒同士の間でばらつきがある。従って、理想とすれば、
自身の気筒の吸入空気量を燃料噴射パルス幅の算出デー
タとすることが望ましい。しかし、この従来例は、既述
したように、料噴射パルス幅の算出データとするため、
気筒間の吸入空気量のばらつきに適応した燃料噴射量を
供給することができない。
By the way, among the conventional technologies mentioned above, the one shown in FIG. 13 calculates the fuel pulse width based on the intake air amount data (sampling data) immediately before the fuel injection timing, so it is difficult to control the fuel injection with good driving response. However, there were the following points that needed to be improved: Firstly, each cylinder has its own individual air intake, so even in steady driving, the cylinder There are variations between them. Therefore, ideally,
It is desirable to use the intake air amount of the own cylinder as the calculation data for the fuel injection pulse width. However, as mentioned above, in this conventional example, since the data is used to calculate the fuel injection pulse width,
It is not possible to supply a fuel injection amount that adapts to variations in intake air amount between cylinders.

第2には、所定間隔のジョブでしかも瞬間的な時点で吸
入空気量をサンプリングしているため、第1−3図のa
点,b点のように吸入行程間でのサンプリングのタイミ
ングがまちまちとなり、吸入空気量のとらえるレベルも
まちまちとなる。
Second, since the intake air amount is sampled at predetermined interval jobs and at instantaneous points, a
As shown at points and points b, the timing of sampling during the intake stroke is different, and the level of the intake air amount is also different.

以」二の第1,第2の現象は、真の吸入空気量に見合っ
た噴射燃料量を得ることができず、空燃比の制御精度を
向上させる上で妨げとなる原因となるものであった。ま
た、特開昭5 5−4. 3 2 9 2号の如くクラ
ンク角360度間隔で吸入空気量を検出する場合には、
検出精度」;の問題があった。
The first and second phenomena described below are the cause of not being able to obtain the amount of injected fuel commensurate with the true amount of intake air, which hinders the improvement of the control accuracy of the air-fuel ratio. Ta. Also, JP-A-5-5-4. 3 2 9 When detecting the intake air amount at intervals of 360 degrees of crank angle as in No. 2,
There was a problem with detection accuracy.

本発明は以上の点に鑑みてなされたもので、その目的と
するところは、各気筒の噴射燃料量の算出データどなる
吸入空気量を的確にとらえて、気筒間の空燃比のばらつ
き及びサイクル毎の空燃比の変動を防止し、ひいては燃
費,排気ガス性能及び運転性を改善することにある。
The present invention has been made in view of the above points, and its purpose is to accurately capture the intake air amount based on the calculation data of the amount of injected fuel in each cylinder, and to eliminate variations in the air-fuel ratio between cylinders and The aim is to prevent fluctuations in the air-fuel ratio of the engine, thereby improving fuel efficiency, exhaust gas performance, and drivability.

〔課題を解決するための手段〕[Means to solve the problem]

第1の課題解決手段は、方法の発明で、その内容は、エ
ンジンの吸入空気量を検出し、この検出値に基づいて燃
料噴射弁の噴射燃料量(噴射燃料量は例えば燃料噴射パ
ルス幅に換算されたものを含む)を算出し、所定のタイ
ミングで燃料噴射を実行する電子制御燃料噴射方式にお
いて、各気筒の吸入行程毎に、所定の時間間隔で複数回
数の吸入空気量サンプリングを行ない、これらのサンプ
リング値qas.r ’T a2・・・qanを積算し
て各気筒の吸入空気量Qan(nはどの気筒かを示す符
号)を検出し、この吸入空気量の検出値Qanを、当該
吸入空気量を検出した自身の気筒の次回に行なわれる燃
料噴射の燃料量算出データとして用いることを特徴とす
る。
The first means to solve the problem is to invent a method, the content of which is to detect the intake air amount of the engine, and based on this detected value, the amount of fuel injected by the fuel injection valve (the amount of injected fuel is determined by the width of the fuel injection pulse, for example). In an electronically controlled fuel injection system that calculates the amount (including converted values) and executes fuel injection at a predetermined timing, sampling of the intake air amount is performed multiple times at a predetermined time interval for each intake stroke of each cylinder, These sampling values qas. r'T a2...qan is integrated to detect the intake air amount Qan of each cylinder (n is the code indicating which cylinder), and this intake air amount detection value Qan is calculated by detecting the intake air amount. It is characterized in that it is used as fuel amount calculation data for the next fuel injection to be performed in its own cylinder.

なお、このような制御を行なう場合、各気筒の燃料噴射
時期が排気行程の段階で設定しである場合には、吸入空
気量を求めた自身の気筒における吸入行程から排気行程
までにタイムラグがあるので、吸入空気量が継続的に略
一定である定常走行時に、この制御方法を実行するのが
好ましい。
In addition, when performing such control, if the fuel injection timing of each cylinder is set at the exhaust stroke stage, there is a time lag between the intake stroke and the exhaust stroke for the cylinder in which the intake air amount was calculated. Therefore, it is preferable to execute this control method during steady driving when the amount of intake air is continuously substantially constant.

第2の課題解決手段は、この点を配慮したもので、その
内容は、 定常走行運転時には、前述の第1の課題解決手段で行な
った燃料制御方法を採用し。
The second means of solving the problem takes this point into consideration, and its contents are as follows: During steady running operation, the fuel control method used in the first means of solving the problem described above is adopted.

一方、加減速等の過渡運転時には、各気筒の燃料噴射時
期直前に吸入行程にある他の気筒の吸入空気量qaを検
出して、この検出値qatI−現在燃料噴射の対象とな
っている気筒の燃料量算出データとして用いることを特
徴とする。
On the other hand, during transient operation such as acceleration/deceleration, the intake air amount qa of other cylinders in the intake stroke is detected immediately before the fuel injection timing of each cylinder, and this detected value qatI - the cylinder currently targeted for fuel injection It is characterized by being used as fuel amount calculation data.

第3の課題解決手段は、第1.第2の課題解決手段と異
なる手法を採用し、 その内容とするところは、エンジンの吸入空気量を検出
し、この検出値に基づいて燃料噴射弁の噴射燃料量Ti
を算出し、所定のタイミングで燃料噴射を実行する電子
制御燃料噴射方式において、各気筒の燃料噴射時期直前
に吸入行程にある他の気筒の吸入空気量を検出して、こ
の検出値qaを現在燃料噴射の対象となっている気筒の
燃料量算出データとして用い(この点は、第13図の従
来例の吸入空気量検出と共通する)、 且つこの噴射燃料量Tiを算出する場合には、補正する
モードを有し、この補正モードは、各気筒の吸入行程毎
に、所定の時間間隔で複数回数の吸入空気量サンプリン
グを行ない、これらのサンプリング値qaxr qaz
・・・qanを積算することで各気筒の吸入空気量Qa
nを求め、更に気筒同士の吸入空気量の平均値ΣQaを
求めて、この平均値ΣQaに対する各気筒の吸入空気量
の偏差ににを算出し、この偏差値ににで前記噴射燃料量
Tiを補正することを特徴とする。
The third problem solving means is the first. A method different from the second problem solving means is adopted, and its content is to detect the intake air amount of the engine, and based on this detected value, the amount of fuel injected by the fuel injection valve Ti
In an electronically controlled fuel injection system that calculates the amount of air and executes fuel injection at a predetermined timing, the intake air amount of other cylinders in the intake stroke is detected immediately before the fuel injection timing of each cylinder, and this detected value qa is used as the current When using this as fuel amount calculation data for the cylinder targeted for fuel injection (this point is common to the intake air amount detection of the conventional example shown in FIG. 13), and when calculating this injected fuel amount Ti, It has a correction mode, and this correction mode performs sampling of the intake air amount a plurality of times at predetermined time intervals for each intake stroke of each cylinder, and calculates these sampling values qaxr qaz.
...The intake air amount Qa of each cylinder is calculated by integrating qan.
n is determined, and then the average value ΣQa of the intake air amounts of the cylinders is determined, and the deviation of the intake air amount of each cylinder from this average value ΣQa is calculated, and the injected fuel amount Ti is determined based on this deviation value. It is characterized by correction.

なお、前述した各課題解決手段の吸入空気量のサンプリ
ング値の積算は、例えば、サンプリング値を加算したり
、加算した総数値をサンプリング回数で除算することで
行なわれる。
Note that the sampling values of the intake air amount of each problem-solving means described above are integrated, for example, by adding the sampling values or by dividing the total value added by the number of sampling times.

第4の課題解決手段は、主に前記第1.第2の課題解決
手段の方法の発明を装置化したもので、その内容とする
ところは、第4図の実施例の符号を引用して説明すると
、 エンジンの吸入空気量を検出し、この検出値に基づき燃
料噴射パルス幅を算出して;燃料噴射弁を駆動制御する
電子制御式燃料噴射装置において、いずれの気筒の吸入
行程であるがを判別する手段Aと、 エンジンの各気筒の吸入行程毎に、所定の時間間隔で複
数回数の吸入空気量サンプリングを行ない、これらのサ
ンプリング値qat+ qaz・・・qanを積算する
ことで、各気筒の吸入空気量Qanを検出する手段Bと
、 吸入空気量の検出値Qanに基づき燃料噴射パルス幅T
iを算出する手段Cと、 算出された燃料噴射パルス幅Tiを噴射対象の気筒毎に
記憶する手段りと、 燃料噴射時期がくると、現在の燃料噴射対象の気筒に対
応させて、該気筒の前回の吸入行程の吸入空気量検出値
Qanに基づき算出された燃料噴射パルス幅信号Tiを
前記記憶手段の中から選択して、燃料噴射弁を駆動させ
る手段Eとを、備えてなることを特徴とする。
The fourth problem-solving means mainly consists of the above-mentioned first problem-solving means. This is an apparatus for the invention of the method of the second problem-solving means, and its contents are explained by referring to the reference numerals of the embodiment shown in FIG. 4. means A for determining which cylinder is in the intake stroke in an electronically controlled fuel injection device for driving and controlling a fuel injection valve by calculating a fuel injection pulse width based on the value; Means B detects the intake air amount Qan of each cylinder by sampling the intake air amount a plurality of times at predetermined time intervals and integrating these sampling values qat+qaz...qan; Fuel injection pulse width T based on the detected quantity Qan
means C for calculating i; and means C for storing the calculated fuel injection pulse width Ti for each cylinder to which fuel is injected; means E for selecting a fuel injection pulse width signal Ti calculated based on the intake air amount detection value Qan of the previous intake stroke from the storage means and driving the fuel injection valve; Features.

第5の課題解決手段は、前記第3の課題解決手段の方法
の発明を装置化したもので、その内容とするところは、
第9図の実施例の符号を引用して説明すると、 エンジンの吸入空気量を検出し、この検出値に基づき燃
料噴射パルス幅を算出して、燃料噴射弁を駆動制御する
電子制御式燃料噴射装置において、各気筒の燃料噴射時
期直前に吸入行程にある他の気筒の吸入空気量qaを検
出して、この検出値qaを現在燃料噴射の対象となって
いる気筒の燃料噴射パルス幅算出データとして用いるよ
う設定し、 且ついずれの気筒の吸入行程であるかを判別する手段A
′と、 各気筒の吸入行程毎に、所定の時間間隔で複数回数の吸
入空気量サンプリングを行ない、これらのサンプリング
値qazy qaz・・・qanを積算して吸入空気量
Qanを求める手段B′と、これらの吸入空気量検出値
Qanから気筒同士の吸入空気量の平均値ΣQaを求め
て、この平均値ΣQaに対する各気筒の吸入空気量Qa
nの偏差ににを算出する手段G′と、 前記偏差ににの算出がなされたエンジンの運転領域を判
別する手段F′と、 前記各気筒の偏差ににをエンジンの運転領域毎に区別し
て記憶させる手段D′と、 前記他の気筒の吸入空気量の検出値qaに基づき且つ前
記偏差ににのうち現在のエンジン運転領域に合った偏差
ににを前記記憶手段から補正要素として選択して燃料噴
射パルス幅Tjを算出する手段C′と、 補正を伴って算出された燃料噴射パルス幅T]を噴射対
象の気筒毎に記憶する手段D′と、設定の燃料噴射時期
がくると、前記記憶手段D′の中から現在の燃料噴射対
象の気筒に対応の燃料噴射パルス幅信号Tiを選択して
、燃料噴射弁を駆動させる手段E′とを、備えてなるこ
とを特徴とする。
The fifth problem-solving means is an apparatus for the invention of the method of the third problem-solving means, and its content is as follows:
To explain with reference to the reference numerals of the embodiment shown in FIG. 9, electronically controlled fuel injection detects the intake air amount of the engine, calculates the fuel injection pulse width based on this detected value, and controls the drive of the fuel injection valve. The device detects the intake air amount qa of other cylinders in the intake stroke immediately before the fuel injection timing of each cylinder, and uses this detected value qa as fuel injection pulse width calculation data for the cylinder currently being injected. Means A for determining which cylinder is in the intake stroke
', means B' that performs sampling of the intake air amount a plurality of times at predetermined time intervals for each intake stroke of each cylinder, and integrates these sampling values qazy qaz...qan to obtain the intake air amount Qan; , calculate the average value ΣQa of the intake air amounts of the cylinders from these intake air amount detection values Qan, and calculate the intake air amount Qa of each cylinder with respect to this average value ΣQa.
means G' for calculating the deviation of n; means F' for determining the operating range of the engine in which the deviation has been calculated; and means F' for determining the engine operating range in which the deviation has been calculated; a storage means D'; and selecting a deviation from the storage means as a correction element based on the detected value qa of the intake air amount of the other cylinder and that matches the current engine operating range among the deviations. means C' for calculating the fuel injection pulse width Tj; means D' for storing the fuel injection pulse width T calculated with correction for each cylinder to be injected; It is characterized by comprising means E' for selecting a fuel injection pulse width signal Ti corresponding to the cylinder to which fuel is currently injected from the storage means D' and driving the fuel injection valve.

〔作用〕[Effect]

第1の課題解決手段によれば、各気筒の吸入行程毎に、
複数回数の吸入空気量サンブリンクを行ない、これらの
サンプリング値qas、+ qa2・・qanを積算す
ることで吸入空気量Qanを検出するので、各気筒の吸
入空気量をばらつきなく測定することができる。なお、
この制御法に用いるサンプリング積算は、サンプリング
値を加算し、この加算した総数値をサンプリング回数で
除算することで、吸入行程におけるサンプリング値の平
均値を求める手法が代表的なものとして考えられるが、
そのほかjliにサンプリング値を加算しただけの数値
を利用しても一吸入行程の吸入空気量をとらえることが
できる。この場合、吸入空気量の平均値、或いは加算値
を噴射燃料量算出データとして用いる場合、燃料噴射パ
ルス幅を求める計算式の係数をこれらの積算の仕方に合
わせれば良い。
According to the first problem solving means, for each intake stroke of each cylinder,
The intake air amount Qan is detected by performing intake air amount sampling multiple times and integrating these sampling values qas, +qa2...qan, so the intake air amount of each cylinder can be measured without variation. . In addition,
The typical sampling integration method used in this control method is to calculate the average value of the sampling values during the intake stroke by adding the sampling values and dividing the total value by the number of samplings.
In addition, the amount of intake air in one intake stroke can also be determined by using a value obtained by adding the sampling value to jli. In this case, when the average value or the added value of the intake air amount is used as the injected fuel amount calculation data, the coefficients of the calculation formula for determining the fuel injection pulse width may be adjusted to the way these are integrated.

また、吸入空気量検出値Qanを、この吸入空気量を検
出した自身の気筒の次回に行なわれる燃料噴射データと
して用いるので(例えば第1気筒の吸入行程で検出され
た吸入空気量検出値は、次回の第1−気筒の燃料噴射の
データとして、第2気〕6 筒の吸入行程で検出された吸入空気量検出値は、第2気
筒の燃料噴射のデータとして用いる)、気筒間に吸入空
気量のばらつきがあっても、ばらつきに対応した吸入空
気量をとらえて、噴射燃料量を算出することができる。
In addition, since the intake air amount detection value Qan is used as the next fuel injection data for the cylinder in which this intake air amount was detected (for example, the intake air amount detection value detected in the intake stroke of the first cylinder is The intake air amount detected during the intake stroke of the 6th cylinder will be used as data for the next fuel injection in the 2nd cylinder. Even if there is variation in the amount, the amount of injected fuel can be calculated by capturing the amount of intake air that corresponds to the variation.

従って、以」−の相乗作用で各気筒の真の吸入空気量に
極めて近い吸入空気量検出値により、燃料噴射量を算出
して、燃料噴射制御を実行できるので、特に定常走行運
転の気筒間の空燃比のばらつき、及びサイクル毎の空燃
比の変動を有効に防止することができる。
Therefore, due to the synergistic effect of the following, it is possible to calculate the fuel injection amount and execute fuel injection control using the intake air amount detection value that is extremely close to the true intake air amount of each cylinder. It is possible to effectively prevent variations in the air-fuel ratio and fluctuations in the air-fuel ratio from cycle to cycle.

次に第2の課題解決手段によれば、定常走行運転時には
、第1の課題解決手段同様の作用が期待でき、また、過
渡運転時には、上記制御方式に代わって、従来同様の手
法、即ち、各気筒の燃料噴射時期直前に吸入行程にある
他の気筒の吸入空気量を検出して、この検出値を現在燃
料噴射の対象となっている気筒の燃料量算出データとし
て用いられる。このように過渡運転時の場合には、定常
運転の場合とその吸入空気量検出態様及び燃料量算出態
様を変えることで、特に第1図の従来例のように排気行
程に燃料噴射時期を設定している場合に、応答性の遅れ
をなくすことができる。
Next, according to the second problem-solving means, during steady running operation, the same effect as the first problem-solving means can be expected, and during transient operation, the same conventional method is used instead of the above control method, i.e., Immediately before the fuel injection timing of each cylinder, the intake air amount of other cylinders in the intake stroke is detected, and this detected value is used as fuel amount calculation data for the cylinder that is currently the target of fuel injection. In this way, in the case of transient operation, by changing the intake air amount detection method and fuel amount calculation method from those in steady operation, the fuel injection timing can be set in the exhaust stroke, especially as in the conventional example shown in Fig. 1. This can eliminate delays in responsiveness.

第3の課題解決手段は、例えば燃料噴射時期を排気行程
等に設定している場合に、従来同様に各気筒の燃料噴射
時期直前に吸入行程にある他の気筒の吸入空気量を検出
して、この検出値qaを現在燃料噴射の対象となってい
る気筒の燃料量算出データとして用いているが、燃料量
算出に際しては、つぎの補正が行なわれる。
The third problem-solving means is to detect the intake air amount of other cylinders in the intake stroke just before the fuel injection timing of each cylinder, as in the conventional case, when the fuel injection timing is set to the exhaust stroke, for example. This detected value qa is used as fuel amount calculation data for the cylinder currently targeted for fuel injection, but the following correction is performed when calculating the fuel amount.

すなわち、各気筒の吸入行程毎に、所定の時間間隔で複
数回数の吸入空気量サンプリングを行ない、これらのサ
ンプリング値qas、+ qa2・ qanの積算値を
基にして各気筒の吸入空気量Qanを求め、更に気筒同
士の吸入空気量の平均値ΣQaを求めて、この平均値Σ
Qaに対する各気筒の吸入空気量Qanの偏差ににを算
出し、この偏差値ににで前記噴射燃料量T】を補正する
。すなわち、偏差値にには、各気筒のばらつきの度合い
を示すもので、これを基に噴射燃料量を補正すれば、各
気筒のばらつきに対応した噴射燃料量を得ることができ
る。従って、この燃料噴射制御方法によれば、他の気筒
の吸入空気量検出値を用いて自己の気筒の噴射燃料量算
出データとして用いても、適正な噴射燃料量を算出して
燃料噴射を実行することができる。
That is, for each cylinder's intake stroke, sampling of the intake air amount is performed multiple times at predetermined time intervals, and the intake air amount Qan of each cylinder is calculated based on the integrated value of these sampling values qas, +qa2・qan. Then, find the average value ΣQa of the intake air amount between the cylinders, and calculate this average value Σ
The deviation of the intake air amount Qan of each cylinder from Qa is calculated, and the injected fuel amount T is corrected based on this deviation value. That is, the deviation value indicates the degree of variation in each cylinder, and by correcting the amount of injected fuel based on this value, it is possible to obtain the amount of fuel injected that corresponds to the variation in each cylinder. Therefore, according to this fuel injection control method, even if the intake air amount detection value of another cylinder is used as the injected fuel amount calculation data for the own cylinder, the appropriate injected fuel amount is calculated and fuel injection is executed. can do.

第4の課題解決手段、第5の課題解決手段は、今まで述
べた各燃料噴射制御法を実施するための装置であるが、
第4の課題解決手段は後述の実施例の項の第1実施例に
て第4図により詳述し、第5の課題解決手段は同じく第
3の実施例で第9図により詳述しであるので、その作用
はこれを参照されたい。
The fourth problem-solving means and the fifth problem-solving means are devices for implementing each of the fuel injection control methods described so far.
The fourth problem-solving means will be explained in detail in FIG. 4 in the first embodiment in the Examples section below, and the fifth problem-solving means will be explained in detail in FIG. 9 in the third embodiment. There is, so please refer to this for its effect.

〔実施例〕〔Example〕

本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described based on the drawings.

第1図は、本発明の第1実施例を示す燃料噴射制御のタ
イミングチャート、第4図はこれを実行するブロック回
路図、第5図はそのフローチャートで、これらの説明に
先立ち第2図及び第3図により、本実施例の適用対象と
なるエンジンの燃料供給(噴射)システムについて説明
する。
FIG. 1 is a timing chart of fuel injection control showing a first embodiment of the present invention, FIG. 4 is a block circuit diagram for executing this, and FIG. 5 is a flowchart thereof. Referring to FIG. 3, a fuel supply (injection) system for an engine to which this embodiment is applied will be explained.

第2図において、空気は、エアクリーナ1の入口部2よ
り入り、吸入空気量を測定する空気流量計(例えばホッ
トワイヤ式流量計)3.ダクト4゜空気流量を制御する
絞り弁5を通り、コレクタ6に入る。ここで、空気は、
エンジン7に直通する各吸気管8に分配されシリンダ(
気筒)内に吸入される。一方、燃料は燃料タンク9から
燃料ポンプ10で吸引加圧され、燃料ダンパ11.フィ
ルタ12を通り燃圧レギュレータ14で一定に調圧され
て、インジェクタ(燃料噴射弁)13より吸気管8内に
噴射される。
In FIG. 2, air enters an air cleaner 1 through an inlet 2, and an air flow meter (for example, a hot wire flow meter) 3. The duct 4 passes through a throttle valve 5 that controls the air flow rate and enters the collector 6. Here, the air is
The cylinders (
cylinder). On the other hand, fuel is sucked and pressurized from the fuel tank 9 by the fuel pump 10, and the fuel is sucked and pressurized from the fuel tank 9 by the fuel damper 11. The fuel passes through a filter 12, is regulated to a constant pressure by a fuel pressure regulator 14, and is injected into the intake pipe 8 from an injector (fuel injection valve) 13.

空気流量計3からの出力は、コントロールユニット15
に入力される。コントロールユニット15には、絞り弁
の開度を検出するスロットルセンサ18の出力、ディス
トリビュータ16に内蔵されたクランク角センサより信
号などが入力される。
The output from the air flow meter 3 is sent to the control unit 15.
is input. The control unit 15 receives an output from a throttle sensor 18 that detects the opening of the throttle valve, a signal from a crank angle sensor built into the distributor 16, and the like.

このコントロールユニット15は、第3図に示すように
、MPU、ROM、RAM、A/D変換器。
As shown in FIG. 3, this control unit 15 includes an MPU, ROM, RAM, and A/D converter.

入出力回路を含む演算装置等で構成され、空気流置引3
の出力信号やディストリビュータの出力信号等により所
定の演算処理を行い、この演算結果によりインジェクタ
13を作動させ、必要な量の燃料が各吸気管8に供給さ
れる。点火時期は、イグニッションコイル17のパワー
トランジスタに信号が送られて制御される。
Consists of arithmetic devices including input/output circuits,
Predetermined arithmetic processing is performed using the output signal of the distributor, the output signal of the distributor, etc., and the injector 13 is operated based on the result of this calculation, and the required amount of fuel is supplied to each intake pipe 8. The ignition timing is controlled by sending a signal to the power transistor of the ignition coil 17.

ここで、本実施例の燃料噴射制御における吸入空気量の
検出及びその噴射燃料量の算出について第1図、第4図
、第5図に基すき説明する。
Here, detection of the amount of intake air and calculation of the amount of injected fuel in the fuel injection control of this embodiment will be explained with reference to FIGS. 1, 4, and 5.

第1図は、−例として4気筒エンジンにおける多点燃料
噴射方式(MPI方式)を示し、燃料噴射タイミングは
各気筒の排気行程の後半の時期に設定しである。ここで
は、説明の便宜上、NO12気筒に着目して説明する。
FIG. 1 shows, as an example, a multi-point fuel injection system (MPI system) in a four-cylinder engine, in which the fuel injection timing is set to the latter half of the exhaust stroke of each cylinder. Here, for convenience of explanation, the explanation will focus on the NO12 cylinder.

第1図のタイムチャートは定常運転の時に実行されるも
ので、各行程毎にREF信号(基準信号)が発生し、N
o、2気筒が吸入行程に入ると、REF信号に基すき、
その吸入行程の間に当該気筒の吸入空気量に関するデー
タqaが所定の時間間隔(本実施例は4 m sのジョ
ブであるが、2 m s 。
The time chart in Figure 1 is executed during steady operation, and the REF signal (reference signal) is generated for each stroke, and the N
o. When the 2nd cylinder enters the intake stroke, plowing occurs based on the REF signal,
During the intake stroke, data qa regarding the intake air amount of the cylinder is collected at a predetermined time interval (2 m s, although this example is a 4 ms job).

6 m sでも良い)で複数回サンプリングされ、これ
らのサンプリング値が加算され、その加算値をサンプリ
ング数Nで除算し、各気筒の吸入空気量Q a nを求
める。そして、次のREF信号の発生時点でこのQ a
 nにより燃料噴射パルス幅Tiを算出し、その算出結
果を所邊のレジスタに記憶しておき、次のN002気筒
の燃料噴射時期がきたら、そのTi算出値を出力して燃
料噴りを実行する。他の気筒の場合も同様で、各気筒の
燃料噴射パルス幅は、自身の吸入空気量を基に算出され
て、次回の自身の気筒の燃料噴射時期に出力される。こ
のように各気筒の吸入行程で検出した吸入空気量を次回
の自身の気筒の燃料噴射のデータとして用いる場合でも
、定常運転の場合には吸入空気量は継続的に略一定を保
つので、タイムラグによる応答性の遅れに関する問題は
生じない。なお、加減速等の過渡運転にには、サイクル
毎の吸入空気量の変化が大きいので、この場合にはタイ
ムラグを考慮して上記した第1図の燃料噴射は行なわれ
ず、この場合には、燃料噴射制御モードが既)ホした第
13図の従来同様のモー1−に切り替わる。
6 m s), these sampling values are added, and the added value is divided by the number of samplings N to obtain the intake air amount Q a n of each cylinder. Then, at the time of generation of the next REF signal, this Q a
Calculate the fuel injection pulse width Ti based on n, store the calculation result in a local register, and when the next fuel injection time for the N002 cylinder comes, output the Ti calculation value and execute fuel injection. . The same applies to other cylinders, and the fuel injection pulse width of each cylinder is calculated based on its own intake air amount, and is output at the next fuel injection timing of its own cylinder. In this way, even when the intake air amount detected during the intake stroke of each cylinder is used as data for the next fuel injection of its own cylinder, the intake air amount remains approximately constant during steady operation, so there is no time lag. There are no problems with response delays. Note that during transient operations such as acceleration and deceleration, there are large changes in the amount of intake air from cycle to cycle, so in this case, the fuel injection shown in Figure 1 above is not performed in consideration of the time lag, and in this case, The fuel injection control mode is switched to mode 1-, which is similar to the conventional mode shown in FIG.

第1図の燃料噴射制御法を実行する場合には、第4図の
システ11構成が用いられ、これを第5図のフローチャ
ートを参照しつつ説明する。第5図のSL、S2.S3
・はステップを表わす。
When executing the fuel injection control method shown in FIG. 1, the system 11 configuration shown in FIG. 4 is used, and this will be explained with reference to the flowchart shown in FIG. 5. SL in FIG. 5, S2. S3
・represents a step.

第4図の気筒判別手段Aから燃料噴射弁駆動手段Eまで
は、すへて回路的に構成されるものである。
Everything from the cylinder discriminating means A to the fuel injection valve driving means E shown in FIG. 4 is constructed in the form of a circuit.

先ず、前提としてRE F信号に合わせて吸入空気量q
a、エンジン回転数Neを読み込み(Sl)、定常走行
運転にある場合には、気筒判別手段Aがクランク信号に
より現在どの気筒が吸入行程にあるか判別しくS2)、
また吸入空気量検出手段Bが空気流量計3の信号qaよ
、・・qanを、各気筒毎の吸入行程の間に所定の時間
間隔(例えば4 m s )で複数回サンプリングし、
これらのサンプリング値を加算し、これらの総数値をサ
ンプリング数Nで除算し、吸入空気量Q a nを求め
る(S3)。
First, as a premise, the intake air amount q is adjusted according to the REF signal.
a. The engine speed Ne is read (Sl), and if the engine is in steady running operation, the cylinder determining means A determines which cylinder is currently in the intake stroke using the crank signal (S2);
Further, the intake air amount detection means B samples the signals qa, .
These sampling values are added and the total value is divided by the sampling number N to obtain the intake air amount Q a n (S3).

そして、このQanにより算出手段Cが燃料噴射パルス
幅T]を算出しくS4)、このパルス幅算出値を、気筒
判別信号に基づき各気筒毎に区別されて記憶手段(レジ
スタ)Dの所定アドレスに記憶される(S5)。燃料噴
射弁駆動手段Eは、クランク角信号により燃料噴射時期
をみきわめ、その時期がきたら記憶手段りより対応の燃
料パルス幅信号Tj (ここでは現在噴射すべき気筒自
身の前回の吸入行程の吸入空気量により算出された燃料
パルス幅信号)を選択し、これに基ずき対応の燃料噴射
弁を駆動する(S6)。
Then, based on this Qan, the calculation means C calculates the fuel injection pulse width T] (S4), and this pulse width calculation value is stored in a predetermined address of the storage means (register) D for each cylinder based on the cylinder discrimination signal. It is stored (S5). The fuel injection valve driving means E determines the fuel injection timing from the crank angle signal, and when the timing comes, the storage means reads the corresponding fuel pulse width signal Tj (here, the intake air of the previous intake stroke of the cylinder to which the current injection is to be performed). The fuel pulse width signal calculated based on the selected fuel pulse width signal is selected, and the corresponding fuel injection valve is driven based on the selected fuel pulse width signal (S6).

第6図と第7図とは、第1図の本実施例の燃料噴射制御
と従来の燃料噴射制御とのエンジンでのナス1〜結果を
示したもので、第6図は各気筒間の空燃比A/Fのばら
つきを、第7図はサイクル毎のA/Fの変動を示すもの
である。本実施例によれば、第6図の実験結果では、気
筒間のA/Fのばらつきを従来例の1/3に、第7図の
実験結果では、サイクル毎のA/Fを従来例の1/4に
改善することができた。
Figures 6 and 7 show the results of the fuel injection control of this embodiment in Figure 1 and the conventional fuel injection control in the engine, and Figure 6 shows the results between each cylinder. FIG. 7 shows the variation in the air-fuel ratio A/F from cycle to cycle. According to this embodiment, the experimental results shown in FIG. 6 show that the A/F variation between cylinders is reduced to 1/3 of the conventional example, and the experimental results shown in FIG. I was able to improve it to 1/4.

=23 第8図は、本発明の第2実施例を示す燃料噴射制御のタ
イミングチャー1−である。本実施例は燃料噴射を直接
気筒内に行なう方式のMPIシステムに適用したもので
、同図に示すように、各気筒の吸入空気量の検出、燃料
噴射パルス幅の算出及びこれらの各気筒への反映の仕方
は第1実施例同様であるが、燃料噴射の時期だけが異な
る。すなわち、本実施例の場合には、第1実施例の場合
とは逆に吸入行程の後行程である圧縮行程で燃料噴射を
行なっている。これは、筒内噴射方式を採用するため、
燃料噴射が気筒内へ直接噴射することが可能なためであ
る。本実施例も第1実施例同様の効果を奏することがで
きる。
=23 FIG. 8 is a timing chart 1 of fuel injection control showing a second embodiment of the present invention. This example is applied to an MPI system that injects fuel directly into the cylinders, and as shown in the figure, the amount of intake air in each cylinder is detected, the fuel injection pulse width is calculated, and each cylinder is The way in which this is reflected is the same as in the first embodiment, but only the timing of fuel injection is different. That is, in the case of this embodiment, fuel injection is performed in the compression stroke, which is a stroke after the intake stroke, contrary to the case of the first embodiment. This is because it uses an in-cylinder injection system.
This is because fuel can be injected directly into the cylinder. This embodiment can also achieve the same effects as the first embodiment.

第9図及び第10図は本発明の第3実施例を示すもので
、第9図は第3実施例の要部となるブロック回路図、第
10図はそのフローチャートを示すものである。
9 and 10 show a third embodiment of the present invention, FIG. 9 is a block circuit diagram of the main part of the third embodiment, and FIG. 10 is a flowchart thereof.

本実施例は、その吸入空気量の検出及び燃料噴射パルス
幅の算出を第1.第2実施例と基本的に異にしており、
その内容とするところは、第13図の従来例の如く各気
筒の排気行程中に燃料噴射時期を設定し、この排気行程
中に吸入行程にある他の気筒の吸入空気量qaを所定の
時間間隔(例えば4msのジョブ)ごとに算出して10
m5ごとのジョブで燃料噴射パルス幅Tjk算出し、こ
のうち燃料噴射時期に近いTiデータにより燃料噴射を
実行するものであるが、更に、この燃料噴射パルス幅の
算出に際し次のような補正モードを有することを特徴゛
とする。
In this embodiment, the intake air amount is detected and the fuel injection pulse width is calculated in the first step. It is fundamentally different from the second embodiment,
The content is that, as in the conventional example shown in Fig. 13, the fuel injection timing is set during the exhaust stroke of each cylinder, and during this exhaust stroke, the intake air amount qa of the other cylinders in the intake stroke is controlled for a predetermined period of time. 10 calculated per interval (e.g. 4ms job)
The fuel injection pulse width Tjk is calculated in a job every m5, and fuel injection is executed using Ti data close to the fuel injection timing.Furthermore, when calculating this fuel injection pulse width, the following correction mode is used. It is characterized by having.

この補正モードを第9図、第10図により説明する。こ
の補正モードは、気筒別補正領域内(定常運転)が継続
された場合に燃料噴射パルス幅の補正を行なうものであ
る。
This correction mode will be explained with reference to FIGS. 9 and 10. In this correction mode, the fuel injection pulse width is corrected when the cylinder-specific correction region (steady operation) continues.

すなわち、エンジン運転領域判別手段F′がREF信号
が生じる毎にエンジン回転数Neと吸入空気量qaを読
み込み、気筒別補正領域であるか判別しくSL、S2)
、気筒別補正領域の場合には、データNe、qaからエ
ンジン運転領域を判別すると共に、気筒判別手段A′が
クランク角信号に基づきどの気筒が吸入行程であるか判
別する(S3)。
That is, each time the REF signal is generated, the engine operating range determining means F' reads the engine rotational speed Ne and the intake air amount qa, and determines whether it is in the cylinder-specific correction range (SL, S2).
In the case of the cylinder-specific correction region, the engine operating region is determined from the data Ne and qa, and the cylinder determining means A' determines which cylinder is in the intake stroke based on the crank angle signal (S3).

また、吸入空気量検出手段B′は、S7.S8で4ms
毎の吸入空気量qaをサンプリングし、このサンプリン
グ信号を基に燃料噴射パルス幅噴射手段C′が所定のジ
ョブで基本燃料噴射パルス幅Tpを算出し、且つ吸入空
気量検出手段B′は、各吸入行程において4 m s毎
にサンプリングした吸入空気量サンプリング値’TE1
11 qa2t・・・qanを積算(具体的には、qa
□l’Ta21・・・qanを加算して、これらをサン
プリング回数で除算する)して、各気筒の吸入空気量Q
an(nはどの気筒であるかをしめず)を検出しくS4
)、偏差算出手段G′がこれらの吸入空気量検出値Q 
a nから気筒同士の吸入空気量の平均値ΣQaを求め
て、この平均値ΣQaに対する各気筒の吸入空気量Qa
nの偏差にに(Kに=Qan/ΣQa)を算出する(S
5)。そして、この各気筒の偏差ににをエンジン運転領
域判別手段F′の信号と関連づけて、エンジンの運転領
域毎の偏差に区別して、記憶手段(所定のレジスタ)D
′に記憶する(S6)。そして、燃料パルス幅算出手段
C′は、前述の87.S8で他の気筒の吸入行程の吸入
空気量サンプリング値qaに基づき算出された基本燃料
パルス幅Tpに基づき、且つ現在噴射対象にある気筒(
本実施例では排気行程にある気筒)に対応の偏差ににの
うちで現在のエンジン運転領域に合った偏差を記憶手段
D″から補正要素として選択して、燃料噴射パルス幅T
iを算出する(S9)。このTiの計算式は、 Ti=Tp −COEF−にに+Ts で、Tpは基本燃料パルス幅、C0EFはオープンルー
プ補正係数、Kには偏差、Tsは電圧補正パルス幅であ
る。
In addition, the intake air amount detection means B' detects S7. 4ms on S8
Based on this sampling signal, the fuel injection pulse width injection means C' calculates the basic fuel injection pulse width Tp for a predetermined job, and the intake air amount detection means B' Intake air amount sampling value 'TE1 sampled every 4 m s during the intake stroke
11 qa2t...integrate qan (specifically, qa
□Add l'Ta21...qan and divide these by the number of sampling) to calculate the intake air amount Q for each cylinder.
S4 to detect an (n does not indicate which cylinder)
), the deviation calculation means G' calculates these intake air amount detection values Q.
Find the average value ΣQa of the intake air amount of the cylinders from a n, and calculate the intake air amount Qa of each cylinder with respect to this average value ΣQa.
Calculate (K=Qan/ΣQa) for the deviation of n (S
5). Then, the deviation of each cylinder is associated with the signal of the engine operating range determining means F', and the deviation is distinguished for each engine operating range, and stored in the storage means (predetermined register) D.
' (S6). Then, the fuel pulse width calculation means C' calculates the above-mentioned 87. Based on the basic fuel pulse width Tp calculated based on the intake air amount sampling value qa of the intake stroke of other cylinders in S8, and the cylinder currently being injected (
In this embodiment, a deviation corresponding to the cylinder in the exhaust stroke) is selected as a correction element from the storage means D'', and a deviation that matches the current engine operating range is selected as a correction element, and the fuel injection pulse width T
i is calculated (S9). The formula for calculating Ti is: Ti=Tp-COEF-+Ts, where Tp is the basic fuel pulse width, COEF is the open loop correction coefficient, K is the deviation, and Ts is the voltage correction pulse width.

この補正を伴って算出された燃料噴射パルス幅信号Ti
は、噴射対象の気筒毎に区別して記憶手段D′に記憶さ
れ(SIO)、燃料噴射時期がくると、燃料噴射弁駆動
手段は、記憶手段D′の中から現在の燃料噴射対象の気
筒に対応の燃料噴射パルス幅信号Tiを選択して、燃料
噴射が実行される。なお、第11図は、本実施例の気筒
判別領域の一例で、斜線の部分がエンジン運転領域で、
図では2つのエンジン運転領域しかあげていないが、実
際はこれらの補正対象となるエンジン運転領域が多数存
在する。第12図は、記憶手段D″の記憶の仕方で、図
の如く気筒毎及びエンジン運転領域に区別して補正(偏
差)値ににを記憶する。
Fuel injection pulse width signal Ti calculated with this correction
is stored in the storage means D' separately for each cylinder to be injected (SIO), and when the fuel injection timing comes, the fuel injection valve drive means selects the cylinder to which fuel is currently injected from the storage means D'. Fuel injection is performed by selecting a corresponding fuel injection pulse width signal Ti. Note that FIG. 11 shows an example of the cylinder discrimination area of this embodiment, and the shaded area is the engine operating area.
Although only two engine operating ranges are shown in the figure, there are actually many engine operating ranges that are subject to correction. FIG. 12 shows how the storage means D'' stores correction (deviation) values for each cylinder and engine operating range as shown in the figure.

これらの補正データは随時更新される。These correction data are updated as needed.

しかして、本実施例によれば、各気筒の燃料噴射パルス
幅算出の吸入空気量の検出は、従来同様に他の気筒の吸
入行程時の吸入空気量qaを基に算出するが、これに各
気筒の吸入空気量の偏差(ばらつき)を見込んで燃料噴
射パルス幅を補正するので、各気筒のばらつきに対応し
て修正された噴射燃料量をそれぞれの気筒に供給できる
ので、気筒間の空燃比のばらつきをなくし、かつサイク
ル間の空燃比のばらつきを修正することができる。
According to this embodiment, the intake air amount for calculating the fuel injection pulse width of each cylinder is calculated based on the intake air amount qa during the intake stroke of other cylinders, as in the conventional case. Since the fuel injection pulse width is corrected by taking into account deviations (variations) in the amount of intake air in each cylinder, it is possible to supply each cylinder with the amount of injected fuel that has been corrected in response to the variations in each cylinder. It is possible to eliminate variations in fuel ratio and correct variations in air-fuel ratio between cycles.

なお、以上の各実施例によれば、空燃比精度の向上に伴
い、燃費を従来例に較べて2.7%、排気ガスの性能と
しては、120Orpmの−300m m Hgの運転
条件の下でHCを8.7%改善できることが確認された
。また、運転性については、アイドル時のエンジン回転
数の変動を16゜7%、極低速走行時のサージについて
も感応評価では改善できることが確認された。
In addition, according to each of the above embodiments, with the improvement of air-fuel ratio accuracy, the fuel consumption was reduced by 2.7% compared to the conventional example, and the exhaust gas performance was improved under the operating conditions of -300 mm Hg at 120 Orpm. It was confirmed that HC could be improved by 8.7%. Regarding drivability, a responsive evaluation confirmed that engine speed fluctuations during idling could be reduced by 16.7%, and surges during extremely low-speed driving could be improved.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、各気筒の燃料噴射量(燃
料噴射パルス幅)を算出するにあたり、(1)自身の吸
入空気量の吸入行程量積算値を用いて行なうか、(2)
或いは他の気筒の吸入行程時の吸入空気量検出値を用い
て行なう場合には、各気筒の吸入空気量偏差値により補
正を行なうことで、燃料量を決定するので、気筒間の空
燃比のばらつき及びサイクル毎の空燃比の変動を防止す
ることができる。また、このような効果を奏する結果、
燃費、排気ガス性能及び運転性を改善することができる
As described above, according to the present invention, when calculating the fuel injection amount (fuel injection pulse width) of each cylinder, either (1) it is performed using the integrated value of the intake stroke amount of its own intake air amount, or (2)
Alternatively, if the intake air amount detected during the intake stroke of other cylinders is used, the fuel amount is determined by making corrections based on the intake air amount deviation value of each cylinder, so the air-fuel ratio between cylinders is determined. It is possible to prevent variations and fluctuations in the air-fuel ratio from cycle to cycle. In addition, as a result of producing such an effect,
Fuel efficiency, exhaust gas performance, and drivability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示すタイミングチャート
、第2図は本発明の適用対象となる自動車エンジンシス
テムの構成図、第3図はその制御系統図、第4図は第1
実施例の燃料噴射制御を行なう場合のブロック回路図、
第5図はそのフローチャート、第6図及び第7図は本発
明と従来例のエンジンテス1へ結果を示す比較説明図、
第8図は本発明の第2実施例を示すタイミングチャート
、第9図は本発明の第3実施例を示すブロック回路図、
第10図はそのフローチャート、第11図はエンジン運
転領域の一例をエンジン回転数と吸入空気量との関係で
示す気筒別補正領域図、第12図は第3実施例に用いる
気筒別補正レジスタの説明図、第13図は従来の燃料噴
射制御の一例を示すタイミングチャートである。 3・・空気流量計、7・・・エンジン、15・・コント
ロールユニット、16・・クランク角センサ内蔵ディス
トリビュータ、A、A’・・気筒判別手段、B。 B′・・・吸入空気量検出手段、c、c’・・・燃料噴
射パルス幅算出手段(補正手段)、D、D’・・・記憶
手段、E、E’・・燃料噴射弁駆動手段、F′・・工〆 乙 (イ疋Aそ) 体feA) $7 昭 ブイクル斂 (四)
FIG. 1 is a timing chart showing a first embodiment of the present invention, FIG. 2 is a configuration diagram of an automobile engine system to which the present invention is applied, FIG. 3 is a control system diagram thereof, and FIG.
A block circuit diagram when performing fuel injection control of the embodiment,
FIG. 5 is a flowchart, and FIGS. 6 and 7 are comparative explanatory diagrams showing the results of engine test 1 of the present invention and the conventional example.
FIG. 8 is a timing chart showing a second embodiment of the present invention, FIG. 9 is a block circuit diagram showing a third embodiment of the present invention,
FIG. 10 is a flowchart, FIG. 11 is a cylinder-by-cylinder correction area diagram showing an example of the engine operating range in terms of the relationship between engine speed and intake air amount, and FIG. 12 is a cylinder-by-cylinder correction register used in the third embodiment. The explanatory diagram, FIG. 13, is a timing chart showing an example of conventional fuel injection control. 3... Air flow meter, 7... Engine, 15... Control unit, 16... Distributor with built-in crank angle sensor, A, A'... Cylinder discrimination means, B. B'...Intake air amount detection means, c, c'...Fuel injection pulse width calculation means (correction means), D, D'...Storage means, E, E'...Fuel injection valve drive means , F'... 工〆〆〆〆〆〆〆〆〆〆〆〆 (〆〆〆〆〆〆) $7

Claims (1)

【特許請求の範囲】 1、エンジンの吸入空気量を検出し、この検出値に基づ
いて燃料噴射弁の噴射燃料量を算出し、所定のタイミン
グで燃料噴射を実行する電子制御燃料噴射方式において
、 各気筒の吸入行程毎に、所定の時間間隔で複数回数の吸
入空気量サンプリングを行ない、これらのサンプリング
値を積算して各気筒の吸入空気量を検出し、この吸入空
気量の検出値を、当該吸入空気量を検出した自身の気筒
の次回に行なわれる燃料噴射の燃料量算出データとして
用いることを特徴とする燃料噴射制御方法。 2、エンジンの吸入空気量を検出し、この検出値に基づ
いて燃料噴射弁の噴射燃料量を算出し、所定のタイミン
グで燃料噴射を実行する電子制御燃料噴射方式において
、 燃料噴射時期を各気筒の排気行程の中に設定し、 定常走行運転時には、各気筒の吸入行程毎に、所定の時
間間隔で複数回数の吸入空気量サンプリングを行ない、
これらのサンプリング値を積算して各気筒の吸入空気量
を検出し、この吸入空気量の検出値を、当該吸入空気量
を検出した自身の気筒の次回に行なわれる燃料噴射の燃
料量算出データとして用い、 加減速等の過渡運転時には、各気筒の燃料噴射時期直前
に吸入行程にある他の気筒の吸入空気量を検出して、こ
の検出値を現在燃料噴射の対象となっている気筒の燃料
量算出データとして用いることを特徴とする燃料噴射制
御方法。 3、エンジンの吸入空気量を検出し、この検出値に基づ
いて燃料噴射弁の噴射燃料量を算出し、所定のタイミン
グで燃料噴射を実行する電子制御燃料噴射方式において
、 各気筒の燃料噴射時期直前に吸入行程にある他の気筒の
吸入空気量を検出して、この検出値を現在燃料噴射の対
象となっている気筒の燃料量算出データとして用い、 且つこの噴射燃料量を算出する場合には、補正するモー
ドを有し、この補正モードは、各気筒の吸入行程毎に、
所定の時間間隔で複数回数の吸入空気量サンプリングを
行ない、これらのサンプリング値を積算して各気筒の吸
入空気量を求め、更に気筒同士の吸入空気量の平均値を
求めて、この平均値に対する各気筒の吸入空気量の偏差
を算出し、この偏差値で前記噴射燃料量を補正すること
を特徴とする燃料噴射制御方法。 4、第1請求項ないし第3請求項のいずれか1項におい
て、前記吸入空気量のサンプリング値の積算は、サンプ
リング値を加算し或いは加算した総数値をサンプリング
回数で除算することで行なう燃料噴射制御方法。 5、エンジンの吸入空気量を検出し、この検出値に基づ
き燃料噴射パルス幅を算出して、燃料噴射弁を駆動制御
する電子制御式燃料噴射装置において、 いずれの気筒の吸入行程であるかを判別する手段と、 エンジンの各気筒の吸入行程毎に、所定の時間間隔で複
数回数の吸入空気量サンプリングを行ない、これらのサ
ンプリング値を積算することで、各気筒の吸入空気量を
検出する手段と、吸入空気量の検出値に基づき燃料噴射
パルス幅を算出する手段と、 算出された燃料噴射パルス幅を噴射対象の気筒毎に区別
して記憶する手段と、 燃料噴射時期がくると、現在の燃料噴射対象の気筒に対
応させて、該気筒の前回の吸入行程の吸入空気量検出値
に基づき算出された燃料噴射パルス幅信号を前記記憶手
段の中から選択して、燃料噴射弁を駆動させる手段とを
、備えてなることを特徴とする燃料噴射制御装置。 6、エンジンの吸入空気量を検出し、この検出値に基づ
き燃料噴射パルス幅を算出して、燃料噴射弁を駆動制御
する電子制御式燃料噴射装置において、 各気筒の燃料噴射時期直前に吸入行程にある他の気筒の
吸入空気量を検出して、この検出値を現在燃料噴射の対
象となっている気筒の燃料噴射パルス幅算出データとし
て用いるよう設定し、 且ついずれの気筒の吸入行程であるかを判別する手段と
、 各気筒の吸入行程毎に、所定の時間間隔で複数回数の吸
入空気量サンプリングを行ない、これらのサンプリング
値を積算して各気筒の吸入空気量を検出する手段と、 これらの吸入空気量検出値から気筒同士の吸入空気量の
平均値を求めて、この平均値に対する各気筒の吸入空気
量の偏差を算出する手段と、前記偏差の算出がなされた
エンジンの運転領域を判別する手段と、 前記各気筒の偏差をエンジンの運転領域毎に区別して記
憶する手段と、 前記他の気筒の吸入空気量の検出値に基づき且つ前記偏
差のうち現在のエンジン運転領域に合った偏差を前記記
憶手段から補正要素として選択して、燃料噴射パルス幅
を算出する手段と、補正を伴って算出された燃料噴射パ
ルス幅を噴射対象の気筒毎に区別して記憶する手段と、
設定の燃料噴射時期がくると、前記記憶手段の中から現
在の燃料噴射対象の気筒に対応の燃料噴射パルス幅信号
を選択して、燃料噴射弁を駆動させる手段とを、備えて
なることを特徴とする燃料噴射制御装置。
[Claims] 1. In an electronically controlled fuel injection method that detects the intake air amount of the engine, calculates the amount of fuel injected by the fuel injection valve based on this detected value, and executes fuel injection at a predetermined timing, For each cylinder's intake stroke, the intake air amount is sampled multiple times at predetermined time intervals, these sampling values are integrated to detect the intake air amount of each cylinder, and this detected value of the intake air amount is A fuel injection control method characterized in that the intake air amount is used as fuel amount calculation data for the next fuel injection of the detected cylinder. 2. In an electronically controlled fuel injection system that detects the intake air amount of the engine, calculates the amount of fuel injected by the fuel injection valve based on this detected value, and executes fuel injection at a predetermined timing, the fuel injection timing is adjusted to each cylinder. During steady driving, the intake air amount is sampled multiple times at predetermined time intervals during each cylinder's intake stroke.
The intake air amount of each cylinder is detected by integrating these sampling values, and this detected value of the intake air amount is used as the fuel amount calculation data for the next fuel injection for the cylinder whose intake air amount has been detected. During transient operations such as acceleration and deceleration, the intake air amount of other cylinders in the intake stroke is detected immediately before the fuel injection timing of each cylinder, and this detected value is used to calculate the fuel of the cylinder currently being injected. A fuel injection control method characterized in that the fuel injection control method is used as quantity calculation data. 3. In an electronically controlled fuel injection system that detects the intake air amount of the engine, calculates the amount of fuel injected by the fuel injection valve based on this detected value, and executes fuel injection at a predetermined timing, the fuel injection timing of each cylinder is determined. When detecting the intake air amount of another cylinder that is currently in the intake stroke and using this detected value as fuel amount calculation data for the cylinder that is currently subject to fuel injection, and when calculating this injected fuel amount. has a correction mode, and this correction mode is for each intake stroke of each cylinder.
Sampling the intake air amount multiple times at predetermined time intervals, integrating these sampling values to determine the intake air amount for each cylinder, then finding the average value of the intake air amount for each cylinder, and calculating the amount of intake air from this average value. A fuel injection control method comprising: calculating a deviation in intake air amount of each cylinder, and correcting the injected fuel amount using this deviation value. 4. In any one of claims 1 to 3, the integration of the sampling values of the intake air amount is performed by adding the sampling values or dividing the total value by the number of sampling times. Control method. 5. In an electronically controlled fuel injection system that detects the intake air amount of the engine and calculates the fuel injection pulse width based on this detected value to drive and control the fuel injection valve, it is determined which cylinder is in the intake stroke. and means for detecting the intake air amount of each cylinder by sampling the intake air amount a plurality of times at predetermined time intervals for each intake stroke of each cylinder of the engine and integrating these sampling values. a means for calculating a fuel injection pulse width based on a detected value of the intake air amount; a means for storing the calculated fuel injection pulse width separately for each cylinder to be injected; A fuel injection pulse width signal calculated based on the intake air amount detection value of the previous intake stroke of the cylinder corresponding to the cylinder to which fuel is to be injected is selected from the storage means, and the fuel injection valve is driven. A fuel injection control device comprising: means. 6. In an electronically controlled fuel injection system that detects the intake air amount of the engine, calculates the fuel injection pulse width based on this detected value, and controls the fuel injection valve, the intake stroke is started immediately before the fuel injection timing of each cylinder. Detect the intake air amount of other cylinders located in the cylinder, and set this detected value to be used as fuel injection pulse width calculation data for the cylinder that is currently the target of fuel injection, and in the intake stroke of any cylinder. means for sampling the intake air amount a plurality of times at predetermined time intervals for each intake stroke of each cylinder, and integrating these sampling values to detect the intake air amount for each cylinder; Means for determining the average value of the intake air amount between cylinders from these intake air amount detection values and calculating the deviation of the intake air amount of each cylinder from this average value, and the engine operating range in which the deviation was calculated. means for discriminating the deviation of each cylinder for each engine operating range; and means for storing the deviation of each cylinder separately for each engine operating range, based on the detected value of the intake air amount of the other cylinder, means for calculating the fuel injection pulse width by selecting the deviation from the storage means as a correction element; and means for separately storing the fuel injection pulse width calculated with the correction for each cylinder to be injected;
When the set fuel injection timing comes, the fuel injection pulse width signal corresponding to the cylinder to which fuel is currently injected is selected from the storage means to drive the fuel injection valve. Characteristic fuel injection control device.
JP8315089A 1989-04-01 1989-04-01 Fuel injection control method and device Expired - Fee Related JP2755671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8315089A JP2755671B2 (en) 1989-04-01 1989-04-01 Fuel injection control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8315089A JP2755671B2 (en) 1989-04-01 1989-04-01 Fuel injection control method and device

Publications (2)

Publication Number Publication Date
JPH02264141A true JPH02264141A (en) 1990-10-26
JP2755671B2 JP2755671B2 (en) 1998-05-20

Family

ID=13794200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8315089A Expired - Fee Related JP2755671B2 (en) 1989-04-01 1989-04-01 Fuel injection control method and device

Country Status (1)

Country Link
JP (1) JP2755671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016262A1 (en) * 1994-11-17 1996-05-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection control device for internal combustion engine and fuel injection control method for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023042B2 (en) * 2008-11-07 2012-09-12 本田技研工業株式会社 Fuel injection control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016262A1 (en) * 1994-11-17 1996-05-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection control device for internal combustion engine and fuel injection control method for internal combustion engine

Also Published As

Publication number Publication date
JP2755671B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
JPS639093B2 (en)
JPH0315645A (en) Engine control device
JPS62162919A (en) Detector for suction air quantity of engine
JPH08232752A (en) Output fluctuation detecting device and control device for internal combustion engine
JPH04128535A (en) Electronically controlled fuel injection of internal combustion engine
JPH0315648A (en) Ignition timing control device for internal combustion engine
JPS59103930A (en) Control method of internal-combustion engine
JPH09189281A (en) Ignition timing controller for internal combustion engine
JPS6263147A (en) Air-fuel ratio controlling method for internal combustion engine and device thereof
JPH0575902B2 (en)
JPS6278449A (en) Fuel injection controller of internal combustion engine
KR0142895B1 (en) Fuel injection control system for internal combustion engine
JPH02264141A (en) Method and device for controlling fuel injection
JPS63124842A (en) Electronic control fuel injection device
JP2555207B2 (en) Fuel supply device for internal combustion engine
JP2749138B2 (en) Combustion abnormality detection device for internal combustion engine
JPS60261947A (en) Accelerative correction of fuel injector
JP3095326B2 (en) Electronic control fuel injection system
JPS61157741A (en) Detecting device of intake air quantity
JP2627798B2 (en) Intake pressure detection device for internal combustion engine
JP2575450B2 (en) Fuel control device for internal combustion engine
JPH051614A (en) Control device for internal combustion engine
JPS6035156A (en) Fuel injection device for internal-combustion engine
JPS63140848A (en) Torque variation detector for internal combustion engine
JPH0735755B2 (en) Output sensitivity correction device for combustion pressure sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees