JPH02263986A - Treatment of metal surface with zinc phosphate - Google Patents

Treatment of metal surface with zinc phosphate

Info

Publication number
JPH02263986A
JPH02263986A JP1271182A JP27118289A JPH02263986A JP H02263986 A JPH02263986 A JP H02263986A JP 1271182 A JP1271182 A JP 1271182A JP 27118289 A JP27118289 A JP 27118289A JP H02263986 A JPH02263986 A JP H02263986A
Authority
JP
Japan
Prior art keywords
treatment
zinc
zinc phosphate
metal surface
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1271182A
Other languages
Japanese (ja)
Other versions
JPH0819532B2 (en
Inventor
Masahiro Jo
條 昌博
Yasutake Mino
三野 保武
Takamasa Shimizu
清水 隆正
Yukinobu Endo
遠藤 幸悦
Akio Tokuyama
徳山 昭男
Tamotsu Boda
保 傍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP1271182A priority Critical patent/JPH0819532B2/en
Publication of JPH02263986A publication Critical patent/JPH02263986A/en
Publication of JPH0819532B2 publication Critical patent/JPH0819532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To treat a metal surface to be coated with zinc phosphate fit for coating by electrodeposition, especially cationic electrodeposition and having superior adhesion to a coating film and superior corrosion resistance by treating the metal surface with an acidic aq. zinc phosphate soln. contg. a prescribed amt. of a soluble W compd. CONSTITUTION:A metal surface, especially an iron-based surface optionally combined with a zinc-based surface is degreased with an alkaline degreasing soln. at 30-60 deg.C by spraying and/or immersion for 2 min. The degreased metal surface is washed with water and treated with an acidic aq. zinc phosphate soln. contg. 0.01-20.0g/l (expressed in terms of W) soluble W compd. at 30-70 deg.C by immersion and/or spraying for >=15sec and the treated metal surface is successively washed with tap water and deionized water. Tungstate, especially silicotungstic acid and/or silicotungstate is suitable for use as the soluble W compd.

Description

【発明の詳細な説明】 技術分野 本発明は、塗装用金属表面のリン酸亜鉛処理方法ならび
に該方法で得られる金属材に関わり、さらに詳しくは、
鉄系表面、亜鉛系表面、アルミニウム系表面あるいはそ
れら表面を組合せて同時に有する金属表面上に、電着塗
装、就中カチオン型電着塗装に適し、塗膜密着性、耐食
性、特に温塩水性、スキャブ性に浸れたリン酸亜鉛皮膜
を形成する処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for treating a metal surface for painting with zinc phosphate and a metal material obtained by the method, and more specifically,
Suitable for electrodeposition coating, especially cationic electrodeposition coating, on iron-based surfaces, zinc-based surfaces, aluminum-based surfaces, or metal surfaces having a combination of these surfaces, with good film adhesion, corrosion resistance, especially warm salt water resistance, The present invention relates to a treatment method for forming a zinc phosphate film soaked in scab properties.

従  来  技  術 塗装用の金属前処理としてリン酸亜鉛皮膜(ヒ成処理が
古くから行われており、その処理手段としてスプレー法
、浸漬法あるいはそれらの組み合わせが採用されている
。スプレー法は設備コスト、生産効率などの点で有利で
あるが、池方袋部などをもつ複雑な物品に対しては未処
理部分を生じたり、スプレーのはね返りによる皮膜化成
不良が発生し易いという欠点がある。
Conventional technology Zinc phosphate coating (arsenal treatment) has been used for a long time as a metal pretreatment for painting, and spraying, dipping, or a combination of these are used as treatment methods. Although it is advantageous in terms of cost and production efficiency, it has the disadvantage that untreated parts are likely to be left on complex articles such as those with Ikekata bags, and film formation defects are likely to occur due to spray splashing.

また浸漬法では設備が大きくなるという欠点があるが、
池方袋構造部などをもつ複雑な物品に対しても、スプレ
ー処理では皮膜を形成しない部分にも均一な皮膜を形成
できるという利点がある。
Also, the immersion method has the disadvantage of requiring larger equipment;
Even for complex articles such as those with Ikekata bag structures, spray treatment has the advantage that a uniform film can be formed even on areas where no film is to be formed.

通常浸漬法によるリン酸亜鉛皮膜化成では処理液の亜鉛
イオン濃度が2〜4g/ρ程度と大で、処理条件も高温
(60〜90℃)、長時間(3〜10分)でしか皮膜化
成できず、しかも得られた皮膜は高皮膜量(3〜5 g
 / m” )で、且つ皮膜の質が悪く、塗装下地、就
中電着塗装下地としては密着性、耐食性および塗膜外観
が悪く不適当とされている。また近年自動車部門などで
腐食環境下で充分な防錆力をもつものが要求されるため
、電着塗料もアニオン型からカオチン型に代わりつつあ
り、この場合には塗料焼1寸時に塗膜の収縮が大きくリ
ン酸亜鉛皮膜にかなりの力がかかるため、カオチン型電
着塗装下地のリン酸亜鉛皮膜自体の強度も大でなければ
ならず、従来の処理浴による処理では電着塗装、就中カ
オチン電着塗装に適した下地は得られないとされていた
When forming a zinc phosphate film using the normal dipping method, the zinc ion concentration of the treatment solution is as high as 2 to 4 g/ρ, and the processing conditions are high (60 to 90°C) and for a long time (3 to 10 minutes). However, the film obtained had a high film weight (3-5 g
/ m”) and the quality of the film is poor, making it unsuitable as a base for painting, especially as a base for electrodeposition coating, due to poor adhesion, corrosion resistance, and appearance of the film.In addition, in recent years, it has been used in corrosive environments in the automobile sector, etc. Electrodeposition paints are also being replaced from anionic type to caotine type because of the demand for materials with sufficient anti-corrosion properties. Since the force is applied, the strength of the zinc phosphate film itself, which is the base for caotine-type electrodeposition coating, must be strong. Conventional processing using a treatment bath does not make the base suitable for electrodeposition coating, especially caotine electrodeposition coating. It was said that it was not possible to obtain it.

このような状況下にあって、最近特開昭5510778
4号に処理浴の亜鉛イオン、リン酸イオンおよび亜硝酸
イオンなどの皮膜化成促進剤濃度を制御することにより
低温短時間の浸漬法で、低皮膜量のしかも均一緻密な密
着性、耐食性に優れたリン酸亜鉛皮膜を得ることができ
、電着塗装用下地として充分使用に耐えうる皮膜の形成
法が提案されるに至り、にわかに浸漬法が脚光を浴びる
に至った。すなわち同特開昭発明においては、亜鉛イオ
ンを0.5〜1.5g/nに、またリン酸イオンを5〜
30g/ρ、亜硝酸イオンを0.01〜0.2g/ρに
制御し、これらを主成分とする酸性リン酸亜鉛処理液で
もって金属表面を40〜70℃で15〜120秒間浸漬
処理し、次いでスラッジ除去の目的で上記と同じ処理液
Under these circumstances, recently Japanese Patent Application Publication No. 5510778
By controlling the concentration of film formation accelerators such as zinc ions, phosphate ions, and nitrite ions in the No. 4 treatment bath, a low temperature, short-time immersion method achieves a low film amount, uniform and dense adhesion, and excellent corrosion resistance. A method for forming a film that could be used as a base for electrodeposition coating was proposed, and the dipping method suddenly came into the spotlight. That is, in the invention of the same patent application, zinc ions were contained in a range of 0.5 to 1.5 g/n, and phosphate ions were contained in a range of 5 to 1.5 g/n.
The metal surface was immersed at 40 to 70°C for 15 to 120 seconds in an acidic zinc phosphate treatment solution containing 30 g/ρ and nitrite ions as 0.01 to 0.2 g/ρ. , then the same treatment liquid as above for the purpose of sludge removal.

処理温度で2〜60秒間スプレー処理することにより1
.5〜3g/′m2の低皮膜量で、均一緻密な電着塗装
に適した下地を形成させるものである。
1 by spraying for 2-60 seconds at the treatment temperature.
.. It forms a base suitable for uniform and dense electrodeposition coating with a low coating amount of 5 to 3 g/'m2.

その後、主として自動車工業界で塗装後の耐食性をさら
に向上させる目的でボディー素材として片面だけ亜鉛ま
たは合金化亜鉛メツキした鋼材が使用され始め、前記処
理浴による浸漬処理では鉄系表面では問題はないが、亜
鉛系表面に対してはカオチン型電着塗装後の耐塩水噴霧
性が不充分であるとか、中塗り1上塗り後の二次密着性
が鉄系表面の場合に比し大幅に劣る問題がクローズアッ
プされ、これに対処するため、例えば特開昭57−15
2472号の如く亜鉛イオン、リン酸イオンおよび、皮
膜化成促進剤濃度の制御された浴に、マンガンイオン0
.6〜3g/ρおよび/またはニッケルイオン0.1〜
4g/lを含有せしめる技術、あるいは処理温度を下げ
る目的でマンガンイオンと共にフッ素イオン0.05g
/ρ以上を加える技術(特公昭61−36588号)が
開発されてきた。
After that, steel materials plated with zinc or alloyed zinc on only one side began to be used as body materials mainly in the automobile industry for the purpose of further improving the corrosion resistance after painting, and although immersion treatment in the treatment bath described above poses no problem on iron-based surfaces, For zinc-based surfaces, there are problems such as insufficient salt spray resistance after cationic electrocoating, and secondary adhesion after the first and top coats is significantly inferior to iron-based surfaces. In order to deal with this issue, for example, Japanese Patent Application Laid-open No. 57-15
No. 2472, in which 0 manganese ions are added to a bath with controlled concentrations of zinc ions, phosphate ions, and a film formation accelerator.
.. 6-3g/ρ and/or nickel ion 0.1-
0.05g of fluorine ion with manganese ion for the purpose of containing 4g/l or lowering the processing temperature
A technique for adding more than /ρ (Japanese Patent Publication No. 61-36588) has been developed.

このように鉄系表面に対しても、あるいは鉄系表面と亜
鉛系表面を同時に有する金属表面に対しても、浸漬法に
よるリン酸亜鉛処理で電着塗装に適した化成皮膜を提供
することができるようになり、建材、小物物品などに限
らず、自動車ボディ−1自動車部品など広範な、鉄、亜
鉛およびそれらの合金表面を有する物品の耐食性改善を
主目的としたリン酸亜鉛化成処理に浸漬法が確固たる基
型を確立するに至っている。
In this way, it is possible to provide a chemical conversion film suitable for electrodeposition coating on iron-based surfaces, or on metal surfaces that have both an iron-based surface and a zinc-based surface, by zinc phosphate treatment using the dipping method. It is now possible to immerse a wide range of products, including not only building materials and small articles, but also automobile bodies and other automobile parts, in zinc phosphate chemical conversion treatment, the main purpose of which is to improve the corrosion resistance of articles with iron, zinc, and their alloy surfaces. The law has now established a firm foundation.

しかしながら近年、自動車ボディーの耐食性に対する要
求品質はますます高度になってきており、例えば外板部
の傷から塩水、乾湿気象条件変化を繰り返し受ける際、
鉄面に発生ずるカサブタ状の錆(スキャブコロージョン
)の防止、より高度の耐温塩水性などが強く望まれ、現
行のリン酸亜鉛処理法ではかかる要求に対処し得なくな
りつつある。
However, in recent years, the quality requirements for corrosion resistance of automobile bodies have become more and more sophisticated.
There are strong demands for prevention of scab-like rust (scab corrosion) that forms on steel surfaces, and higher resistance to warm salt water, and current zinc phosphate treatment methods are becoming unable to meet these demands.

他方、鋼製家具などでは依然、主としてスプレー処理が
主流であるが、しかしこの分野でも防錆性向上を目的と
して亜鉛鋼板の導入がはかられており、これらについて
も密着性や耐食性において必ずしも満足されていない。
On the other hand, spray treatment is still the mainstream for steel furniture, etc., but galvanized steel sheets are being introduced in this field as well to improve rust prevention, and even these are not always satisfactory in terms of adhesion and corrosion resistance. It has not been.

さらに前処理による耐スキャブ性や温塩水性の向上が望
まれている。
Furthermore, it is desired to improve scab resistance and hot salt water resistance through pretreatment.

またアルミニウム材も自動車、建材等各種分野で広く実
用され、アルミニウム材を含む鉄あるいは亜鉛材表面の
リン酸亜鉛処理ら要望されている。
Aluminum materials are also widely used in various fields such as automobiles and building materials, and there is a demand for zinc phosphate treatment on the surfaces of iron or zinc materials containing aluminum materials.

しかしながら、従来提案されてきた鉄あるいは亜鉛材用
の酸性リン酸亜鉛処理浴でアルミニウム材を含む鉄材等
を処理すると、処理浴中にアルミニウムイオンがMmし
、その量がある量をこえると、鉄材に対し化成不良とな
ることが知られてぃる。即ち、フッ素イオンを含まない
処理液で、3十 AI  が5ppm以上、 HBF 4を含む処理液で
は1100pp以上、まなH2SIF6を含む処理浴で
も300ppm以上になると鉄材に対する化成不良を生
じることが見出されている。そこで処理液中3十 のA1  を減じる目的で処理液に酸性弗化カリと酸3
+ 性弗1ヒソーダを添加し、AI  をに2NaAIF6
あるいはNa3AlF6として沈澱させる方法が特開昭
57−70281号に提案されているが、こういったア
ルミニウムの沈澱物が被塗膜にけ着するとカオチン電着
塗装不良が発生し、膜の均一性欠如、塗膜二次密着性不
良の原因となるため、該方法では処理液から浮遊懸濁性
を有する該沈′a物を除去する必要があり、(ヤ業が繁
雑になるだけでなく、効果も充分なものではない。また
アルミニウムと鉄の処理比率を3/7以下に制御し、フ
ッ素糸すン酸亜3+ 鉛処理液中のA1  イオン濃度を70ppm以下に維
持することも提案されている(特開昭61−10408
9号)が、アルミニウム材の処理比率を3+ 下げるだけではAI  イオン濃度を70ppm以下に
維持することは困難である。
However, when iron materials containing aluminum are treated with the conventionally proposed acidic zinc phosphate treatment bath for iron or zinc materials, aluminum ions are generated in the treatment bath, and when the amount exceeds a certain amount, the iron It is known that chemical formation defects may occur. That is, it has been found that poor chemical formation of iron materials occurs when 30AI is 5 ppm or more in a treatment solution that does not contain fluorine ions, 1100 ppm or more in a treatment solution containing HBF4, and 300 ppm or more even in a treatment bath containing H2SIF6. ing. Therefore, in order to reduce the A1 content of 30% in the processing solution, acidic potassium fluoride was added to the processing solution.
+ Add 1 Hisoda to AI to 2NaAIF6
Alternatively, a method of precipitating Na3AlF6 as Na3AlF6 has been proposed in JP-A-57-70281, but when such aluminum precipitates are deposited on the coated film, defects in cationic electrodeposition coating occur and the film lacks uniformity. In this method, it is necessary to remove the suspended sediment from the treatment solution, as it causes poor secondary adhesion of the paint film (not only does it complicate the process, but it also reduces the effectiveness of the process). It has also been proposed to control the treatment ratio of aluminum to iron to 3/7 or less, and to maintain the A1 ion concentration in the fluorine thread subsulfate treatment solution to 70 ppm or less. (Unexamined Japanese Patent Publication No. 61-10408
No. 9), it is difficult to maintain the AI ion concentration at 70 ppm or less simply by lowering the processing ratio of the aluminum material by 3+.

発明が解決しようとする問題点 そこで、鉄系表面、亜鉛系表面、アルミニウム系表面あ
るいはそれら表面を合わせ有する金属表面のリン酸亜鉛
処理方法であって、塗装、就中電着塗装に適した耐食性
(ヒ成皮膜を与えうるだけでなく、鉄面の耐スキャブ性
、鉄面および亜鉛面の耐温塩水性が特段に改善され、ア
ルミニュウム材を含む鉄あるいは亜鉛材表面に対しても
優れた高耐食性塗膜を与えることができ、また電着塗装
板に中塗り、上塗りを施した際の二次密着性もさらに改
善される処理方法が要望されており、かがる課題に応え
ることが本発明目的である。
Problems to be Solved by the Invention Therefore, a method for treating an iron-based surface, a zinc-based surface, an aluminum-based surface, or a metal surface having a combination of these surfaces with zinc phosphate, which has corrosion resistance suitable for painting, especially electrodeposition coating, is provided. (In addition to being able to provide an arsenal coating, the scab resistance of iron surfaces and the hot salt water resistance of iron and zinc surfaces are particularly improved, and it is also excellent for iron or zinc surfaces including aluminum materials. There is a need for a treatment method that can provide a corrosion-resistant coating and further improve the secondary adhesion when applying an intermediate coat or top coat to an electrodeposited plate, and it is of great importance to address this issue. It is for the purpose of invention.

問題点を解決するための手段 本発明者らは上記目的が、金属表面を、可溶性タングス
テン化合物をタングステンとして0.01〜20.0g
/β含む酸性リン酸亜鉛処理水溶(rILで処理するこ
とを特徴とする、金属表面のリン酸亜鉛処理方法により
達成せられる事、可溶性タングステン化合物としてはタ
ングステン酸塩、例えばタングステン酸ソーダ、タング
ステン酸アンモン等も用いられるが、特にケイタングス
テン酸および/またはゲイタングステン酸塩化合物が前
掲効果を顕著に発揮させる事、更に亜鉛、ニッケル、マ
ンガンの各金属イオン及びフッ素イオンの特定濃度範囲
において、ケイタングステン酸および/′またはケイタ
ングステン酸塩化合物の効果が特に顕著に発揮できるこ
とを見出し、本発明方法を完成させた。
Means for Solving the Problems The present inventors have achieved the above object by treating the metal surface with a soluble tungsten compound of 0.01 to 20.0 g of tungsten.
Acidic zinc phosphate treatment containing /β This can be achieved by a method for treating metal surfaces with zinc phosphate, which is characterized by treatment with an aqueous solution (rIL).Soluble tungsten compounds include tungstates, such as sodium tungstate and tungstic acid. Although ammonium etc. are also used, silicotungstic acid and/or silicotungstate compounds exhibit the above-mentioned effects significantly, and furthermore, in specific concentration ranges of zinc, nickel, manganese metal ions and fluorine ions, silicotungstate It was discovered that the effects of acids and/or tungstate silicate compounds can be particularly pronounced, and the method of the present invention was completed.

本発明にあたって、鉄系表面または鉄系表面と亜鉛系表
面を合わせ有する金属表面を対象とする場合に最も有効
であるが、これに限らず亜鉛系表面単独アルミニウム系
表面単独、あるいはこれら表面を合わせ有する金属表面
に対しても同様の目的でもって処理できることは言うま
でもない。すなわち本発明は上記いずれの態様の金属表
面をも処理の対象とするものである。
The present invention is most effective when targeting a metal surface having an iron-based surface or a combination of an iron-based surface and a zinc-based surface, but is not limited to this. It goes without saying that other metal surfaces can also be treated for the same purpose. That is, the present invention targets metal surfaces of any of the above embodiments.

本発明処理方法の実用的に有利な一具木例を示すと次の
通りである。金属表面をまずアルカリ性脱脂綿で温度3
0〜60°Cで2分間スプレーおよび/′または浸漬処
理して脱脂し、次いで水道水で水洗し、次いで浸漬処理
の場きは表面調整剤で室温10〜30秒間スプレーおよ
び/または浸漬処理し、次いで上述の本発明酸性リン酸
亜鉛処理水溶液で温度30〜70°Cで15秒間以上浸
漬および/またはスプレー処理し、次いで水道水そして
脱イオン水で水洗いずればよい。
An example of a tree that is practically advantageous for the treatment method of the present invention is as follows. First, coat the metal surface with alkaline absorbent cotton at a temperature of 3.
Degrease by spraying and/or dipping at 0 to 60°C for 2 minutes, then washing with tap water, and then spraying and/or dipping with a surface conditioner at room temperature for 10 to 30 seconds if dipping. Then, it may be immersed and/or sprayed in the above-mentioned acidic zinc phosphate treatment aqueous solution of the present invention at a temperature of 30 to 70° C. for 15 seconds or more, and then washed with tap water and deionized water.

本願を浸漬処理で用いる場合には本発明処理液の主成分
である亜鉛イオンは、0.1〜2.Og/g好ましくは
0.3〜1.5g/fflでよい。
When the present invention is used in immersion treatment, the zinc ion which is the main component of the treatment liquid of the present invention is 0.1 to 2. Og/g, preferably 0.3 to 1.5 g/ffl.

0゜1 g / !2未満では金属表面に均一なリン酸
亜鉛皮膜が生成せず、スゲの多い、一部ブルーカラー状
の皮膜が生成する。また2、0g/lを超えると均一な
リン酸亜鉛皮膜は生成するが、表面の該皮膜はアルカリ
に溶解し易い皮膜になり易く、特にカチオン電着時にさ
らされるアルカリ雰囲気によって皮膜溶解し易くなる。
0°1 g/! If it is less than 2, a uniform zinc phosphate film will not be formed on the metal surface, and a partially blue-colored film with many streaks will be formed. In addition, if the concentration exceeds 2.0 g/l, a uniform zinc phosphate film will be formed, but the film on the surface will easily dissolve in alkali, and in particular, the film will be easily dissolved by the alkaline atmosphere exposed during cationic electrodeposition. .

その結果、般に耐温塩水性が低下し、特に鉄系表面の場
合耐スキャブ性が劣1ヒするなど、所望の性能が得られ
ないので電着塗装、特にカチオン電着塗装下地としては
不適当である。リン酸イオンは5〜40g/II好まし
くは10〜30g/IIである。5g /’ 、1未満
では不均一皮膜を形成し易く、また40g/lを超えて
も本発明以上の効果は期待できず、薬品の使用量が多く
なって経済的に不利である。可溶性タングステン化合物
はタングステンとして0.01〜20.0g/Jl、好
ましくは0゜05〜10.0g/!Qより好ましくは0
.1〜3.0g/IIである。0.01g/p以下では
リン酸亜鉛皮膜の改質が不充分であり、耐スキャプ性や
耐温塩水性が向上しない。またアルミニウム材の処理に
おいてはアルミニウムの溶出抑制効果が不充分となる。
As a result, the resistance to hot salt water generally decreases, and the desired performance cannot be obtained, such as poor scab resistance in the case of iron-based surfaces, making it unsuitable as a base for electrodeposition coatings, especially cationic electrodeposition coatings. Appropriate. The amount of phosphate ion is 5 to 40 g/II, preferably 10 to 30 g/II. If it is less than 5 g/l, a non-uniform film is likely to be formed, and if it exceeds 40 g/l, no effect greater than that of the present invention can be expected, and the amount of chemicals used increases, which is economically disadvantageous. The soluble tungsten compound is 0.01 to 20.0 g/Jl as tungsten, preferably 0.05 to 10.0 g/Jl! More preferably 0 than Q
.. It is 1 to 3.0 g/II. If it is less than 0.01 g/p, the modification of the zinc phosphate film will be insufficient, and the scabbing resistance and hot salt water resistance will not improve. Furthermore, in the treatment of aluminum materials, the effect of suppressing elution of aluminum becomes insufficient.

一方、20 g/lを超えると皮膜反応に寄与する以上
のタングステンの量となり、本発明以上の効果は期待で
きず、丈なスラッジも多くなり、好ましくない。
On the other hand, if it exceeds 20 g/l, the amount of tungsten will be more than it contributes to the film reaction, and no effect beyond the present invention can be expected, and a large amount of thick sludge will be produced, which is not preferable.

皮膜化成促進側としては亜硝酸イオン0.01〜0.5
g/ρ、好ましくは0.01〜0.4g/II、m−二
トロベンゼンスルホン酸イオン0.05〜5 g/l 
、好ましくは0.1〜4g/uJl:び3M酸化水素(
8202100%換算)0゜5〜Log/、&、好まし
くは1〜8g/(から選ばれる少なくとも1種でよい。
Nitrite ion 0.01 to 0.5 to promote film formation
g/ρ, preferably 0.01-0.4 g/II, m-nitrobenzenesulfonic acid ion 0.05-5 g/l
, preferably 0.1 to 4 g/uJl and 3M hydrogen oxide (
8202100% conversion) 0°5~Log/, &, preferably 1~8g/(at least one kind selected from) may be used.

これらの促進剤が規定量に達しないと鉄系表面で充分な
皮膜化成ができず黄錆などになり、また規定量を超える
と鉄系表面にブルーカラー状の不均一皮膜を形成し易い
If these accelerators do not reach a specified amount, sufficient film formation cannot be formed on the iron-based surface, resulting in yellow rust, and if the amount exceeds the specified amount, a blue-collar uneven film tends to be formed on the iron-based surface.

これら主成分の供給源としては例えば亜鉛イオンは酸化
亜鉛、炭酸亜鉛、硝酸亜鉛などでよく、リン酸イオンは
リン酸、リン酸亜鉛、リン酸マンガンなどでよく、可溶
性タングステン化合物はタングステン酸ソーダ、タング
ステン酸アンモンなどタングステン酸塩、ホウタングス
テン酸、リンタングステン酸、リンタングステン化=i
hのほか、特にケイタングステン酸、ケイタングステン
酸塩fヒ金物が好適に使用せられるが、ケイタングステ
ン酸は市販品で良く、可溶性ケイタングステン酸塩1ヒ
合物はゲイタングステン酸のアルカリ金属塩、アンモニ
ウム塩、アルカリ土類金属塩等で可溶性の1ヒき士勿が
選択せられる。アルミニウム材もしくはアルミニウム材
を含む鉄または亜鉛材表面の処理液においては特にケイ
タングステン酸またはゲイタングステン酸塩の使用が望
ましい。
As sources of these main components, for example, zinc ions may be zinc oxide, zinc carbonate, zinc nitrate, etc., phosphate ions may be phosphoric acid, zinc phosphate, manganese phosphate, etc., and soluble tungsten compounds may be sodium tungstate, sodium tungstate, etc. Tungstate salts such as ammonium tungstate, borotungstic acid, phosphotungstic acid, phosphotungstic acid = i
In addition to h, silicotungstic acid and silicotungstate f arsenic compounds are preferably used, but silicotungstic acid may be a commercially available product, and soluble silicotungstate monoarsenate is an alkali metal salt of silicotungstic acid. , ammonium salts, alkaline earth metal salts, and the like are selected. It is particularly desirable to use silicotungstic acid or geytungstate in a treatment solution for the surface of aluminum materials or iron or zinc materials containing aluminum materials.

皮膜化成促進剤は亜硝酸ソーダ、亜硝酸アンモン、m−
二]・ロベンゼンスルホン酸ソーダ、過酸1ヒ水素水等
でよい。
The film formation accelerator is sodium nitrite, ammonium nitrite, m-
2) Sodium lobenzenesulfonate, aqueous arsenic peroxide, etc. may be used.

またスプレー処理の場合、塗装下地用リン酸亜鉛皮膜の
金属表面への化成を良好ならしめ、加えて従来の処理液
に比して亜硝酸塩の消費を1/2以下に軽減し、副生物
スラッジを改質し、さらにはその発生量を1/3〜1/
4に軽減することを目的とし、化成処理中の該処理液に
おけるリン酸イオン濃度を少なくとも5 g / II
 、亜硝酸イオン0.02〜0.5g/p、亜鉛イオン
濃度を少なくとも、0.3g/ffl、リン酸イオン:
硝酸イオンのモル重量比率を1:0.7〜1,3、およ
びリン酸イオン:亜鉛イオンのモル比率を1:0116
以下に維持して、該処理液のpHが3.3〜3.8であ
る範囲において処理することが、例えば特公昭55−5
590号に提案され注目されているが、このような処理
剤でも、また通常のスプレー用のリン酸亜鉛処理液に対
しても、本発明に而い、可溶性タングステン化合物をタ
ングステンとして少なくとも0.01〜20 g / 
1の濃度範囲で含有せしめることにより、所期効果と共
に耐スキャブ性、耐温塩水性、密着性、就中亜鉛系表面
の密着を格段に向上せしめることが可能である。
In addition, in the case of spray treatment, it improves the chemical conversion of the zinc phosphate film for the paint base onto the metal surface, and in addition, it reduces the consumption of nitrite to less than half compared to conventional treatment solutions, and the by-product sludge and further reduce the amount generated by 1/3 to 1/3
4, and the phosphate ion concentration in the treatment solution during chemical conversion treatment is at least 5 g/II.
, nitrite ion 0.02-0.5 g/p, zinc ion concentration at least 0.3 g/ffl, phosphate ion:
The molar weight ratio of nitrate ions is 1:0.7 to 1.3, and the molar ratio of phosphate ions:zinc ions is 1:0116.
For example, Japanese Patent Publication No. 55-5
As proposed in No. 590 and attracting attention, in the present invention, the soluble tungsten compound is at least 0.01% of tungsten even in such a treatment agent and also in a normal zinc phosphate treatment solution for spraying. ~20g/
By containing it in the concentration range of 1, it is possible to significantly improve scab resistance, hot salt water resistance, adhesion, especially adhesion to zinc-based surfaces, as well as the desired effects.

また、本発明処理液は上記主成分のほかに、マンガンイ
オン、ニッケルイオン、フッ素イオンを特定濃度範囲で
含有せしめると、可溶性タングステン化合物の効果を相
剰的に発揮せしめることができる。特にアルミニウム材
を含む鉄あるいは亜鉛材を対象とする場合には、前述の
如くケイタングステン酸あるいはケイタングステン酸塩
を可溶性タングステン1ヒ合物として選択すると共に、
フッ素イオンを特定濃度含有せしめることが望ましい。
Furthermore, when the treatment liquid of the present invention contains manganese ions, nickel ions, and fluorine ions in a specific concentration range in addition to the above-mentioned main components, the effects of the soluble tungsten compound can be exhibited in a complementary manner. In particular, when targeting iron or zinc materials containing aluminum materials, as mentioned above, silicotungstic acid or silicotungstate salt is selected as the soluble tungsten compound, and
It is desirable to contain fluorine ions at a specific concentration.

フッ素イオンは0.05〜4g/l、好ましくは0.1
〜2 g / 、2の範囲内である。0.05g/ρ未
満では鉄材のfヒ成性に悪影響を及ぼす。
Fluorine ion is 0.05 to 4 g/l, preferably 0.1
~2 g/,2. If it is less than 0.05 g/ρ, it will adversely affect the f arsenability of the iron material.

またアルミニウム材を含む金属表面の場き処理浴のアル
ミニウム残存許容上限濃度が低くなるため望ましくない
。またフッ素イオン濃度が4g/ρをこえると耐温塩水
性の向上効果を減じる傾向がある。フッ素イオンは、フ
ッ酸、ホウフッ1ヒ水素酸、ゲイフッ1ヒ水素酸、それ
らの金属塩で供給せられるが、ホウフッ(ヒ水素酸もし
くはホウフッ化水素酸の塩で供給する場合、アルミニウ
ムイオンの許容上限濃度は1100ppであり、ケイフ
ッ[ヒ水素酸、もしくはその塩で供給する場合300p
pmであることが確かめられているので、アルミニウム
材処理浴においては必須ではないがフッ素イオンがゲイ
フy(ヒ水素酸もしくはその金属塩で供給せられること
が最も好ましい。
Further, it is undesirable because the allowable upper limit concentration of aluminum remaining in the in-situ treatment bath for metal surfaces containing aluminum material becomes low. Furthermore, if the fluorine ion concentration exceeds 4 g/ρ, the effect of improving the resistance to hot salt water tends to be reduced. Fluorine ions can be supplied with hydrofluoric acid, borofluoro-mono-arsenic acid, gay-fluoro-hydro-arsenic acid, and their metal salts; The upper limit concentration is 1100pp, and when supplied with fluorine arsenic acid or its salt, 300pp.
Although not essential, it is most preferable that fluorine ions be supplied by arsenic acid or a metal salt thereof in the aluminum material treatment bath.

マンガンイオンは0.1〜3g/!2の範囲で、好まし
くは0.6〜3 g /’ Aの範囲である。0゜1 
g /’ (l未満では亜鉛系表面の密着および耐湯塩
水性向上効果が不充分となりまた、3g/ρを超えると
耐食性の向上効果が不充分となる。ニッケルイオンは0
.1〜4g/lの範囲で、好ましくは0.1〜2g/f
flの範囲である。0.1g/ff1未満では可溶性タ
ングステン化合物との併用による耐食性の向上効果が不
充分となりまた、4g/でを超えても耐食性の向上効果
を減じる傾向がある。これらの成分の供給源としては例
えばマンガンイオンは炭酸マンガン、硝酸マンガン、塩
化マンガン、リン酸マンガン等でよく、ニッケルイオン
では炭酸ニッケル、硝酸ニッケル、塩化ニッケル、リン
酸ニッケル、水酸化ニッケル等でよく、フッ素イオンは
フッ酸、ホウフッ化水素酸、ケイフッ化水素酸、それら
の金属塩等でよく、硝酸イオンは硝酸ソーダ、硝酸アン
モン、硝酸亜鉛、硝酸マンガン、硝酸ニッケル等でよく
、塩素酸イオンは塩素酸ソーダ、塩素酸アンモン等でよ
い。
Manganese ion is 0.1~3g/! 2, preferably 0.6 to 3 g/'A. 0゜1
g/' (If it is less than 1, the adhesion of the zinc-based surface and the effect of improving hot and salt water resistance will be insufficient, and if it exceeds 3 g/ρ, the effect of improving corrosion resistance will be insufficient.Nickel ion is 0.
.. In the range of 1 to 4 g/l, preferably 0.1 to 2 g/f
The range is fl. If it is less than 0.1 g/ff1, the effect of improving corrosion resistance due to the combined use with a soluble tungsten compound will be insufficient, and if it exceeds 4 g/ff1, the effect of improving corrosion resistance will tend to be reduced. As sources of these components, for example, manganese ions may be manganese carbonate, manganese nitrate, manganese chloride, manganese phosphate, etc., and nickel ions may be nickel carbonate, nickel nitrate, nickel chloride, nickel phosphate, nickel hydroxide, etc. , fluorine ions may be hydrofluoric acid, hydrofluoroboric acid, hydrofluorosilicic acid, their metal salts, etc., nitrate ions may be sodium nitrate, ammonium nitrate, zinc nitrate, manganese nitrate, nickel nitrate, etc., and chlorate ions may be Sodium chlorate, ammonium chlorate, etc. may be used.

本発明処理液による処理温度は30〜70℃、好ましく
は35〜60’Cであってよい。低温でありすぎると皮
膜化成性が悪く、長時間の処理を要することになる。高
温でありすぎると皮膜化成促進剤の分解および処理液の
沈澱発生などで処理液のバランスがくずれ易く、良好な
皮膜が得られ難い 処理時間は15秒以上、好ましくは30〜120秒間で
よい。短時間でありすぎつと所望結晶を有する皮膜が充
分に形成されない。尚、自動車ボディーの如く複雑な形
状を有する品物を処理する場合には、実用上浸漬処理と
スプレー処理を組み合わせることが好ましく、その場合
、例えば先ず15秒以上、好ましくは30〜120秒間
浸漬処理し、次いで2秒間以上、好ましくは5〜45秒
間スプレー処理すればよい。尚、浸漬処理時にけ着した
スラッジを洗い落とすには、スプレー処理は可能な限り
長時間であることが好ましい。従って本発明による処理
には浸漬処理、スプレー処理およびそれらの組み合わせ
の処理態様も包含されるものである。
The treatment temperature using the treatment liquid of the present invention may be 30 to 70°C, preferably 35 to 60'C. If the temperature is too low, the film formation properties will be poor and a long treatment time will be required. If the temperature is too high, the balance of the treatment solution is likely to be lost due to decomposition of the coating accelerator and precipitation of the treatment solution, making it difficult to obtain a good coating.The treatment time may be 15 seconds or more, preferably 30 to 120 seconds. If the time is too short, a film having the desired crystals will not be sufficiently formed. In addition, when treating an article with a complicated shape such as an automobile body, it is practically preferable to combine immersion treatment and spray treatment. , then spray treatment for 2 seconds or more, preferably 5 to 45 seconds. In addition, in order to wash off the sludge deposited during the immersion treatment, it is preferable that the spray treatment be carried out for as long as possible. Therefore, the treatment according to the present invention includes treatment modes such as dipping treatment, spray treatment, and combinations thereof.

本発明はまた、上述の構成からなる処理液を提供する濃
厚処理剤にかかる。この濃厚処理剤にあっては、亜鉛イ
オン供給源、リン酸イオン供給源をイオン形態での重量
で、可溶性タングステン1ヒ金物供給源をタングステン
としての重量で、その重量比が亜鉛イオンニリン酸イオ
ン:可溶性タングステン化合物(Wとして)=1:2.
5〜4oo:o、005〜200となるように混合して
調整した(A)液と促進剤液である(B)液との2湾で
構成され、これらの希釈し適宜混合することにより、前
記組成の処理液が容易に調製せられる。尚、(A)液に
は主成分以外の他のイオン供給源、すなわちマンガンイ
オン、ニッケルイオン、フッ素イオン、硝酸イオンおよ
び塩素酸イオン供給源などを添加することができる。但
し、塩素酸イオン源は(A)液でなく(B)液に添加し
てよく、特に(A)液にマンガンイオン供給源を添加す
る場合には塩素酸イオン源は(B)液に添加することが
好ましい。尚、可溶性タングステン化合物供給源は使用
比率がタングステンとしての重量で上記亜鉛イオン:タ
ングステン化合m−1: 0.005〜200となるよ
うに(B)液に添加してもよい。
The present invention also relates to a concentrated processing agent that provides a processing liquid having the above-mentioned composition. In this concentrated processing agent, the weight ratio of the zinc ion source and the phosphate ion source is in ionic form, and the soluble tungsten metal source is the weight as tungsten, and the weight ratio is zinc ion diphosphate ion: Soluble tungsten compound (as W) = 1:2.
It is composed of two parts: liquid (A), which is adjusted by mixing to give a ratio of 5 to 4oo:o, and liquid (B), which is an accelerator liquid, and by diluting these and mixing them appropriately, A processing solution having the above composition can be easily prepared. Note that ion sources other than the main component, such as manganese ions, nickel ions, fluorine ions, nitrate ions, and chlorate ions, can be added to the solution (A). However, the chlorate ion source may be added to solution (B) instead of solution (A). In particular, when adding a manganese ion source to solution (A), the chlorate ion source may be added to solution (B). It is preferable to do so. The soluble tungsten compound source may be added to the solution (B) so that the ratio of zinc ion to tungsten compound m-1 is 0.005 to 200 by weight as tungsten.

尚、タングステン酸ソーダ、タングステン酸アンモン等
のタングステン酸塩を用いる場合、本発明処理方法で得
られる皮膜にはタングステンが確実に含まれていること
が認められている。
It is recognized that when a tungstate salt such as sodium tungstate or ammonium tungstate is used, the film obtained by the treatment method of the present invention definitely contains tungsten.

以上の構成からなる本発明によれば、鉄系表面のみなら
ず亜鉛面、アルミニウム面あるいはそれらの組合わせを
同時に有する金属表面に対して、初期および連続処理後
においても、塗装下地、特に電着塗装下地就中カチオン
電着塗装下地として好適で、耐食性、特に耐スキャブ性
が特段に浸れ、また耐温水性、密着性も良好な皮膜を形
成することができる。
According to the present invention having the above-described structure, it is possible to treat not only iron-based surfaces but also zinc surfaces, aluminum surfaces, or metal surfaces having a combination thereof at the same time, even after initial and continuous treatment, as a coating base, especially an electrodeposited surface. It is suitable as a coating base, especially as a base for cationic electrodeposition coating, and can form a film with excellent corrosion resistance, particularly scab resistance, and good hot water resistance and adhesion.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

(実施例1〜7.10〜12、および比較例1〜7)(
1)処理対象金属: (イ)合金化溶融亜鉛:合金化溶融亜鉛メツキ鋼板(1
7)電気亜鉛:電気亜鉛メツキ鋼板(八)合金化電気亜
鉛二合金化電気亜鉛メツキ鋼板(ニ)冷延鋼板 (2)酸性リン酸亜鉛処理水溶液: 第1表に示す組成を有する17種のものを使用(3)処
理工程 上記4種((1)の(イ)〜(ニ))の金属表面をそれ
ぞれ同時に以下の工程に従って処理洗−乾煤→塗装 (4)各処理条件 (a)脱 脂:アルカリ性脱脂剤く日本ペイント社製「
サーフクリーナ−5D250J 2重量?≦濃度)を使用し、40 ”Cで2分間浸漬処
理する。
(Examples 1 to 7, 10 to 12, and Comparative Examples 1 to 7) (
1) Metals to be treated: (a) Alloyed molten zinc: Alloyed molten galvanized steel sheet (1
7) Electrolytic zinc: electrogalvanized steel sheet (8) Alloyed electrolytic zinc di-alloyed electrogalvanized steel sheet (d) Cold rolled steel sheet (2) Acidic zinc phosphate treatment aqueous solution: 17 types having the composition shown in Table 1 (3) Treatment process The above four types of metal surfaces ((1) (a) to (d)) are treated at the same time according to the following steps: washing - dry soot → painting (4) Each treatment condition (a) Degreasing: Use an alkaline degreasing agent manufactured by Nippon Paint Co., Ltd.
Surf cleaner-5D250J 2 weight? ≦concentration) and immersion treatment at 40"C for 2 minutes.

(b)水 洗:水道水を使用し、室温で15秒間水洗す
る。
(b) Washing with water: Wash with tap water for 15 seconds at room temperature.

(c)表面調整;表面調整剤(日本へインド社製「サー
フファイン5N−5J、0.1 重量%濃度)を使用し、室温で15秒 間浸漬処理する。
(c) Surface conditioning: Using a surface conditioning agent (Surf Fine 5N-5J, manufactured by Japan India Co., Ltd., 0.1% by weight), immersion treatment is carried out at room temperature for 15 seconds.

(d)1ヒ 成:上記酸性リン酸亜鉛処理水溶液を使用
し、第1表に示す温度(52℃ま たは40℃)で120秒間浸漬処理す る。
(d) 1st Formation: Using the above acidic zinc phosphate treatment aqueous solution, immersion treatment is carried out for 120 seconds at the temperature shown in Table 1 (52°C or 40°C).

(e)水 洗;水道水を曲用し、室温で15秒間水洗す
る。
(e) Washing with water: Wash with tap water for 15 seconds at room temperature.

(f)純水洗:イオン交換水を使用し、室温で15秒間
浸漬処理する。
(f) Pure water washing: Using ion-exchanged water, immersion treatment is performed at room temperature for 15 seconds.

(g)乾 燥:100℃の熱風で10分間乾燥する。尚
、このようにして得られな化成 処理板の外観と化成皮膜重量を測定す る。
(g) Drying: Dry with hot air at 100°C for 10 minutes. The appearance and weight of the chemical conversion coating of the chemical conversion treated board thus obtained were measured.

(h)塗 装;カチオン型電着塗料(日本ペイント社製
、「パワートップビー80グ レー」)を焼付乾燥膜厚20μになる よう塗装しく電圧180■、通電時間 3分)、180°Cで30分間焼1寸ける。得られる電
着塗装板の一部を温塩 水浸漬試験に供する。残りの電着塗装 板に中塗塗料(日本ペイント社製「オ ルガT○4811グレー」、メラミン アルキド樹脂系)をM、1寸乾煤膜厚30μになるよう
にスプレー塗装し、14 0℃で20分間焼けける。次いで上塗 塗料(日本ペイント社製[オルガT○ 630ドーパ−ホワイト」、メラミン アルキド樹脂系)を焼付乾燥膜厚40 μになるよまうにスプレー塗装し、 140℃で20分間焼1寸け、全体で3コート3ベーク
の塗装板を得る。これ を密着性試験とスキャップ試験に供す る。
(h) Painting: Apply cationic electrodeposition paint (manufactured by Nippon Paint Co., Ltd., "Power Top Bee 80 Gray") to a dry film thickness of 20 μm at 180°C (voltage: 180cm, current application time: 3 minutes). Bake for 30 minutes until crispy. A portion of the electrodeposited plate obtained is subjected to a warm salt water immersion test. Spray coat the remaining electrodeposited plate with an intermediate coating (Nippon Paint Co., Ltd.'s "Olga T○4811 Gray", melamine alkyd resin system) to a dry soot film thickness of 30μ, and heat it at 140℃ for 20 minutes. Bake for minutes. Next, a top coat (Olga T○ 630 Doper White, manufactured by Nippon Paint Co., Ltd., melamine alkyd resin system) was spray-painted to a dry film thickness of 40 μm, baked at 140°C for 20 minutes, and the entire surface was sealed. Obtain a painted board with 3 coats and 3 bakes. This is subjected to an adhesion test and a scap test.

(実施例8.9、および比較例8.9)(1)処理対象
金属: (イ)合金化溶融亜鉛:合金化溶融亜鉛メツキ鋼板(ロ
)電気亜鉛:電気亜鉛メツキ鋼板 (ハ)合金化電気亜鉛;合金化電気亜鉛メツキ鋼板(ニ
)冷延鋼板 (2)酸性リン酸亜鉛処理水溶液: 第1表に示す組成を有する4種のものを使用(3)処理
工程 上記4種((1)の(イ)〜(ニ))の金属表面をそれ
ぞれ同時に以下の工程に従って処理袋 (4)各処理条部 (a)脱 脂:アルカリ性脱脂剤(日本ペイント社製「
サーフクリーナー3102」、2重量%濃度)を使用し
、50℃で2分間スプレー処理する。
(Example 8.9 and Comparative Example 8.9) (1) Metals to be treated: (a) Alloyed molten zinc: Alloyed hot-dip galvanized steel sheet (b) Electrolytic zinc: electrolytic galvanized steel sheet (c) Alloyed Electrolytic zinc; Alloyed electrogalvanized steel sheet (d) Cold rolled steel sheet (2) Acidic zinc phosphate treatment aqueous solution: 4 types having the composition shown in Table 1 were used (3) Treatment process The above 4 types ((1) ) The metal surfaces of (a) to (d)) were treated simultaneously according to the following steps (4) Each treatment strip (a) Degreasing: Using an alkaline degreaser (manufactured by Nippon Paint Co., Ltd.)
Surf Cleaner 3102, 2% concentration by weight) at 50° C. for 2 minutes.

(1))水 洗:水道水を使用し、室温で15秒間水洗
する。
(1)) Washing with water: Use tap water to wash for 15 seconds at room temperature.

(C)1ヒ 成;上記酸性リン酸亜鉛処理水溶液を使用
しスプレー圧0.7kg/′cnf、55°Cで120
秒間スプレー処理する。
(C) 1. Using the above acidic zinc phosphate treated aqueous solution, spraying pressure 0.7kg/'cnf, 120°C at 55°C.
Spray for seconds.

(d)水 洗:水道水を使用し、室温で15秒間水洗す
る。
(d) Washing with water: Wash with tap water for 15 seconds at room temperature.

(e)純水洗:イオン交換水を使用し、室温で15秒間
浸漬処理する。
(e) Pure water washing: Using ion-exchanged water, immersion treatment is performed at room temperature for 15 seconds.

(f)乾 (g)塗 燥:100℃の熱風で10分間乾燥す る。尚、このようにして得られな化成処理板の外観と化
成皮膜重量を測定する。
(f) Drying (g) Coating: Dry with hot air at 100°C for 10 minutes. The appearance and weight of the chemical conversion coating of the chemical conversion treated board thus obtained were measured.

装コカチオン型電着塗料(日本ペイント社製「パワート
ップビー80グレー」)を類1寸乾燥膜厚20μになる
よう塗装しく電圧180V、通電時間3分)、180°
Cで30分間焼けける。得られる電着塗装板の一部を温
塩水浸漬試験に供す る。残りの電着塗装板に中塗塗料(日本ペイント社製「
オルガTO4811グ レー」、メラミンアルキド樹脂系)を焼付乾燥膜厚30
μになるようにスプレー塗装し、140°Cで20分間
焼付ける。
Apply cocationic electrodeposition paint (Nippon Paint Co., Ltd. "Power Top Bee 80 Gray") to a dry film thickness of 20 μm (voltage: 180 V, energizing time: 3 minutes), 180°.
Bake at C for 30 minutes. A portion of the electrodeposited plate obtained is subjected to a warm salt water immersion test. Apply intermediate coating paint (manufactured by Nippon Paint Co., Ltd.) to the remaining electrodeposition coated board.
Baked "Olga TO4811 Gray" (melamine alkyd resin system) to a dry film thickness of 30
Spray paint so that it becomes μ and bake at 140°C for 20 minutes.

次いで上塗塗料〈日本ペイント社製「オルガTO630
ドーパ−ホワイト」、メラミンアルキド樹脂系)を焼付
乾燥膜厚40μになるようにスプレー塗装し、140℃
で20分間焼付け、全本で3コート3ベークの塗装板を
得る。これを密着性試験とスキャップ試験に供する。
Next, top coat paint (Olga TO630 manufactured by Nippon Paint Co., Ltd.)
Doper White, melamine alkyd resin) was spray-painted to a baked dry film thickness of 40μ, and heated at 140°C.
Bake for 20 minutes to obtain a painted board with 3 coats and 3 bakes. This is subjected to an adhesion test and a scap test.

試験結果:上記各実施例、比較例により得られた各種試
験板について各種試験を実施し、その結果を第2表に示
した。尚、各試験方法は以下に示す。
Test results: Various tests were conducted on the various test plates obtained in each of the above Examples and Comparative Examples, and the results are shown in Table 2. In addition, each test method is shown below.

<A)温塩水浸漬試験 電着塗装板に鋭利なカッターでカットを入れ、5%、5
5°Cの食塩水中に480時間浸漬した後、カット部に
粘着テープを粘着した後剥離し、塗膜の最大剥離中を測
定する。
<A) Warm salt water immersion test A cut was made with a sharp cutter on the electrodeposition coated plate, and 5%, 5%
After 480 hours of immersion in saline at 5°C, an adhesive tape was applied to the cut portion and then peeled off, and the maximum peeling of the coating was measured.

(B)密着性試験: 塗装板を40°Cの脱イオン水に20日間浸漬した後、
これに1關間隔と2 mm間陽のゴバン目(100個)
を鋭利なカッターで形成し、その各面に粘着テープを粘
着した後これらを剥離して、塗装板に残っているゴバン
目塗膜の数を数える。
(B) Adhesion test: After immersing the painted board in deionized water at 40°C for 20 days,
In addition to this, there are 100 pieces of positive rows at intervals of 1 and 2 mm.
using a sharp cutter, attach adhesive tape to each side, peel them off, and count the number of goblin coatings remaining on the painted board.

(C)スキャブ試験 塗装板に鋭利なカッターでカットを入れ、次いでこの塗
装板を5%塩水噴霧試験(JIS−Z−2371,24
時間)→湿潤試験(湿度40℃、相対湿度85%、12
0時間)−室内放置(24時間)1サイクルとして10
サイクルの@食試験(以後スキャブ試験という)に1寸
した。試験後の塗面の腐食量大巾を調べた。
(C) Scab test A cut was made on the painted board with a sharp cutter, and then the painted board was subjected to a 5% salt spray test (JIS-Z-2371, 24
time) → Humidity test (humidity 40℃, relative humidity 85%, 12
0 hours) - left indoors (24 hours) 1 cycle is 10
I took 1 inch for the cycle @food test (hereinafter referred to as the scab test). The amount of corrosion on the painted surface after the test was investigated.

尚、上記実施例のタングステン化合物として実施例1〜
8および10はタングステン酸アンモニウム ・実施例9はタングステン酸ソーダ ・実施例11.12はケイタングステン酸をそれぞれ用
いた。
In addition, as the tungsten compounds of the above examples, Examples 1 to
Examples 8 and 10 used ammonium tungstate, Example 9 used sodium tungstate, and Examples 11 and 12 used silicotungstic acid, respectively.

実施例13.14  比較例10.11.12(1)処
理対象物 イ)・合金1ヒ溶融亜鉛メツキ鋼板 口)冷延鋼板 ハ)アルミニウム合金板(Al/14g合金系)(2)
酸性リン酸亜鉛処理水溶液 第3表に示す組成を有する4種のものを使用した。
Example 13.14 Comparative Example 10.11.12 (1) Object to be treated A) Alloy 1 Hot dip galvanized steel sheet Mouth) Cold rolled steel sheet C) Aluminum alloy sheet (Al/14g alloy system) (2)
Four types of acidic zinc phosphate treated aqueous solutions having the compositions shown in Table 3 were used.

〈3)処理工程 上記3種((1)の(イ)〜(ハ))の金属表面をそれ
ぞれ80,10.10%の被処理面積の割合で同時に、
以下の工程に従って処理。
<3) Treatment process The above three types of metal surfaces ((1) (a) to (c)) are treated at the same time at a ratio of 80% and 10.10% of the area to be treated, respectively.
Process according to the following steps.

脱脂→水洗→表面調整→化成→水洗→純水(ティラフ) 洗−乾殻一塗装 (4)各処理条件 (a)脱 脂: アルカリ性脱脂剤(日本ペイン社製「
サーフクリーナー5D25 0」、2重量?6濃度)を使用し、 40°Cで2分間浸漬処理した。
Degreasing → Water washing → Surface conditioning → Chemical formation → Water washing → Pure water (Tirafu) Washing - Dry shell coating (4) Each treatment condition (a) Degreasing: Alkaline degreaser (manufactured by Nippon Pain Co., Ltd.)
Surf Cleaner 5D25 0”, 2 weight? 6 concentration) and immersion treatment was performed at 40°C for 2 minutes.

〔浴管理〕アルカリ度〈10蔵採取し、ブロムフェノー
ルブルーを指示薬と して、中和に要する0 、  1 NHClのmQ数)
を維持する。補給用薬剤は サーフクリーナー5D250を使 用した。
[Bath management] Alkalinity (10 samples were taken, and the mQ number of 0 and 1 NHCl required for neutralization using bromophenol blue as an indicator)
maintain. Surf Cleaner 5D250 was used as a replenishment agent.

(c)表面調整  表面調整剤(日本ペイント社製「サ
ーフファイン5N−5J0.1重量%濃度)を使用し、
室温で15秒間浸漬処理する。
(c) Surface conditioning Using a surface conditioning agent (manufactured by Nippon Paint Co., Ltd. "Surf Fine 5N-5J 0.1% concentration by weight),
Dip for 15 seconds at room temperature.

〔浴管理〕アルカリ度(同上)を維持する。[Bath management] Maintain alkalinity (same as above).

補給用薬剤はサーフファイン5N−5 (d)化 成: 上記酸性リン酸亜鉛処理水溶液を使用
し、40℃で2分間浸漬処理し た。
The replenishing agent was Surf Fine 5N-5 (d) Chemical formation: The above acidic zinc phosphate treated aqueous solution was used and immersion treatment was carried out at 40°C for 2 minutes.

〔浴管理〕 上記酸性リン酸亜鉛処理水溶液における各
イオン組成の濃度およ び遊離酸度(10mM採取し、ブロ ムフェノールブルーを指示薬とし て、中和に要する0 、  I NNaOHのmU数)
を維持する。補給用薬削は Zn、 PO4、Mn、 Ni、 W、 FおよびNO
3の各イオン濃度を維持する為 にそれぞれ亜鉛華、リン酸、硝酸 マンガン7炭酸ニッゲル、ケイタ ングステン酸、硅弗酸(もしくは 硼弗酸)および硝酸を含有する補 活用濃厚処理剤Aと、N02のイオ ン濃度を維持する為に、亜硝酸す′ トリウムを含有する補給用濃厚処 理剤Bを使用した。又、比較図1 12においてはリン酸亜鉛処理水 溶液のA1濃度を50ppm以下に 維持する為に酸性弗1ヒカリウムと 酸性弗化ナトリウムをそれぞれ 2;1モル重量比で含むアルミニ ラム沈澱上用添加剤Cを使用し た。
[Bath management] Concentration and free acidity of each ion composition in the above acidic zinc phosphate treated aqueous solution (number of mU of 0, I N NaOH required for neutralization when 10 mM was collected and bromophenol blue was used as an indicator)
maintain. Supply chemical sharpeners include Zn, PO4, Mn, Ni, W, F, and NO.
In order to maintain the concentration of each ion in step 3, a concentrated treatment agent A for replenishment containing zinc white, phosphoric acid, manganese nitrate 7 carbonate nigel, silicotungstic acid, silifluoric acid (or borofluoric acid) and nitric acid, and N02 In order to maintain the ion concentration, replenishment concentrated processing agent B containing thorium nitrite was used. In addition, in Comparative Figure 1 12, in order to maintain the A1 concentration of the zinc phosphate treated aqueous solution at 50 ppm or less, an aluminum lam precipitation additive C containing acidic monohypotassium fluoride and acidic sodium fluoride at a molar weight ratio of 2:1, respectively. It was used.

(e> (f>  実施3例1と同様 試験結果 実施例13は、リン酸亜鉛処理水溶液中のアルミニウム
イオンの平衡濃度が160ppmになったが、3種の処
理対象物共に良好な塗装下地適正を示した。
(e>(f> Example 3 Same test results as Example 1) In Example 13, the equilibrium concentration of aluminum ions in the zinc phosphate treated aqueous solution was 160 ppm, but all three types of treated objects were suitable as a good base for painting. showed that.

比較例10は、アルミニウムイオン濃度が、300pp
mを超え、400ppmに達し、冷延鋼板の皮膜化成性
が劣1ヒ(黄精発生)し、塗装品質が劣fヒしな。
In Comparative Example 10, the aluminum ion concentration was 300 pp
If the concentration exceeds 400 ppm, the film formation property of the cold-rolled steel sheet is poor (yellowing occurs), and the coating quality is poor.

実施例14は、アルミニウムイオンの平衡イ農度が80
ppmになったが、3種の処理対象物共に良好な塗装下
地適正を示した。
In Example 14, the equilibrium degree of aluminum ion is 80.
ppm, but all three types of objects to be treated showed good suitability as a base for painting.

比較例11は、アルミニウムイオン濃度が1100pp
を超え、200ppmに達し冷延鋼板の皮膜化成性が劣
1ヒ(黄精発生)した。
Comparative Example 11 has an aluminum ion concentration of 1100 pp
The amount exceeded 200 ppm, and the film formation property of the cold-rolled steel sheet was poor (yellowing occurred).

比較例12は、アルミニウムイオン濃度は50 p p
 m以下に維持されたが、アルミニウムの沈澱物が処理
対象物に沈着する傾向が高まり、塗装下地適正が劣1ヒ
しな。(カチオン電着塗膜の均一性欠如) Fの供給源 実施例13、比較例10は)12siF6
実施例14、比較例11.12は1(BF4Wの供給源
 ケイタングステン酸 尚1本発明においては下記の実施態様を包含する。
In Comparative Example 12, the aluminum ion concentration was 50 pp
However, the tendency of aluminum precipitates to settle on the object to be treated increases, and the suitability of the coating base becomes worse. (Lack of uniformity of cationic electrodeposition coating film) Source of F Example 13, Comparative Example 10) 12siF6
Example 14 and Comparative Examples 11 and 12 are 1 (source of BF4W) silicotungstic acid (1) The present invention includes the following embodiments.

(1)処理方式が浸漬処理である特許請求の範囲の請求
項第1項記載の方法。
(1) The method according to claim 1, wherein the treatment method is immersion treatment.

(2)可溶性タングステン化合物がタングステン酸ソー
ダ、タングステン酸アンモン、ホウタングステン酸、リ
ンタングステン酸、リンタングステン酸塩、ゲイタング
ステン酸、ゲイタングステン酸アルカリ金属塩、ケイタ
ングステン酸アンモン、ケイタングステン酸アルカリ土
類金属塩からなる群より選ばれる少なくとも1種である
、請求項第1項記載の方法。
(2) The soluble tungsten compound is sodium tungstate, ammonium tungstate, borotungstic acid, phosphotungstic acid, phosphotungstate, geytungstic acid, alkali metal geytungstate, ammonium silicate, alkaline earth silicate tungstate. The method according to claim 1, wherein the salt is at least one selected from the group consisting of metal salts.

(3)皮膜化成促進剤が、亜硝酸イオン0.01〜0.
5g/η、m−ニトロベンゼンスルホン酸イオン0.0
5〜5g/(および過酸化水素0.5〜Log/ffl
から選ばれる少なくとも1種である、請求項第1項記載
の方法。
(3) The film formation accelerator contains nitrite ions of 0.01 to 0.
5g/η, m-nitrobenzenesulfonic acid ion 0.0
5-5g/(and hydrogen peroxide 0.5-Log/ffl
The method according to claim 1, wherein the method is at least one selected from the following.

(4)酸性リン酸亜鉛処理水溶液が、マンガンイオン0
.1〜3 g / !;l、フッ素イオン0.05〜4
 g /’ 、R、ニッケルイオン0.1〜4g/βの
少なくとも1種を含む、請求項第1項記載の方法。
(4) The acidic zinc phosphate treated aqueous solution contains 0 manganese ions.
.. 1-3 g/! ;l, fluorine ion 0.05-4
The method according to claim 1, comprising at least one of g/', R, and 0.1 to 4 g/β of nickel ions.

(5)酸性リン酸亜鉛処理水溶液が硝酸イオン0.1〜
15g/ffおよび/または塩素酸イオン0.05〜2
.0g/、&未満を含む、請求項第1項もしくは上記第
3項記載の方法。
(5) Acidic zinc phosphate treatment aqueous solution has nitrate ions of 0.1~
15g/ff and/or chlorate ion 0.05-2
.. 4. The method of claim 1 or claim 3, comprising less than 0 g/, &.

(6)処理温度が30〜70°Cである、請求項第1項
記載の方法。
(6) The method according to claim 1, wherein the treatment temperature is 30 to 70°C.

(7)浸漬処理か、先ず15秒以上の浸漬処理、次いで
スプレー処理の組み合わせからなる、請求項第1項記載
の方法。
(7) The method according to claim 1, comprising a dipping treatment or a combination of first dipping treatment for 15 seconds or more and then spraying treatment.

(8)金属表面が鉄系表面、亜鉛系表面あるいは鉄系表
面と亜鉛系表面とを同時に有するものである、請求項第
1項記載の方法。
(8) The method according to claim 1, wherein the metal surface has an iron-based surface, a zinc-based surface, or both an iron-based surface and a zinc-based surface.

(9)金属表面がアルミニウム系表面あるいはアルミニ
ウム系表面と鉄系表面、亜鉛系表面を同時に有するもの
であり、酸性リン酸亜鉛処理水溶液が亜鉛イオン0.1
〜2.Og/ρ、リン酸イオン5〜40 g / 、Q
 、フッ素イオン0.05〜4g/ρ、ケイタングステ
ン酸および/またはケイタングステン酸塩をタングステ
ンとして0.01〜20g/ρおよび皮膜化成促進剤を
主成分として含む請求項第1項記載の方法。
(9) The metal surface has an aluminum-based surface or an aluminum-based surface, an iron-based surface, and a zinc-based surface at the same time, and the acidic zinc phosphate treatment aqueous solution contains zinc ions of 0.1
~2. Og/ρ, phosphate ion 5-40 g/, Q
2. The method according to claim 1, wherein the main components are 0.05 to 4 g/ρ of fluorine ion, 0.01 to 20 g/ρ of tungsten silicotungstic acid and/or tungstate silico, and a film formation accelerator.

(10)亜鉛イオン源、リン酸イオン源およびタングス
テンイオン源(Wとして)を1+2.5〜400:0.
005〜200の重量比で含む(A)成分と、皮膜化成
促進剤を含む(B)成分とからなる、請求項第1項の酸
性リン酸亜鉛処理水溶液を希釈により調整するための2
液型濃厚処理剤。
(10) Zinc ion source, phosphate ion source and tungsten ion source (as W) at 1+2.5 to 400:0.
2 for adjusting by dilution the acidic zinc phosphate treated aqueous solution of claim 1, comprising component (A) contained in a weight ratio of 0.005 to 200 and component (B) containing a film formation accelerator.
Liquid type concentrated processing agent.

(11)Wを(B)に添加する、上記第8項記載の2液
型濃厚処理剤。
(11) The two-component concentrated processing agent according to item 8 above, wherein W is added to (B).

(12)請求項第1項記載の方法で得られるタングステ
ン含有リン酸亜鉛皮膜を有する金属材。
(12) A metal material having a tungsten-containing zinc phosphate film obtained by the method according to claim 1.

(13)亜鉛イオン0.1〜2.0g/、ff、リン酸
イオン5〜40g/ρ、可溶性タングステン化合物をタ
ングステンとして0.01〜20.0g/lおよび皮膜
化成促進剤を主成分として含む酸性リン酸亜鉛処理水溶
液でり8理して得られるタングステン含有リン酸亜鉛皮
膜を有する金属材。
(13) Contains zinc ion 0.1-2.0g/ff, phosphate ion 5-40g/ρ, soluble tungsten compound 0.01-20.0g/l as tungsten, and film formation accelerator as main components. A metal material having a tungsten-containing zinc phosphate film obtained by treating with an acidic zinc phosphate treatment aqueous solution.

特許出願代理人 弁理±  1ア 藤 武 雄patent application agent Patent Attorney ± 1A Takeo Fuji

Claims (2)

【特許請求の範囲】[Claims] (1)金属表面を、可溶性タングステン化合物をタング
ステンとして0.01〜20.0g/l含む酸性リン酸
亜鉛処理水溶液で処理することを特徴とする、金属表面
のリン酸亜鉛処理方法。
(1) A method for treating a metal surface with zinc phosphate, which comprises treating the metal surface with an acidic zinc phosphate treatment aqueous solution containing a soluble tungsten compound of 0.01 to 20.0 g/l as tungsten.
(2)金属表面を亜鉛イオン0.1〜2.0g/l、リ
ン酸イオン5〜40.0g/l、可溶性タングステン化
合物をタングステンとして0.01〜20.0g/lお
よび皮膜化成促進剤を主成分として含む酸性リン酸亜鉛
処理水溶液で処理することを特徴とする、請求項第1項
記載の方法。
(2) The metal surface is treated with 0.1 to 2.0 g/l of zinc ions, 5 to 40.0 g/l of phosphate ions, 0.01 to 20.0 g/l of tungsten as a soluble tungsten compound, and a film formation accelerator. The method according to claim 1, characterized in that the treatment is carried out with an acidic zinc phosphate treatment aqueous solution containing as a main component.
JP1271182A 1988-12-16 1989-10-17 Zinc phosphate treatment method for metal surface Expired - Lifetime JPH0819532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1271182A JPH0819532B2 (en) 1988-12-16 1989-10-17 Zinc phosphate treatment method for metal surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-319317 1988-12-16
JP31931788 1988-12-16
JP1271182A JPH0819532B2 (en) 1988-12-16 1989-10-17 Zinc phosphate treatment method for metal surface

Publications (2)

Publication Number Publication Date
JPH02263986A true JPH02263986A (en) 1990-10-26
JPH0819532B2 JPH0819532B2 (en) 1996-02-28

Family

ID=18108852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271182A Expired - Lifetime JPH0819532B2 (en) 1988-12-16 1989-10-17 Zinc phosphate treatment method for metal surface

Country Status (1)

Country Link
JP (1) JPH0819532B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212751A (en) * 2001-01-17 2002-07-31 Nippon Paint Co Ltd Metal surface treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212751A (en) * 2001-01-17 2002-07-31 Nippon Paint Co Ltd Metal surface treatment method
JP4658339B2 (en) * 2001-01-17 2011-03-23 日本ペイント株式会社 Metal surface treatment method

Also Published As

Publication number Publication date
JPH0819532B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
EP1433876B1 (en) Chemical conversion coating agent and surface-treated metal
EP1433875B1 (en) Chemical conversion coating agent and surface-treated metal
JPS6136588B2 (en)
JP3063920B2 (en) How to treat metal surfaces with phosphate
JPH0137478B2 (en)
JPS5811515B2 (en) Composition for forming a zinc phosphate film on metal surfaces
US4486241A (en) Composition and process for treating steel
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
KR20040058038A (en) Chemical conversion coating agent and surface-treated metal
US4637838A (en) Process for phosphating metals
KR20040058040A (en) Chemical conversion coating agent and surface-treated metal
JPH06506263A (en) Phosphate treatment method for metal surfaces
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
JP2003155578A (en) Chemical conversion treatment agent for iron and/or zinc
EP0321059B1 (en) Process for phosphating metal surfaces
JPH0819531B2 (en) Zinc phosphate treatment method for metal surface
JPS6017827B2 (en) Pretreatment method for metal surfaces for cationic electrodeposition coating
JPH04341574A (en) Treatment of zinc phosphate onto metal surface
US4643778A (en) Composition and process for treating steel
JPS6141987B2 (en)
JP3417653B2 (en) Pretreatment method for painting aluminum material
JPH02263986A (en) Treatment of metal surface with zinc phosphate
JPH01240671A (en) Zinc phosphate treatment for metallic surface for coating
JPH0380877B2 (en)
JP2826242B2 (en) Phosphating of metal surfaces