JPH02264111A - Two-cycle internal combustion engine - Google Patents

Two-cycle internal combustion engine

Info

Publication number
JPH02264111A
JPH02264111A JP8152389A JP8152389A JPH02264111A JP H02264111 A JPH02264111 A JP H02264111A JP 8152389 A JP8152389 A JP 8152389A JP 8152389 A JP8152389 A JP 8152389A JP H02264111 A JPH02264111 A JP H02264111A
Authority
JP
Japan
Prior art keywords
exhaust
air
pipe
pipes
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8152389A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hirose
雄彦 広瀬
Kenichi Nomura
野村 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8152389A priority Critical patent/JPH02264111A/en
Publication of JPH02264111A publication Critical patent/JPH02264111A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Abstract

PURPOSE:To enable the exhaust gas having an air-fuel ratio nearly equal to the inside the cylinder to flow into a first exhaust passage by making the flow passage resistance of the first exhaust passage branched in the vicinity of an exhaust port greater than that of a second exhaust passage. CONSTITUTION:Exhaust branch pipes 45 to 48 are branched into first exhaust pipes 45b to 48b and second exhaust pipes 45c to 48c at the branch parts 45a to 48a in the vicinity of exhaust ports 33 to 36. And the first exhaust pipes 45b to 48b are formed so as to extend in the streamline direction of exhaust gas at the branch parts 45a to 48a, and also the second exhaust pipes 45c to 48c are formed so as to extend in the direction intersecting the streamline of exhaust gas at the branch parts 45a to 48a. And the flow passage resistance of the first exhaust pipes 45b to 48b is made greater than that of the second exhaust pipes 45c to 48c. Accordingly, during the blowdown period, since the flow velocity of exhaust gas is high, burned gas including little fresh air flows in the first exhaust pipes 45b to 48b, so that the exhaust gas having an air-fuel ratio nearly equal to that of the mixture inside the cylinder can be allowed to flow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2サイクル内燃機関に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a two-stroke internal combustion engine.

〔従来の技術〕[Conventional technology]

実開昭62−57733号公報には2サイクル内燃機関
の燃焼室上部に給気弁と排気弁を設けて給気および排気
を弁方式にした2サイクル内燃機関が開示〔発明が解決
しようとする課題〕 2サイクル内燃機関では、給気ポートおよび排気ボー1
〜がともに開いている期間かあり、このため燃焼室内に
供給された新気が排気ポート内に吹き抜ける現象が生ず
る。従って、2サイクル内燃機関の排気通路には、燃焼
室内での混合気の燃焼による既燃ガスの他に、吹き抜け
による新気が流れることとなり、新気を含まない既燃ガ
スだけが流れる排気通路を得ることができない。このた
め、例えば以下のような不都合を生ずる。すなわち、排
気通路を流れる既燃ガスは吹き抜けによる新気によって
リーン化されるなめ、排気通路に02センサを設けて排
気通路を流れる排気の空燃比を検出しても、気筒内の空
燃比を検出することができない。また、排気通路に三元
触媒または還元触媒を設けたとしても、排気は新気によ
ってリーン化され還元雰囲気てないためNOxを浄化す
ることができない。仮に、排気を理論空燃比または理論
空燃比より少しだけリッチにすることによって三元触媒
または還元触媒によってNOxを浄化しようとすると、
気筒内の空燃比を大幅にリッチにする必要があり燃費が
大幅に悪化してしまう。
Japanese Utility Model Application Publication No. 62-57733 discloses a two-stroke internal combustion engine in which an air intake valve and an exhaust valve are provided in the upper part of the combustion chamber of the two-stroke internal combustion engine, and air intake and exhaust are carried out in a valve system. Issue] In a two-stroke internal combustion engine, the intake port and exhaust port
There is a period when both of the two are open, and this causes a phenomenon in which fresh air supplied into the combustion chamber blows through into the exhaust port. Therefore, in the exhaust passage of a two-stroke internal combustion engine, in addition to the burnt gas from the combustion of the air-fuel mixture in the combustion chamber, fresh air flows through the atrium, and only burnt gas without fresh air flows through the exhaust passage. can't get it. This causes, for example, the following inconveniences. In other words, the burnt gas flowing through the exhaust passage is made lean by fresh air from the blow-through, so even if an 02 sensor is installed in the exhaust passage to detect the air-fuel ratio of the exhaust gas flowing through the exhaust passage, it will not detect the air-fuel ratio in the cylinder. Can not do it. Further, even if a three-way catalyst or a reduction catalyst is provided in the exhaust passage, NOx cannot be purified because the exhaust is made lean by fresh air and there is no reducing atmosphere. If we attempt to purify NOx using a three-way catalyst or a reduction catalyst by making the exhaust gas at the stoichiometric air-fuel ratio or slightly richer than the stoichiometric air-fuel ratio,
It is necessary to make the air-fuel ratio in the cylinder significantly richer, resulting in a significant deterioration in fuel efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するため本発明によれば、機関排気通
路を排気ポート近傍の分岐部において第1排気通路と第
2排気通路とに分岐せしめ、第1排気通路を前記分岐部
において排気の流線方向に延びるように形成すると共に
第2排気通路を分岐部において排気の流線と交差する方
向に延びるように形成し、第1排気通路の流路抵抗が第
2排気通路の流路抵抗より大きくなるようにしている。
In order to solve the above-mentioned problems, according to the present invention, the engine exhaust passage is branched into a first exhaust passage and a second exhaust passage at a branching part near the exhaust port, and the first exhaust passage is connected to the branching part so that the exhaust gas flows. The second exhaust passage is formed to extend in the linear direction, and the second exhaust passage is formed to extend in a direction intersecting the streamline of the exhaust at the branch part, so that the flow resistance of the first exhaust passage is greater than the flow resistance of the second exhaust passage. I'm trying to get bigger.

〔作 用〕[For production]

ブロータウン期間においては排気通路に流入する排気の
流速は速いため排気の大部分は、排気の流線方向に形成
された第1排気通路内に流入する。
During the blow-down period, the flow rate of the exhaust gas flowing into the exhaust passage is high, so most of the exhaust gas flows into the first exhaust passage formed in the streamline direction of the exhaust gas.

このときの排気は全て既燃カスである。一方、掃気期間
においては排気通路に流入する排気の流速は遅いため排
気の大部分は、流路抵抗の小さい第2排気通路内に流入
する。このときの排気の大部分は新気である。
The exhaust gas at this time is all burnt scum. On the other hand, during the scavenging period, the flow rate of the exhaust gas flowing into the exhaust passage is slow, so that most of the exhaust gas flows into the second exhaust passage where the flow resistance is low. Most of the exhaust gas at this time is fresh air.

斯くして第1排気通路には新気のほとんど混じらない既
燃ガスが流れ、第2排気通路には大部分が新気である排
気か流れる。
Thus, burnt gas with little fresh air mixed in flows through the first exhaust passage, and exhaust gas, which is mostly fresh air, flows through the second exhaust passage.

〔実施例〕〔Example〕

第1図は第1の実施例の4気筒2サイクル内燃機関を示
す。第1図を参照すると、]から4は第1から第4気筒
、5から8は排気弁、13から16は給気弁、21から
24は給気ポート、29から32は夫々気筒1から4内
に燃料を噴射するエアブラスト弁、33から36は排気
ポート、41から44は点火栓を夫々示す。排気枝管4
5から48は夫々排気ボー1−33から36および排気
弁5から8を介して各気筒1から4に連通される。各排
気枝管45から48は各排気ボー1−33から36近傍
の分岐部45a、 、 46a、 、 47aおよび4
8aで夫々第1排気技管45b 、 46b 、 47
b 、 48bと第2排気技管45c 、 46c 、
 47c 、 48cとに分岐せしめられ、合流部45
d 、 46d 、 47d 、 48dで再び合流せ
しめられる。各第1排気技管45bから48bの途中に
は流体ダイオード60から63および小容量の三元触媒
49から52が夫々配設され、第1気筒1および第4気
筒4の各第1排気技管45b、48bには、各三元触媒
49 、52の下流位置に02センサ53 、54が夫
々配設される。排気枝管45と排気枝管46とは合流せ
しめられて第1排気管55に接続される。第1排気管5
5の途中には酸化触媒57が配設される。同様に排気枝
管47と排気枝管46とは合流せしめられて第2排気管
56に接続され、この第2排気管56の途中には酸化触
媒58が配設される。電子制御ユニッ1〜(ECU) 
70は02センサ53および54に接続される。またE
CU 70はエアブラスト弁29から32に接続される
FIG. 1 shows a four-cylinder, two-stroke internal combustion engine according to a first embodiment. Referring to FIG. 1, ] to 4 are cylinders 1 to 4, 5 to 8 are exhaust valves, 13 to 16 are intake valves, 21 to 24 are intake ports, and 29 to 32 are cylinders 1 to 4, respectively. 33 to 36 are exhaust ports, and 41 to 44 are spark plugs, respectively. Exhaust branch pipe 4
5 to 48 communicate with each cylinder 1 to 4 via exhaust bows 1-33 to 36 and exhaust valves 5 to 8, respectively. Each of the exhaust branch pipes 45 to 48 has branch portions 45a, 46a, 47a and 4 near each exhaust bow 1-33 to 36.
8a, the first exhaust pipes 45b, 46b, 47, respectively.
b, 48b and second exhaust pipes 45c, 46c,
It is branched into 47c and 48c, and a confluence part 45
d, 46d, 47d, and 48d. Fluid diodes 60 to 63 and small-capacity three-way catalysts 49 to 52 are disposed in the middle of each first exhaust pipe 45b to 48b, respectively, and each first exhaust pipe of the first cylinder 1 and the fourth cylinder 4 02 sensors 53 and 54 are disposed downstream of the three-way catalysts 49 and 52 in the three-way catalysts 45b and 48b, respectively. The exhaust branch pipe 45 and the exhaust branch pipe 46 are merged and connected to a first exhaust pipe 55. First exhaust pipe 5
An oxidation catalyst 57 is disposed in the middle of 5. Similarly, the exhaust branch pipe 47 and the exhaust branch pipe 46 are merged and connected to a second exhaust pipe 56, and an oxidation catalyst 58 is disposed in the middle of the second exhaust pipe 56. Electronic control unit 1~ (ECU)
70 is connected to 02 sensors 53 and 54. Also E
CU 70 is connected to air blast valves 29-32.

各気筒1から4とも同様の構成であるため、第2図から
第4図を参照して第1気筒1について説明する。第2図
から第4図を参照すると、7]はシリンダブロック、7
2はシリンダブロック71内で往復動するピストン、7
3はシリンダブロック71上に固締されたシリンダヘッ
ド、74はピストン2の頂面とシリンダヘッド内壁面7
38間に形成された燃焼室、41は点火栓を夫々示す。
Since each cylinder 1 to 4 has a similar configuration, the first cylinder 1 will be explained with reference to FIGS. 2 to 4. Referring to FIGS. 2 to 4, 7] is a cylinder block, 7
2 is a piston that reciprocates within the cylinder block 71;
3 is the cylinder head fixed on the cylinder block 71, 74 is the top surface of the piston 2 and the inner wall surface 7 of the cylinder head.
A combustion chamber formed between 38 and 41 indicates an ignition plug, respectively.

シリンダヘッド73の内壁面73a上には凹溝75が形
成され、それによってシリンダヘッド内壁面73aは凹
溝75の底壁面をなすシリンダヘッド内壁面部分73b
と、このシリンダヘッド内壁面部分73bに対し燃焼室
74に向けて隆起したシリンダヘッド内壁面部分73c
とにより構成されることになる。シリンダヘッド内壁面
部分73b上には一対の給気弁13が配置され、シリン
ダヘッド内壁面部分73c上には単一の排気弁5が配置
される。各シリンダヘッド内壁面部分73b、73cは
ほぼ垂直をなず凹溝75の周壁78を介して互いに接続
されており、この周壁78の一側に一対の給気弁13が
配置され、他側に排気弁5が配置される。
A groove 75 is formed on the inner wall surface 73a of the cylinder head 73, so that the cylinder head inner wall surface 73a forms the bottom wall surface of the groove 75.
and a cylinder head inner wall surface portion 73c that is raised toward the combustion chamber 74 with respect to this cylinder head inner wall surface portion 73b.
It will be composed of A pair of air supply valves 13 are arranged on the cylinder head inner wall surface portion 73b, and a single exhaust valve 5 is arranged on the cylinder head inner wall surface portion 73c. The inner wall portions 73b and 73c of each cylinder head are substantially perpendicular and are connected to each other via a circumferential wall 78 of the groove 75, and a pair of air supply valves 13 are disposed on one side of the circumferential wall 78, and on the other side. An exhaust valve 5 is arranged.

この周壁78は給気弁13の周縁部に極めて近接配置さ
れかつ給気弁13の周縁部に沿って円弧状に延びるマス
ク壁78aと、両給気弁13間に形成された部分マスク
壁78bと、燃焼室74の周壁面と給気弁1.3間に形
成された新気ガイド壁78cとを具備する。マスク壁7
8cは第2図において最大リフト位置にある給気弁13
よりも下方まで燃焼室74に向けて延びており、従って
排気弁5側に位置する給気弁13周縁部と弁座79間の
開口は給気弁13の開弁期間全体に亘ってマスク壁78
aにより閉鎖されることになる。一方、部分マスク壁7
8bは一対のマスク壁78aの間から一対の給気弁13
の間に向けて延びている。この部分マスク壁78bの高
さはマスク壁78aの高さよりも低く形成されている。
This peripheral wall 78 includes a mask wall 78a that is arranged very close to the peripheral edge of the air supply valve 13 and extends in an arc shape along the peripheral edge of the air supply valve 13, and a partial mask wall 78b that is formed between both air supply valves 13. and a fresh air guide wall 78c formed between the peripheral wall surface of the combustion chamber 74 and the air supply valve 1.3. mask wall 7
8c is the air supply valve 13 at the maximum lift position in FIG.
The opening between the peripheral edge of the air intake valve 13 located on the exhaust valve 5 side and the valve seat 79 is connected to the mask wall throughout the opening period of the air intake valve 13. 78
It will be closed by a. On the other hand, partial mask wall 7
8b is a pair of air supply valves 13 from between a pair of mask walls 78a.
It extends towards the middle. The height of this partial mask wall 78b is formed lower than the height of the mask wall 78a.

従って給気弁13のリフト量が小さいとき給気弁13と
その弁座79間に形成される開口は部分マスク壁78b
によって閉鎖され、給気弁13のリフト量が大きくなる
と給気弁13とその弁座79間は燃焼室74内に開口す
る。第2図から第4図に示す実施例では部分マスク壁7
8bの下壁面かシリンダヘッド内壁面部分73bと平行
をなしているがこの部分マスク壁78bの下壁面をシリ
ンダヘッド内壁面部分73bに対して傾斜配置すること
もできるし、シリンダヘッド内壁面部分73cの延長面
上に形成することもできる。点火栓41は燃焼室74の
中心に位置するように部分マスク壁78bと排気弁5間
のシリンダヘッド内壁面部分73c上に配置される。シ
リンタヘッド73内には各給気弁13に対して夫々給気
ポート21が、排気弁5に対して排気ボー1〜33が形
成される。
Therefore, when the lift amount of the air supply valve 13 is small, the opening formed between the air supply valve 13 and its valve seat 79 is the partial mask wall 78b.
When the lift amount of the intake valve 13 increases, the space between the intake valve 13 and its valve seat 79 opens into the combustion chamber 74. In the embodiment shown in FIGS. 2 to 4, the partial mask wall 7
The lower wall surface of the partial mask wall 78b is parallel to the cylinder head inner wall surface portion 73b, but the lower wall surface of this partial mask wall 78b may be arranged at an angle with respect to the cylinder head inner wall surface portion 73b, or the cylinder head inner wall surface portion 73c It can also be formed on an extended surface of. The ignition plug 41 is arranged on the cylinder head inner wall surface portion 73c between the partial mask wall 78b and the exhaust valve 5 so as to be located at the center of the combustion chamber 74. In the cylinder head 73, an air supply port 21 is formed for each air intake valve 13, and exhaust bows 1 to 33 are formed for each exhaust valve 5.

第3図に示されるように各給気ボー1〜21は機関駆動
の機械式過給機75およびスロワ1〜ル弁76を介して
図示しないエアクリーナに接続される。
As shown in FIG. 3, each air supply bow 1-21 is connected to an air cleaner (not shown) via an engine-driven mechanical supercharger 75 and throat valves 1-76.

一方、第3図および第4図に示されるように一対の給気
弁13間に位置するシリンダヘッド内壁面73b上には
圧縮空気によって燃料を噴射する、いわゆるエアプラス
1〜弁2つが配置される。このエアブラスト弁29は圧
縮空気通路77と、アクチュエータ78により駆動され
てノズルロアつの開閉制御を行う開閉弁80と、圧縮空
気通路77がら分岐された圧縮空気通路81と、圧縮空
気通路81内に向けて燃料を噴射する燃料噴射弁82と
を具備する。圧縮空気通路81は機関駆動の圧縮空気供
給ポンプ83に連結されており、従って圧縮空気通路7
7 、81は常時圧縮空気で満たされている。燃料噴射
弁82からは圧縮空気通路81内に向けて燃料が噴射さ
れ、この後に開閉弁80、即ちエアブラスト弁29が開
弁せしめられる。開閉弁80、即ちエアブラスト弁2つ
が開弁すると圧縮空気と共に噴射燃料がノズル7つから
燃焼室74内に噴射される。
On the other hand, as shown in FIGS. 3 and 4, on the inner wall surface 73b of the cylinder head located between the pair of intake valves 13, so-called Air Plus valves 1 to 2, which inject fuel using compressed air, are arranged. Ru. The air blast valve 29 is connected to a compressed air passage 77, an on-off valve 80 that is driven by an actuator 78 to control opening and closing of the nozzle lower, a compressed air passage 81 branched from the compressed air passage 77, and a valve 80 that is directed into the compressed air passage 81. and a fuel injection valve 82 that injects fuel. The compressed air passage 81 is connected to an engine-driven compressed air supply pump 83, and therefore the compressed air passage 7
7 and 81 are always filled with compressed air. Fuel is injected from the fuel injection valve 82 into the compressed air passage 81, and then the on-off valve 80, that is, the air blast valve 29, is opened. When the on-off valves 80, ie, the two air blast valves, are opened, the injected fuel is injected into the combustion chamber 74 from the seven nozzles together with compressed air.

第2図を参照すると、分岐部45aにおいて第1排気技
管45bは排気の流線方向にまっすぐに延びており、第
2排気技管45cは排気の流線とほぼ直角をなして交差
している。流体ダイオード60は、分岐部45aと三元
触媒49との間の第1排気技管45b内に配設され、第
1排気技管45の流路抵抗を増大せしめている。流体ダ
イオード60は第5図に示されるような中空円錐状体6
5をその先細部65aが排気の流線の下流側に向くよう
に例えば3個配列して構成される。従って流体ダイオー
ド60は排気の流線方向への流路抵抗よりも排気の流線
と逆方向への流路抵抗の方か大きい。第1排気技管45
bには流体ダイオード60および三元触媒49が配設さ
れているため、分岐部45aから合流部45dに至る第
1排気技管45bの流路抵抗は第2排気技管45cの流
路抵抗の約2倍となる。
Referring to FIG. 2, at the branch portion 45a, the first exhaust pipe 45b extends straight in the direction of the exhaust flow line, and the second exhaust pipe 45c intersects the exhaust flow line at almost a right angle. There is. The fluid diode 60 is disposed within the first exhaust pipe 45b between the branch portion 45a and the three-way catalyst 49, and increases the flow resistance of the first exhaust pipe 45. The fluidic diode 60 is a hollow cone 6 as shown in FIG.
5 are arranged in such a manner that their tapered portions 65a face downstream of the exhaust flow line. Therefore, the flow path resistance of the fluid diode 60 in the direction opposite to the exhaust streamline is greater than the flow path resistance in the direction of the exhaust streamline. 1st exhaust pipe 45
Since a fluid diode 60 and a three-way catalyst 49 are disposed in the section b, the flow resistance of the first exhaust pipe 45b from the branching part 45a to the merging part 45d is equal to the flow resistance of the second exhaust pipe 45c. Approximately twice as much.

第6図に給排気弁の開閉時期を示す。各気筒1から4と
も同様に動作するため、第1気筒1について説明する。
Figure 6 shows the opening and closing timing of the supply and exhaust valves. Since each cylinder 1 to 4 operates in the same way, the first cylinder 1 will be explained.

第1図、第2図および第6図を参照すると、クランク角
EOにおいて排気弁5が開弁せしめられる。このとき燃
焼室74内の圧力は高いため燃焼室74内の既燃ガスが
急激に排気ポート33内に排出される。このため排気枝
管45内に流入する排気の流速が高く、大部分の排気は
、排気の流線方向に延びる第1.排気枝管45b内に流
入する。一方、第2排気技管45cは排気の流線に対し
ほぼ直角方向に延びているため第2排気技管45cには
ほとんど排気は流入しない。IOにおいて給気弁13か
開弁するまでのブローダウン期間においては、第1排気
技管45b内には既燃カスだくっ) けが流入する。続いてクランク角■○において、給気弁
13が開弁せしめられると、新気が給気ポート21から
燃焼室74内に流入し、掃気が開始されるが、給気弁1
3の開口に対してマスク壁78aが設けられているため
に新気は給気弁13下方のシリンダ内壁面に沿って下方
に向かう。従って第2図において矢印Sで示すように燃
焼室74内の既燃ガスは新気により徐々に押しやられて
排気ポート11内に排出され、斯くして燃焼室74内に
は強力なループ掃気が得られることになり、掃気の初期
において新気が排気ポート33 、37に吹き抜けるこ
とはなく既燃ガスだけが排出される。
Referring to FIGS. 1, 2, and 6, the exhaust valve 5 is opened at a crank angle EO. At this time, since the pressure within the combustion chamber 74 is high, the burned gas within the combustion chamber 74 is rapidly discharged into the exhaust port 33. Therefore, the flow velocity of the exhaust gas flowing into the exhaust branch pipe 45 is high, and most of the exhaust gas flows into the first pipe extending in the streamline direction of the exhaust gas. It flows into the exhaust branch pipe 45b. On the other hand, since the second exhaust pipe 45c extends substantially perpendicular to the streamline of the exhaust gas, almost no exhaust gas flows into the second exhaust pipe 45c. During the blowdown period until the air supply valve 13 opens at IO, burnt debris flows into the first exhaust pipe 45b. Next, when the intake valve 13 is opened at the crank angle ■○, fresh air flows into the combustion chamber 74 from the intake port 21 and scavenging is started.
Since the mask wall 78a is provided for the opening 3, fresh air flows downward along the inner wall surface of the cylinder below the air supply valve 13. Therefore, as shown by arrow S in FIG. 2, the burnt gas in the combustion chamber 74 is gradually pushed away by fresh air and discharged into the exhaust port 11, and thus a strong loop scavenging air is created in the combustion chamber 74. As a result, fresh air does not blow through to the exhaust ports 33 and 37 in the initial stage of scavenging, and only the burnt gas is exhausted.

掃気行程初期において排気枝管45内に流入する排気の
流速は比較的高いため、依然として第1排気技管45b
内に大部分の排気が流入する。このとき排気には新気が
含まれていない。掃気行程が開始され、ループ掃気によ
って多量の新気を含む排気が排気ポート33内に排出さ
れるときには、燃焼室74内の圧力はほぼ大気圧近くま
で低下している。このため排気管45内に流入する排気
の流速はブローダウン時に比較してかなり低く、従って
排気の大部分は流路抵抗の小さい第2排気技管45c内
に流入する。斯くして掃気の初期から排気弁5がECに
おいて閉弁するまでの間にも第1排気技管45b内には
新気はほとんど流れない。一方、第2排気技管45c内
を流れる排気には新気が多量に含まれる。
Since the flow velocity of the exhaust gas flowing into the exhaust branch pipe 45 at the beginning of the scavenging stroke is relatively high, the first exhaust pipe 45b is still
Most of the exhaust gas flows into the tank. At this time, the exhaust gas does not contain fresh air. When the scavenging stroke is started and exhaust gas containing a large amount of fresh air is discharged into the exhaust port 33 by loop scavenging, the pressure within the combustion chamber 74 has decreased to approximately atmospheric pressure. For this reason, the flow velocity of the exhaust gas flowing into the exhaust pipe 45 is considerably lower than that during blowdown, and therefore most of the exhaust gas flows into the second exhaust pipe 45c, which has low flow resistance. Thus, almost no fresh air flows into the first exhaust pipe 45b from the beginning of scavenging until the exhaust valve 5 closes at EC. On the other hand, the exhaust gas flowing through the second exhaust pipe 45c contains a large amount of fresh air.

このように第1排気技管45bを流れる排気にはほとん
ど新気は含まれておらず、従って燃焼室74内の混合気
の空燃比とほぼ等しい空燃比を有する既燃ガスのみが流
れることとなる。従って第1排気管45bに02センサ
53を設けることによって、燃焼室74内の混合気の空
燃比を精度良く検出することができる。この02センサ
53の検出信号に基づいてエアブラスト弁2つからの燃
料噴射量を制御することにより燃焼室74内に形成され
る混合気の空燃比を理論空燃比に制御することができる
。これにより、第1排気技管45b内を流れる排気を理
論空燃比とすることができ、排気中のNOx 、 IC
およびCOを三元触媒4つによって浄化することができ
る。
In this way, the exhaust gas flowing through the first exhaust pipe 45b contains almost no fresh air, and therefore only burned gas having an air-fuel ratio approximately equal to the air-fuel ratio of the air-fuel mixture in the combustion chamber 74 flows. Become. Therefore, by providing the 02 sensor 53 in the first exhaust pipe 45b, the air-fuel ratio of the air-fuel mixture in the combustion chamber 74 can be detected with high accuracy. By controlling the fuel injection amount from the two air blast valves based on the detection signal of the 02 sensor 53, the air-fuel ratio of the air-fuel mixture formed in the combustion chamber 74 can be controlled to the stoichiometric air-fuel ratio. As a result, the exhaust gas flowing inside the first exhaust pipe 45b can be brought to the stoichiometric air-fuel ratio, reducing NOx and IC in the exhaust gas.
and CO can be purified by four three-way catalysts.

第2排気技管45cを流れる排気は第1排気技管45b
を流れる浄化された排気と合流した後第1排気管55お
よび酸化触媒57に流入する。このとき第2排気技管4
5cを流れる排気中に含まれる少量のHCおよびCOl
および第1排気技管45bを流れる排気中の未浄化のH
Cおよびcoは酸化触媒57によって浄化される。なお
、第2排気技管45cを流れる排気には新気が多く含ま
れているので酸化触媒57を流れる排気はリーンとなっ
ており、このため酸化触媒57におけるHCおよびCO
の浄化を促進することができる。このため、2次空気の
供給は不要となる。
The exhaust gas flowing through the second exhaust pipe 45c is the first exhaust pipe 45b.
It flows into the first exhaust pipe 55 and the oxidation catalyst 57. At this time, the second exhaust pipe 4
A small amount of HC and COl contained in the exhaust gas flowing through 5c
and unpurified H in the exhaust gas flowing through the first exhaust pipe 45b.
C and co are purified by the oxidation catalyst 57. Note that the exhaust gas flowing through the second exhaust pipe 45c contains a large amount of fresh air, so the exhaust gas flowing through the oxidation catalyst 57 is lean, and therefore the HC and CO in the oxidation catalyst 57 are
can promote purification. Therefore, supply of secondary air becomes unnecessary.

なお、02センサは各気筒1から4の第1排気技管45
bから48bに夫々設けることが好ましいが、本実施例
では第1排気技管45b、48bにたけ02センサ53
 、54を設け、第2気筒2および第3気筒3の空燃比
は各02センサ53および54の検出結果に基づいて夫
々制御される。
Note that the 02 sensor is connected to the first exhaust pipe 45 of each cylinder 1 to 4.
Although it is preferable to provide the 02 sensor 53 in each of the first exhaust pipes 45b and 48b, in this embodiment, the 02 sensor 53
, 54 are provided, and the air-fuel ratios of the second cylinder 2 and the third cylinder 3 are controlled based on the detection results of the 02 sensors 53 and 54, respectively.

また、第1の実施例では第1排気技管45bから48b
に設けられる触媒に三元触媒4つから52を用いたが、
三元触媒のかわりに還元触媒を用いてもよい。この場合
燃焼室74内の混合気を理論空燃比より若干リッチとし
、第1排気技管45bから48bを流れる既燃ガスを還
元雰囲気とすることによってNOxの浄化を促進させる
。また、還元触媒では三元触媒のように混合気を所定の
空燃比に制御する必要がないため02センサを用いて空
燃比をフィードバック制御する必要はない。また、この
場合、還元触媒で浄化されないHCおよびCOは第1お
よび第2排気管55 、56に設けられた酸化触媒によ
って浄化することができる。
In addition, in the first embodiment, the first exhaust pipes 45b to 48b
4 to 52 three-way catalysts were used as the catalyst installed in the
A reduction catalyst may be used instead of a three-way catalyst. In this case, the air-fuel mixture in the combustion chamber 74 is made slightly richer than the stoichiometric air-fuel ratio, and the burned gas flowing through the first exhaust pipes 45b to 48b is made into a reducing atmosphere, thereby promoting purification of NOx. Further, unlike the three-way catalyst, the reduction catalyst does not require controlling the air-fuel mixture to a predetermined air-fuel ratio, so there is no need to feedback-control the air-fuel ratio using the 02 sensor. Further, in this case, HC and CO that are not purified by the reduction catalyst can be purified by the oxidation catalysts provided in the first and second exhaust pipes 55 and 56.

また、本実施例では流体ダイオードを用いたが、他の手
段によって第1排気技管45bから48bの流路抵抗を
増大せしめてもよい。
Further, although fluid diodes are used in this embodiment, the flow path resistance of the first exhaust pipes 45b to 48b may be increased by other means.

第1図に示す第1の実施例では各気筒毎に第1−排気枝
管と第2排気技管とを合流せしめたが、第7図に示す第
2の実施例では、各気筒毎に第1排気技管と第2排気技
管とを合流せしめずに、全気筒の第1排気技管を合流せ
しめると共に全気筒の第2排気技管を合流せしめるよう
にしている。第7図を参照すると、第2排気技管104
と105は合流して排気本管108となり、排気本管1
08の下流には酸化触媒109が設けられる。第2排気
管107は第2排気管106に合流し、第2排気管10
6は酸化触媒109上流の合流位置110で排気本管1
08に合流する。第1排気技管102と103は合流し
て排気管111となり、この排気管111は、合流位置
110と酸化触媒109との間の合流位置115で排気
本管108に連通される。排気管111には三元触媒1
12が設けられ、この三元触媒112上流の排気管11
1には02センサ113が設けられる。第1排気技管1
.00と101は合流して合流管114となり、合流管
114は02センサ113上流の排気管111に連通さ
れる。本実施例においても燃焼室74内の混合気は、0
2センサ113の検出信号に基づいて理論空燃比となる
ように制御される。第1排気ポート33から36に流れ
込んた既燃ガスは排気管111に流れ込み、この既燃ガ
ス中のNOx 、 HCおよびCOは三元触媒112に
よって浄化される。さらに第1の実施例と同様排気中の
HCおよびCQは酸化触媒109によっても浄化される
In the first embodiment shown in FIG. 1, the first exhaust branch pipe and the second exhaust pipe are merged for each cylinder, but in the second embodiment shown in FIG. Instead of merging the first exhaust pipe and the second exhaust pipe, the first exhaust pipes of all the cylinders are made to join and the second exhaust pipes of all the cylinders are made to join. Referring to FIG. 7, the second exhaust pipe 104
and 105 merge to become the exhaust main pipe 108, and the exhaust main pipe 1
An oxidation catalyst 109 is provided downstream of 08. The second exhaust pipe 107 joins the second exhaust pipe 106, and the second exhaust pipe 107 joins the second exhaust pipe 106.
6 is the exhaust main pipe 1 at the confluence position 110 upstream of the oxidation catalyst 109.
Join on 08. The first exhaust pipes 102 and 103 merge to form an exhaust pipe 111, and this exhaust pipe 111 is communicated with the exhaust main pipe 108 at a merge position 115 between the merge position 110 and the oxidation catalyst 109. Three-way catalyst 1 in exhaust pipe 111
12 is provided, and the exhaust pipe 11 upstream of this three-way catalyst 112
1 is provided with an 02 sensor 113. 1st exhaust pipe 1
.. 00 and 101 merge to form a merge pipe 114, and the merge pipe 114 is communicated with the exhaust pipe 111 upstream of the 02 sensor 113. Also in this embodiment, the air-fuel mixture in the combustion chamber 74 is 0.
Based on the detection signal of the 2 sensor 113, the air-fuel ratio is controlled to be the stoichiometric air-fuel ratio. The burnt gas that has flowed into the first exhaust ports 33 to 36 flows into the exhaust pipe 111, and NOx, HC, and CO in the burnt gas are purified by the three-way catalyst 112. Furthermore, as in the first embodiment, HC and CQ in the exhaust gas are also purified by the oxidation catalyst 109.

本実施例によれば02センサおよび三元触媒の数を減少
することができる。また、0□センザ113は全ての気
筒1から4内の空燃比の平均値を検出することができる
。また、02センザ113および三元触媒112を流れ
る排気量が増大するため、02センサ113および三元
触媒112の活性化を促進することができる。
According to this embodiment, the number of 02 sensors and three-way catalysts can be reduced. Further, the 0□ sensor 113 can detect the average value of the air-fuel ratios in all cylinders 1 to 4. Furthermore, since the amount of exhaust gas flowing through the 02 sensor 113 and the three-way catalyst 112 increases, activation of the 02 sensor 113 and the three-way catalyst 112 can be promoted.

なお本実施例のように全ての第1排気技管100から1
03を1つの排気管111に集合するとブローダウンに
影響があるため、第1および第2排気技管100 、1
01を第1集合管に集合せしめて、この第1集合管に0
2センサおよび三元触媒を設け、第3および第4排気技
管102 、103を第2集合管に集合せしめて、この
第2集合管にも02センサおよび三元触媒を設けるよう
にしてもよい。
Note that as in this embodiment, all the first exhaust pipes 100 to 1
03 into one exhaust pipe 111 will affect the blowdown, so the first and second exhaust pipes 100, 1
01 is collected in the first collecting pipe, and 0 is collected in the first collecting pipe.
Alternatively, the third and fourth exhaust pipes 102 and 103 may be assembled into a second collecting pipe, and the second collecting pipe may also be provided with the 02 sensor and the three-way catalyst. .

更に、本実施例の排気管111を排気本管108に連通
ずることなく大気に開放ずれば、第1の排気ポート33
から36に流れ込んだ既燃ガス中のNOx 、 HCお
よびCOは、三元触媒112によってのみ浄化され、三
元触媒112で浄化された(還元された)NOxの一部
が、酸化触媒109で再度酸化されNOxに戻ることが
防止できる。
Furthermore, if the exhaust pipe 111 of this embodiment is opened to the atmosphere without communicating with the exhaust main pipe 108, the first exhaust port 33
NOx, HC, and CO in the burnt gas that has flowed into the oxidation catalyst 109 is purified only by the three-way catalyst 112, and a part of the NOx purified (reduced) by the three-way catalyst 112 is re-purified by the oxidation catalyst 109. It can prevent oxidation and return to NOx.

また、前述の実施例においてはエアブラスト弁を用いて
燃焼室内に燃料を噴射することとしたが、給気ボー1へ
に燃料噴射弁を配置し、給気ポート内に燃料を噴射する
ようにしてもよい。
In addition, in the above embodiment, the air blast valve was used to inject the fuel into the combustion chamber, but a fuel injection valve was placed in the air intake bow 1 and fuel was injected into the air intake port. It's okay.

〔発明の効果〕〔Effect of the invention〕

第1排気通路には吹き抜けによる新気はほとんど流れず
気筒内の混合気の空燃比とほぼ等しい空燃比を有する排
気を流すことができる。
Almost no fresh air due to blow-through flows into the first exhaust passage, and exhaust gas having an air-fuel ratio approximately equal to the air-fuel ratio of the air-fuel mixture in the cylinder can flow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例の4気筒2サイクル内燃機関の構
成図、第2図は第3図の■−■線に沿ってみた2サイク
ル内燃機関の側面断面図、第3図は第2図のシリンダヘ
ッドの底面図、第4図は第3図のIV−IV線に沿って
みた側面断面図、第5図は流体ダイオードの中空円錐状
体を示す図、第6図は給排気弁の開閉弁時期を示す線図
、第7図は第2の実施例の4気筒2サイクル内燃機関の
構成図である。 33〜36・・・排気ポート、 45〜48・・・排気枝管、 45a〜48a・・・分
岐部、45b〜48b、100〜103・・・第1排気
技管、45 c 〜48 c 、 104〜107−第
2排気枝管。
FIG. 1 is a configuration diagram of a four-cylinder two-stroke internal combustion engine according to the first embodiment, FIG. 2 is a side cross-sectional view of the two-stroke internal combustion engine taken along the line ■-■ in FIG. 3, and FIG. Figure 2 is a bottom view of the cylinder head, Figure 4 is a side sectional view taken along line IV-IV in Figure 3, Figure 5 is a diagram showing the hollow conical body of the fluid diode, and Figure 6 is the air supply and exhaust. FIG. 7 is a diagram showing the opening/closing timing of valves, and is a configuration diagram of a four-cylinder two-stroke internal combustion engine according to a second embodiment. 33-36...Exhaust port, 45-48...Exhaust branch pipe, 45a-48a...Branch portion, 45b-48b, 100-103...First exhaust pipe, 45c-48c, 104-107-Second exhaust branch pipe.

Claims (1)

【特許請求の範囲】[Claims] 機関排気通路を排気ポート近傍の分岐部において第1排
気通路と第2排気通路とに分岐せしめ、前記第1排気通
路を前記分岐部において排気の流線方向に延びるように
形成すると共に前記第2排気通路を前記分岐部において
排気の流線と交差する方向に延びるように形成し、前記
第1排気通路の流路抵抗が前記第2排気通路の流路抵抗
より大きくなるようにした2サイクル内燃機関。
The engine exhaust passage is branched into a first exhaust passage and a second exhaust passage at a branch part near the exhaust port, and the first exhaust passage is formed at the branch part so as to extend in the streamline direction of exhaust gas, and the second A two-cycle internal combustion engine, wherein an exhaust passage is formed at the branch part to extend in a direction intersecting a streamline of exhaust gas, and the flow resistance of the first exhaust passage is greater than the flow resistance of the second exhaust passage. institution.
JP8152389A 1989-04-03 1989-04-03 Two-cycle internal combustion engine Pending JPH02264111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8152389A JPH02264111A (en) 1989-04-03 1989-04-03 Two-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8152389A JPH02264111A (en) 1989-04-03 1989-04-03 Two-cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JPH02264111A true JPH02264111A (en) 1990-10-26

Family

ID=13748697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8152389A Pending JPH02264111A (en) 1989-04-03 1989-04-03 Two-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH02264111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032541A (en) * 2005-07-29 2007-02-08 Toyota Motor Corp Exhaust emission control system of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032541A (en) * 2005-07-29 2007-02-08 Toyota Motor Corp Exhaust emission control system of internal combustion engine

Similar Documents

Publication Publication Date Title
US4905646A (en) Two-stroke internal combustion engine with cylinder head valves
US4840147A (en) Combustion chamber of a two-stroke engine
EP0691470A1 (en) Internal combustion engine and method for forming the combustion charge thereof
EP0249286B1 (en) Combustion engine
EP0719913B1 (en) Two-cycle stroke engine with catalytic exhaust gas purification
US4325346A (en) Four-cycle internal combustion engine
JPH0988617A (en) Two-cycle engine
JPH0745817B2 (en) Direct injection multi-cylinder diesel engine
JPS6114426A (en) Suction system device for direct-injection type diesel engine
JPH02264111A (en) Two-cycle internal combustion engine
CA1194744A (en) Suction system for internal combustion engine
AU710491B2 (en) Crank chamber precompression spark ignition two-stroke internal combustion engine
JP3948225B2 (en) In-cylinder direct injection internal combustion engine
JPH0689681B2 (en) 2-cycle internal combustion engine
JPH0649853Y2 (en) Exhaust port structure of 2-cycle internal combustion engine
GB2087476A (en) I.C. Engine Cylinder Intake Passages
JPH02191812A (en) Two-cycle internal combustion engine
JPH086586B2 (en) 2-cycle internal combustion engine
JPH0513954Y2 (en)
JPH02264114A (en) Two-cycle internal combustion engine
JP2003239749A (en) Fuel supply device for internal combustion engine
JPH029065Y2 (en)
JPH072978Y2 (en) 2-cycle internal combustion engine
JPS63201313A (en) Two-cycle internal combustion engine
JPH0455258Y2 (en)