JPH02263834A - Formed body for sliding surface, track for high-speed moving unit and usage of formed body for sliding surface - Google Patents

Formed body for sliding surface, track for high-speed moving unit and usage of formed body for sliding surface

Info

Publication number
JPH02263834A
JPH02263834A JP1236333A JP23633389A JPH02263834A JP H02263834 A JPH02263834 A JP H02263834A JP 1236333 A JP1236333 A JP 1236333A JP 23633389 A JP23633389 A JP 23633389A JP H02263834 A JPH02263834 A JP H02263834A
Authority
JP
Japan
Prior art keywords
smooth surface
surface forming
forming body
metal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1236333A
Other languages
Japanese (ja)
Inventor
Naoto Mifune
直人 御船
Takefusa Nakamura
中村 武房
Takahiko Yoshimura
吉村 孝彦
Saburo Endo
三郎 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO SILICONE KK
Sumitomo Cement Co Ltd
Railway Technical Research Institute
Original Assignee
TOKYO SILICONE KK
Sumitomo Cement Co Ltd
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO SILICONE KK, Sumitomo Cement Co Ltd, Railway Technical Research Institute filed Critical TOKYO SILICONE KK
Priority to JP1236333A priority Critical patent/JPH02263834A/en
Publication of JPH02263834A publication Critical patent/JPH02263834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the subject formed body, containing a netlike tetrafluoroethylene resin entangled with a heat-resistant resin and further inorganic powder, capable of reducing friction and abrasion of rubber products and useful as running road surfaces for linear motor cars, etc. CONSTITUTION:The objective formed body 10 obtained by using (A) tetrafluoroethylene resin 2, (B) inorganic powder 1 and (C) a heat-resistant resin 3 other than the component (A) as principal components and providing a mutually intervened network structure in which the netlike component (A) is mutually entangled with the netlike component (C) that is contained therein using at least pressure or heat. Furthermore, the component (B) is composed of at least one selected from the group of metal oxides (e.g. alumina), metal nitrides (e.g. silicon nitride), metal carbonates (e.g. silicon carbide), etc., and the average particle diameter is preferably within the range of 1-20mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は滑面形成体および高速移動体用走路に係り、特
にゴムタイヤ等のゴム製品の相手材として用いられて滑
面を形成し、ゴム製品の摩耗防止及び低摩擦化を達成す
るための滑面形成体、リニアモーターカーや航空機等の
高速移動体のゴムタイヤの摩耗を防止する高速移動体用
走路および上記滑面形成体の使用方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a sliding surface forming body and a running track for high-speed moving objects, and in particular is used as a mating material for rubber products such as rubber tires to form a sliding surface and A smooth surface forming body for achieving wear prevention and low friction of products, a running track for high-speed moving bodies to prevent wear of rubber tires of high-speed moving bodies such as linear motor cars and aircraft, and a method for using the above-mentioned smooth surface forming body. .

〔従来の技術及び発明が解決しようとする課題〕ゴム製
品は、ゴムが保有している弾性、高摩擦係数などの優れ
た性質により自動車、航空機、リニアモーターカー等の
ゴムタイヤ、各種パイプ等のつなぎ部に使用されている
0リング、振動防止用のゴムシート、テーブルの足等広
範な用途に用いられている。このようなゴム製品の用途
の広範化に伴い、使用環境が過酷になり、特にリニアモ
ーターカーや航空機のような高速移動体のゴムタイヤに
おいては、ゴムタイヤの摩擦現象にも対応しなければな
らない、という本来ゴムに求められる性質を遥かに越え
た使用環境での使用が現実に行われている。例えば、航
空機産業では、航空機のゴムタイヤの離着陸の際の摩耗
がはなはだしく、高重量化に伴ってその傾向はさらに進
む方向にあり、現在は、わずか数百回程度の着陸でゴム
タイヤを交換しなくてはならず、多大の費用がついやさ
れている。
[Prior art and problems to be solved by the invention] Rubber products are used as connectors for rubber tires of automobiles, aircraft, linear motor cars, etc., various pipes, etc. due to the excellent properties of rubber such as elasticity and high coefficient of friction. It is used in a wide range of applications, including O-rings used in parts, rubber sheets for vibration prevention, and table legs. As the uses of rubber products expand, the environments in which they are used have become harsher, and especially for rubber tires on high-speed moving vehicles such as linear motor cars and aircraft, it is necessary to cope with the friction phenomenon of rubber tires. Rubber is actually being used in environments that far exceed the properties originally required of rubber. For example, in the aircraft industry, the rubber tires of aircraft are subject to significant wear during takeoff and landing, and this trend is only worsening as aircraft weight increases.Currently, rubber tires do not have to be replaced after just a few hundred landings. This is not the case, and a huge amount of costs are being incurred.

このような使用環境下でのゴム製品のゴムの特性は、従
来のすべり防止という機能と共にゴムの摩耗防止や発熱
に伴うゴムの破壊を防止する目的で摺動性、すなわち低
い摩擦係数を具有する必要がある。このように、従来の
単機能から、複合機能化がゴム製品に要求されている。
Under such usage environments, the rubber properties of rubber products include sliding properties, that is, a low coefficient of friction, in order to prevent rubber wear and damage caused by heat generation, as well as the conventional anti-slip function. There is a need. In this way, rubber products are required to have multiple functions instead of conventional single functions.

一方、リニアモーターカーや航空機のような安全性が極
めて重要視されるケースに関しては、数百回程度の着陸
により、ゴムタイヤを交換しなければならないため、経
済性が悪い、という問題がある。
On the other hand, in cases where safety is extremely important, such as in linear motor cars and airplanes, there is a problem in that the rubber tires must be replaced after several hundred landings, making them uneconomical.

本発明は、上述したゴム製品の摩擦摩耗現象に着目して
ゴム製品の相手材として滑面を形成することによりゴム
製品の著しい摩耗を減少させることが可能な滑面形成体
およびこの滑面形成体の使用方法を提供することを目的
とする。
The present invention focuses on the above-mentioned frictional wear phenomenon of rubber products, and provides a smooth surface forming body capable of reducing significant wear of rubber products by forming a smooth surface as a mating material of the rubber products, and this smooth surface forming body. The purpose is to provide instructions on how to use the body.

また、本発明は高速移動体のゴムタイヤの著しい摩耗が
発生しないようにすると共に走行路面が保護されるよう
にした高速移動体用走路を提供することを目的とする。
Another object of the present invention is to provide a running track for a high-speed moving body that prevents significant wear of the rubber tires of the high-speed moving body and protects the running road surface.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明の滑面形成体は、四フ
ッ化エチレン樹脂、無機粉末及び四フッ化エチレン樹脂
を除く耐熱性樹脂を主成分として、少なくとも圧力また
は熱によって網状の四フッ化エチレン樹脂と網状の耐熱
性樹脂とが相互に絡みあいかつ無機粉末を含有する相互
介入網目構造としたものである。
In order to achieve the above object, the smooth surface forming body of the present invention has a polytetrafluoroethylene resin, an inorganic powder, and a heat-resistant resin other than the polytetrafluoroethylene resin as its main component, and is made of polytetrafluoroethylene resin in a network shape by at least pressure or heat. The ethylene resin and the network-like heat-resistant resin are intertwined with each other and have an intermeshed network structure containing inorganic powder.

無機粉末は、金属酸化物、金属窒化物、金属炭化物、金
属硫化物、純金属、合金、グラファイトの群から少なく
とも1種選んで使用することができる。
The inorganic powder can be selected from the group consisting of metal oxides, metal nitrides, metal carbides, metal sulfides, pure metals, alloys, and graphite.

金属酸化物は、アルミナ、シリカ、ジルコニア、チタニ
ア、カルシア、酸化銅、酸化鉄、酸化モリブデン、酸化
マグネシウムの群から少なくとも1種選んで使用するこ
とができる。
At least one metal oxide selected from the group consisting of alumina, silica, zirconia, titania, calcia, copper oxide, iron oxide, molybdenum oxide, and magnesium oxide can be used.

金属窒化物は、窒化ケイ素、窒化アルミニウム、窒化チ
タンの群から少なくとも1種選んで使用することができ
る。
At least one metal nitride selected from the group consisting of silicon nitride, aluminum nitride, and titanium nitride can be used.

金属炭化物としては炭化ケイ素を使用することができる
Silicon carbide can be used as the metal carbide.

純金属は、銅、アルミニウム、金、銀、チタン、鉄、モ
リブデン、バナジウム、ニッケル、タングステンの群か
ら少なくとも1種選んで使用することができる。
At least one pure metal selected from the group consisting of copper, aluminum, gold, silver, titanium, iron, molybdenum, vanadium, nickel, and tungsten can be used.

合金は、ステンレス、真鍮、アルミニウム合金、マグネ
シウム合金の群から少なくとも1種選んで使用すること
ができる。
At least one alloy can be selected from the group consisting of stainless steel, brass, aluminum alloy, and magnesium alloy.

無機粉末の平均粒径は、1〜20μmの範囲にすること
ができる。
The average particle size of the inorganic powder can be in the range of 1 to 20 μm.

耐熱性樹脂は、ポリフェニレンサルファイド、ポリアミ
ドイミド、ポリイミド、ポリエーテルサルフォン、ポリ
エーテルエーテルケトン、エポキシ樹脂、フェノール樹
脂、エステル樹脂の群から少なくとも1種選んで使用す
ることができる。
The heat-resistant resin can be selected from the group consisting of polyphenylene sulfide, polyamideimide, polyimide, polyether sulfone, polyether ether ketone, epoxy resin, phenol resin, and ester resin.

滑面形成体の空隙率は、0.5%〜30.0%の範囲に
することができる。
The porosity of the smooth surface forming body can be in the range of 0.5% to 30.0%.

また、本発明は上記滑面形成体を、高速移動体用走路の
資材として使用するものである。
Further, the present invention uses the above-mentioned smooth surface forming body as a material for a running track for a high-speed moving body.

また、本発明の高速移動体用走路は、高速移動体のゴム
タイヤとの初期接触部に、上記のように構成された滑面
形成体を配置して高速移動体用走路を構成したものであ
る。
Further, the running track for a high-speed moving body of the present invention is constructed by arranging the sliding surface forming body configured as described above at the initial contact portion with the rubber tire of the high-speed moving body. .

〔作用〕[Effect]

一般に、ゴム製品は加硫により分子鎮同士が架橋された
非常に流動性に富んだ一つの巨大分子とみなせる。その
ため、ある一定の力が作用したときに相手材の表面の凹
凸に入り込んだり、あるいは相手材の表面にかぎりなく
近づくことが可能となる。ここで、ゴム製品に上記のよ
うな極限的な変形が生じるとゴムは接着状態あるいは粘
着状態に似た状態にありなから似結晶状態となる。これ
らの事柄を摩擦摩耗現像の中で説明を加えると、次のよ
うになる。ゴムあるいは相手材の移動に対して、ゴム表
面が変形しつつ追従し、ゴムの変形限界で似結晶状態と
なり、この状態でゴムに最大の抵抗が作用する。そして
その変形限界を通り越すとゴム表面が破壊され、破壊エ
ネルギーが熱に変換されてこの熱によってゴムが液体状
態になり相手材に焼き付く、というゴムの一方的な摩耗
が生じる。この現象が代表的な摩擦摩耗現象である。
In general, rubber products can be regarded as one highly fluid macromolecule whose molecules are crosslinked by vulcanization. Therefore, when a certain amount of force is applied, it becomes possible to penetrate into the unevenness of the surface of the mating material or to get as close to the surface of the mating material as possible. Here, when the rubber product undergoes extreme deformation as described above, the rubber is in an adhesive state or a state similar to a sticky state, and becomes a quasi-crystalline state. An explanation of these matters in terms of friction and wear development is as follows. The rubber surface deforms and follows the movement of the rubber or the mating material, and at the limit of rubber deformation it becomes a quasi-crystalline state, and in this state maximum resistance acts on the rubber. When the deformation limit is exceeded, the rubber surface is destroyed, the destruction energy is converted into heat, and this heat turns the rubber into a liquid state and seizes it to the mating material, causing unilateral wear of the rubber. This phenomenon is a typical friction and wear phenomenon.

この現象による摩耗は、ゴム製品あるいは相手材のいず
れか一方が停止しかつ他方が高速で運動している状態で
両者が接触するとき、あるいは両者が停止しており両者
または一方が動き出す瞬間に最大になる。多くの場合、
接触初期あるいは動き出す瞬間、換言すればゴムの変形
限界の少し手前の瞬間には摩擦抵抗が最大になり、偏摩
耗などの部分的な摩耗として現れるため、このような部
位にゴム製品を使用するのはあまり望ましくない。
Wear due to this phenomenon is greatest when either the rubber product or the mating material comes into contact while the other is stationary and the other is moving at high speed, or at the moment when both are stationary and both or one starts moving. become. In many cases,
At the initial stage of contact or at the moment when movement begins, in other words, at the moment just before the deformation limit of the rubber, frictional resistance is at its maximum and appears as localized wear such as uneven wear, so it is recommended not to use rubber products in such areas. is not very desirable.

従って、初期段階においても摩擦の定常状態においても
低摩擦であればゴム製品の応用範囲は広くなる。
Therefore, if the friction is low both in the initial stage and in the steady state of friction, the range of applications of rubber products will be widened.

このため、本発明ではゴム製品の応用範囲を広くするた
めに、ゴム製品の相手材として使用される滑面形成体に
ゴム製品となじみ、ゴム製品に多大な熱を発生させない
ような性質を付与するようにしている。
Therefore, in the present invention, in order to widen the range of application of rubber products, the smooth surface forming body used as a mating material for rubber products is given properties that are compatible with the rubber products and do not generate a large amount of heat in the rubber products. I try to do that.

本発明による相互介入網目構造とは、加圧成形時の圧力
、焼成時の温度、焼成時の雰囲気圧またはプレス圧を適
当な条件に保つことにより形成される四フッ化エチレン
樹脂(PTFE)とPTFEを除く耐熱性樹脂とが加圧
流動または熱流動によって網状に相互に絡み合った三次
元網目構造を意味している。第1図に本発明の滑面形成
体の相互介入網目構造の一例を示した。図中1は無機粉
末、2はPTFE、3はPTFEを除く耐熱性樹脂、4
は空隙である。第1図に見られるように網状のPTFE
2とPTFEを除く網状の耐熱性樹脂3とが無機粉末を
取り込みながら三次元の網目を形成し、PTFE2同士
の結合による網目とPTFEを除く耐熱性樹脂3の網目
とが高度にかつ相互に入り組んだ相互介入網目構造にな
っている。
The inter-intervening network structure according to the present invention is made of polytetrafluoroethylene resin (PTFE), which is formed by maintaining appropriate pressure during pressure molding, temperature during firing, atmospheric pressure during firing, or press pressure. It means a three-dimensional network structure in which heat-resistant resins other than PTFE are entangled with each other in a network shape by pressurized flow or thermal flow. FIG. 1 shows an example of the mutually intervening network structure of the smooth surface forming body of the present invention. In the figure, 1 is inorganic powder, 2 is PTFE, 3 is heat-resistant resin excluding PTFE, and 4
is a void. Reticulated PTFE as seen in Figure 1
2 and the network-like heat-resistant resin 3 excluding PTFE form a three-dimensional network while incorporating the inorganic powder, and the network formed by the bond between the PTFE 2 and the network of the heat-resistant resin 3 excluding PTFE are highly and mutually entwined. It has a network structure of mutual intervention.

滑面形成体は前記の通り相互介入網目構造を持ち、PT
FEとPTFEを除く耐熱性樹脂の界面に空隙が存在し
ている。この空隙はゴム製品とのなじみ性を向上させ、
ゴム製品との摩擦で発生する熱を大幅に低下させる効果
を持っている(発熱低下機能)。また、ゴムと相手材と
の衝突時に、ゴムが似結晶化するまで極限的に変形する
以前に、この空隙が衝撃エネルギーを吸収し、ゴム製品
表面の破壊を緩和する働きを担っている(破壊緩和機能
)。この空隙の比率(空隙率)は、0.5〜30%の範
囲に保つのが好ましい。この空隙率が上記の範囲から外
れると上記で説明した発熱低下機能や破壊緩和機能が減
少する。
As mentioned above, the smooth surface forming body has a mutually intervening network structure, and the PT
Voids exist at the interface between FE and heat-resistant resins other than PTFE. This void improves compatibility with rubber products,
It has the effect of significantly reducing the heat generated by friction with rubber products (heat reduction function). In addition, when rubber collides with a mating material, these voids absorb the impact energy before the rubber is extremely deformed to the point of quasi-crystallization, and play a role in mitigating damage to the surface of the rubber product (destruction). relaxation function). The ratio of voids (porosity) is preferably maintained within a range of 0.5 to 30%. If this porosity falls outside of the above range, the heat generation reduction function and fracture mitigation function described above will decrease.

上記空隙率は、ゴム硬度、ゴムの化学構造及びゴムの配
合により、最適比率が変動する。塩ビ系、ブタジェン系
、SBR系のゴムの場合には、15〜30%の空隙率が
最も摩耗を低減する事が可能となる。また、ウレタン系
のゴムの場合は20〜30%、NR系のゴムの場合は0
.5〜15%の範囲で最も摩耗低減効果が大きい。
The optimum ratio of the above-mentioned porosity varies depending on the rubber hardness, the chemical structure of the rubber, and the compounding of the rubber. In the case of PVC-based, butadiene-based, and SBR-based rubbers, a porosity of 15 to 30% makes it possible to reduce wear the most. In addition, in the case of urethane rubber, it is 20 to 30%, and in the case of NR rubber, it is 0%.
.. The wear reduction effect is greatest in the range of 5 to 15%.

本発明の滑面形成体に使用する無機粉末としては、アル
ミナ、シリカ、ジルコニア、チタニア、カルシア、酸化
銅、酸化鉄、酸化モリブデン、酸化マグネシウム等の酸
化金属、窒化ケイ素、窒化アルミニウム、窒化チタンな
どの窒化金属、炭化ケイ素、炭化アルミニウムなどの炭
化金属、銅、アルミニウム、金、銀、チタン、鉄、モリ
ブデン、バナジウム、ニッケル、タングステン等の純金
属、ステンレス、真鍮、アルミニウム合金、マグネシウ
ム合金等の合金、硫化ケイ素等の硫化金属、グラファイ
ト、の粉末が使用できる。無機粉末の平均粒径は1〜2
0μmであるのが好ましい。また、アルミナ、ジルコニ
アが特に望ましく、形状は球形のものが適しており、特
に真球度が0.9以上のものが適している。
Inorganic powders used in the smooth surface forming body of the present invention include alumina, silica, zirconia, titania, calcia, metal oxides such as copper oxide, iron oxide, molybdenum oxide, and magnesium oxide, silicon nitride, aluminum nitride, and titanium nitride. Metal nitrides, metal carbides such as silicon carbide and aluminum carbide, pure metals such as copper, aluminum, gold, silver, titanium, iron, molybdenum, vanadium, nickel, and tungsten, and alloys such as stainless steel, brass, aluminum alloys, and magnesium alloys. , metal sulfides such as silicon sulfide, and graphite powders can be used. The average particle size of the inorganic powder is 1-2
Preferably, it is 0 μm. Further, alumina and zirconia are particularly desirable, and those having a spherical shape are suitable, and those having a sphericity of 0.9 or more are particularly suitable.

またPTFEを除く耐熱性樹脂としては、ポリフェニレ
ンサルファイド(PPS)、ポリアミドイミド、ポリイ
ミド、ポリエーテルエーテルケトン(PEEK) 、フ
ェノール樹脂、エポキシ樹脂、ホリエーテルサルフオン
、エステル樹脂、PTFEを除くフッ素樹脂、例えば四
フッ化エチレンーパーフルオロアルキル共重合体、四フ
ッ化エチレンーヘキサフルオロプロピレン共重合体、ポ
リモノクロロトリフルオロエチレン、エチレン−四フッ
化エチレン共重合体等が使用できるが、ポリフェニレン
サルファイド、ポリアミドイミド、PEEKが最も適し
ている。また、四フッ化エチレン共重合体(四フッ化エ
チレンーパーフルオロアルキル共重合体、四フッ化エチ
レンーヘキサフルオロプロピレン共重合体等)を四フッ
化エチレン樹脂(PTFE)に対して重量比で2%〜4
0%添加することにより、PTFEの網目の形成が援助
され、滑面形成体の強度を向上させる事が可颯となる。
Heat-resistant resins other than PTFE include polyphenylene sulfide (PPS), polyamideimide, polyimide, polyether ether ketone (PEEK), phenol resin, epoxy resin, polyether sulfon, ester resin, fluororesin other than PTFE, etc. Tetrafluoroethylene-perfluoroalkyl copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polymonochlorotrifluoroethylene, ethylene-tetrafluoroethylene copolymer, etc. can be used, but polyphenylene sulfide, polyamideimide, etc. , PEEK are most suitable. In addition, the weight ratio of tetrafluoroethylene copolymer (tetrafluoroethylene-perfluoroalkyl copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, etc.) to tetrafluoroethylene resin (PTFE) is 2%~4
By adding 0%, the formation of a PTFE network is assisted, making it possible to improve the strength of the smooth surface forming body.

さらに滑面形成体を製造するには成形によればよいが、
成形方法に特に制限はなく、ホットプレス、射出成形、
押し出し成形、ラバープレスなどいずれの方法でも可能
である。滑面形成体内部に空隙を設けることが重要であ
るため、滑面形成体の適正成形圧力はPTFE、無機粉
末、PTFEを除く耐熱性樹脂の混合物に対して50〜
800kg/antの圧力範囲であるのが好ましく、1
50〜350kg1cafが最も適した成形圧力である
。また最も経済性、生産性を考えた加工方法は上記の方
法でタブレットを作製した後PTFE及びPTFEを除
く耐熱性樹脂の流動可能温度範囲でそり等の変形を防止
する程度の荷重をかけ焼成する方法である。
Furthermore, molding may be used to manufacture the smooth surface formed body, but
There are no particular restrictions on the molding method; hot press, injection molding,
Any method such as extrusion molding or rubber press can be used. Since it is important to provide voids inside the smooth surface forming body, the appropriate molding pressure for the smooth surface forming body is 50~50 for a mixture of PTFE, inorganic powder, and heat-resistant resin excluding PTFE.
Preferably the pressure range is 800 kg/ant, 1
The most suitable molding pressure is 50 to 350 kg/caf. In addition, the most economical and productive processing method is to manufacture tablets using the above method and then sinter them under a load that prevents deformation such as warping within the flowable temperature range of PTFE and heat-resistant resins other than PTFE. It's a method.

またホットプレスで加工する場合は、PTFEを除く耐
熱性樹脂の流動可能温度以上では加圧圧力は30kg/
cut以下に保つ必要がある。
In addition, when processing with hot press, the pressurizing pressure is 30 kg/
Must be kept below cut.

上記の滑面形成体は、航空機の着陸部用の資材、リニア
モーターカー用の軌道資材等、すなわち高速移動体用走
路の資材、ブレーキシュー、ピストン、摺動部の0リン
グの受は部材等に使用できる。
The above-mentioned sliding surface forming bodies are materials for the landing section of aircraft, track materials for linear motor cars, etc., in other words, materials for runways for high-speed moving vehicles, brake shoes, pistons, members for O-rings of sliding parts, etc. Can be used for

この材料は成形加工や成形後の切削等により色々な形状
に加工可能であり、ピストン等の部品類は目的とする形
状に加工する。また、リニアモーターカーの軌道資材や
航空機の着陸部に対しては、接着、ボルト止め、はめ込
み、コンクリートとの一体施工などの方法で滑面形成体
によって軌道や滑走路等の走路を構成する。しかし構造
体との密着が充分に図られれば施工法に制限はない。こ
の場合、滑面形成体は、走路の高速移動体のゴムタイヤ
との初期接触部に配置される。これにより、高速移動体
が着地した瞬間にのみゴムタイヤと滑面形成体とを接触
させて著しい摩耗が発生するのを防止し、その後通常の
特性の走路と接触させることができる。またこの滑面形
成体の強度の向上を図る方法として、ガラス強化エポキ
シ板または金属板等の補強板や棒による裏打ち、繊維強
化、エポキシ樹脂等の含浸等の手法がある。
This material can be processed into various shapes by molding or cutting after molding, and parts such as pistons are processed into the desired shape. In addition, for track materials of linear motor cars and landing parts of aircraft, runways such as tracks and runways are constructed using sliding surface forming bodies by methods such as gluing, bolting, fitting, and integral construction with concrete. However, there are no restrictions on the construction method as long as sufficient adhesion to the structure is achieved. In this case, the sliding surface forming body is arranged at the initial contact point of the track with the rubber tires of the high-speed moving body. Thereby, it is possible to prevent the rubber tires and the sliding surface forming body from coming into contact with each other only at the moment when the high-speed moving body lands on the ground, thereby preventing significant wear, and then bringing them into contact with a running track having normal characteristics. Further, as methods for improving the strength of this smooth surface forming body, there are methods such as backing with a reinforcing plate such as a glass reinforced epoxy plate or metal plate or a rod, fiber reinforcement, impregnation with an epoxy resin, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の滑面形成体によれば、ゴム
製品の摩擦摩耗を低減させることができるためゴムの応
用範囲を広くすることができる、という効果が得られる
As explained above, according to the smooth surface forming body of the present invention, it is possible to reduce the frictional wear of rubber products, so that the range of application of rubber can be widened.

また、本発明の滑面形成体を使用した高速移動体用走路
によれば、リニアモーターカーや航空機等の高速移動物
体に使用されているゴムタイヤの著しい摩耗を防止する
ことができると共に衝撃を吸収して走行路面を保護する
ことができる、という効果が得られる。
Further, according to the running track for high-speed moving objects using the sliding surface forming body of the present invention, it is possible to prevent significant wear of rubber tires used for high-speed moving objects such as linear motor cars and airplanes, and also to absorb shock. This has the effect that the road surface can be protected.

〔実施例〕〔Example〕

実施例I PTFEパウダー、平均粒径4μmのアルミナ粉末およ
び架橋型PPSを重量比5:10:3で混合し、さらに
トルエンを主剤とする有機分散媒を加えてスラリー状態
として30分間均一分散させる。このスラリーから有機
分散媒を濾過、乾燥工程を経て除去した混合粉末に10
0kg/Crlの圧力をかけ、100ma+X 100
mmX I Osのタブレットを得た。このタブレット
を380℃の電気炉中で100g/cn?の荷重下で焼
き固め滑面成形体を得た。この滑面形成体と回転してい
るタイヤとを所定荷重で接触させることにより摩擦摩耗
試験機(特願平1−32251号)を使用してゴムタイ
ヤの摩耗試験を行った。なお比較のため同様の試験をコ
ンクリートについて行った。その結果を表1に示す。
Example I PTFE powder, alumina powder with an average particle size of 4 μm, and crosslinked PPS are mixed in a weight ratio of 5:10:3, and an organic dispersion medium containing toluene as a main ingredient is added to form a slurry and uniformly dispersed for 30 minutes. The organic dispersion medium was filtered from this slurry, and the mixed powder was removed through a drying process.
Apply pressure of 0kg/Crl, 100ma+X 100
Tablets of mmX I Os were obtained. This tablet was placed in an electric furnace at 380°C at 100g/cn? A smooth-surface molded body was obtained by sintering and hardening under a load of . The rubber tire was subjected to an abrasion test using a friction and abrasion tester (Japanese Patent Application No. 1-32251) by bringing this smooth surface forming body into contact with a rotating tire under a predetermined load. For comparison, a similar test was conducted on concrete. The results are shown in Table 1.

注)■摩耗条件 テスト回数 100回タイヤ径  2
50mmφ タイヤ幅  20mm タイヤ周速 70km/h 荷重    2. 5kg/CTl ■摩擦抵抗力・・・試験時の最大抵抗力をロードセルで
検出した。
Note) ■Wear conditions Test count: 100 times Tire diameter: 2
50mmφ Tire width 20mm Tire peripheral speed 70km/h Load 2. 5kg/CTl ■Frictional resistance force: The maximum resistance force during the test was detected by a load cell.

■発熱温度・・・・・・摩耗試験100回終了時のタイ
ヤ表面温度を測定し最 高温度を発熱温度とした。
■Heating temperature: The tire surface temperature at the end of 100 wear tests was measured, and the highest temperature was taken as the heating temperature.

上記の通り、滑面形成体はコンクリートに比べて低摩擦
化、ゴムの摩耗防止に著しく効果があり特にタイヤ摩耗
量は30分の1以下になり摩耗低減効果が大であった。
As mentioned above, the smooth surface forming body was significantly effective in reducing friction and preventing rubber wear compared to concrete, and in particular, the amount of tire wear was reduced to less than one-thirtieth, which was a great effect in reducing wear.

実施例2 PTFEパウダー、平均粒径2μmのアルミナ粉末、P
PSパウダーおよびポリアミドイミドパウダーを7:1
0:3:2 (重量比)で乾式混合し、100 kg/
c−の圧力でプレスした後、360℃で3分間、60k
g/cdの荷重条件でホットプレスし、140℃まで急
冷して2fllI11厚の滑面形成体を得た。
Example 2 PTFE powder, alumina powder with an average particle size of 2 μm, P
7:1 PS powder and polyamideimide powder
Dry mixed at 0:3:2 (weight ratio), 100 kg/
After pressing at a pressure of c-, 60k for 3 minutes at 360℃
Hot pressing was carried out under a load condition of g/cd, and the product was rapidly cooled to 140° C. to obtain a smooth-surfaced product having a thickness of 2flI11.

この滑面形成体を可動部の気密0リングの相手材となる
ように、2mm厚のスペーサーとして装着して摩擦抵抗
力、0リングの摩耗を調べた。比較のため2m+n厚の
SUS 304の上記と同形状のスペーサーの場合につ
いて同様の試験を行った。その結果を表2に示す。
This smooth surface forming body was attached as a 2 mm thick spacer so as to serve as a mating material for the airtight O-ring of the movable part, and frictional resistance and wear of the O-ring were examined. For comparison, a similar test was conducted using a 2m+n thick SUS 304 spacer having the same shape as above. The results are shown in Table 2.

表2 注)試験条件 01Jングの径 60叩0リングの太さ
 1fflI!lφ 回転スピード  2 Or pm 回転条件 10回転し1分間停 止。これをlOプサ イル繰り返す。
Table 2 Note) Test conditions Diameter of 01J ring 60 stroke Thickness of 0 ring 1fflI! lφ Rotation speed 2 Or pm Rotation conditions Rotate 10 times and stop for 1 minute. Repeat this for 10 psi.

滑面形成体はSUS 304に比べて、0リングの摩擦
抵抗力、摩耗量とも軽減し、相手材にゴムが焼きつく事
も見られず、優れた潤滑性能を示し。
Compared to SUS 304, the smooth surface material reduces both the frictional resistance and the amount of wear on the O-ring, and shows excellent lubrication performance with no burning of rubber to the mating material.

た。Ta.

第2図(1)〜(3)に滑面形成体の形状を示す。第2
図(1)は板状滑面形成体10を示すものである。第2
図(2)は板状滑面形成体10の側面に凸部10Aと凹
部10Bとを形成したものである。隣接する板状滑面形
成体10の凸部10Aと凹部10Bとを嵌合させて板状
滑面形成体を配列する。第2図(3)は板状滑面形成体
10の側面に斜面12A、12Bを形成したものである
Figures 2 (1) to (3) show the shapes of the smooth surface forming bodies. Second
FIG. 1 shows a plate-like smooth surface forming body 10. FIG. Second
In FIG. 2, a convex portion 10A and a concave portion 10B are formed on the side surface of the plate-like smooth surface forming body 10. The convex portions 10A and recesses 10B of adjacent plate-like smooth surface forming bodies 10 are fitted together to arrange the plate-like smooth surface forming bodies. In FIG. 2(3), slopes 12A and 12B are formed on the side surfaces of the plate-shaped smooth surface forming body 10.

隣接する板状滑面形成体10の斜面12Aと斜面12B
とを接触させて板状滑面形成体を配列する。
Slope 12A and slope 12B of adjacent plate-shaped smooth surface forming body 10
The plate-like smooth surface forming bodies are arranged by bringing them into contact with each other.

第3図(1)〜(4)に補強された滑面形成体10を示
す。第3図(1)は、金属、FRP等の補強板12を接
着層14によって接着したものであり、(2)は補強板
12と同材質の補強棒16を複数本接着したのである。
FIGS. 3(1) to 3(4) show the reinforced smooth surface forming body 10. 3(1) shows a reinforcing plate 12 made of metal, FRP, etc. bonded together using an adhesive layer 14, and FIG. 3(2) shows a reinforcing plate 12 and a plurality of reinforcing rods 16 made of the same material bonded together.

第3図(3)はガラスクロス、金網等の補強部材18を
滑面形成体10に埋設したものである。第3図(4)は
滑面形成体10と樹脂含浸層20とで一体に形成したも
のである。
In FIG. 3(3), a reinforcing member 18 such as glass cloth or wire mesh is embedded in the smooth surface forming body 10. In FIG. 3(4), the smooth surface forming body 10 and the resin-impregnated layer 20 are integrally formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の滑面形成体の相互介入網目構造の模式
図、第2図(1)〜(3)は走路に使用される滑面形成
体の斜視図、第3図(1)〜(4)は滑面形成体の強化
法を説明するための斜視図である。 1・・・無機粉末、 2・・・PTFE。 3・・・耐熱性樹脂 10・・・滑面形成体。
FIG. 1 is a schematic diagram of the mutually intervening network structure of the smooth surface forming body of the present invention, FIGS. 2 (1) to (3) are perspective views of the smooth surface forming body used for a running track, and FIG. 3 (1) - (4) are perspective views for explaining a method of reinforcing the smooth surface forming body. 1... Inorganic powder, 2... PTFE. 3...Heat-resistant resin 10...Smooth surface forming body.

Claims (12)

【特許請求の範囲】[Claims] (1)四フッ化エチレン樹脂、無機粉末及び四フッ化エ
チレン樹脂を除く耐熱性樹脂を主成分として、少なくと
も圧力または熱によって網状の四フッ化エチレン樹脂と
網状の耐熱性樹脂とが相互に絡みあいかつ無機粉末を含
有する相互介入網目構造とした滑面形成体。
(1) The main ingredients are tetrafluoroethylene resin, inorganic powder, and heat-resistant resin other than tetrafluoroethylene resin, and the net-like tetrafluoroethylene resin and the net-like heat-resistant resin are entangled with each other by at least pressure or heat. A smooth surface forming body with an interwoven network structure containing Aikatsu inorganic powder.
(2)前記無機粉末が金属酸化物、金属窒化物、金属炭
化物、金属硫化物、純金属、合金、グラファイトの群か
ら選ばれた少なくとも1種からなる請求項(1)記載の
滑面形成体。
(2) The smooth surface forming body according to claim (1), wherein the inorganic powder is made of at least one selected from the group of metal oxides, metal nitrides, metal carbides, metal sulfides, pure metals, alloys, and graphite. .
(3)前記金属酸化物がアルミナ、シリカ、ジルコニア
、チタニア、カルシア、酸化銅、酸化鉄、酸化モリブデ
ン、酸化マグネシウムの群から選ばれた少なくとも1種
からなる請求項(2)記載の滑面形成体。
(3) Smooth surface formation according to claim (2), wherein the metal oxide is at least one selected from the group of alumina, silica, zirconia, titania, calcia, copper oxide, iron oxide, molybdenum oxide, and magnesium oxide. body.
(4)前記金属窒化物が窒化ケイ素、窒化アルミニウム
、窒化チタンの群から選ばれた少なくとも1種からなる
請求項(2)記載の滑面形成体。
(4) The smooth surface forming body according to claim (2), wherein the metal nitride comprises at least one selected from the group of silicon nitride, aluminum nitride, and titanium nitride.
(5)前記金属炭化物が炭化ケイ素からなる請求項(2
)記載の滑面形成体。
(5) Claim (2) wherein the metal carbide is made of silicon carbide.
) The smooth surface forming body described in ).
(6)前記純金属が銅、アルミニウム、金、銀、チタン
、鉄、モリブデン、バナジウム、ニッケル、タングステ
ンの群から選ばれた少なくとも1種からなる請求項(2
)記載の滑面形成体。
(6) Claim (2) wherein the pure metal is at least one selected from the group consisting of copper, aluminum, gold, silver, titanium, iron, molybdenum, vanadium, nickel, and tungsten.
) The smooth surface forming body described in ).
(7)前記合金がステンレス、真鍮、アルミニウム合金
、マグネシウム合金の群から選ばれた少なくとも1種か
らなる請求項(2)記載の滑面形成体。
(7) The smooth surface forming body according to claim (2), wherein the alloy is at least one selected from the group of stainless steel, brass, aluminum alloy, and magnesium alloy.
(8)前記無機粉末の平均粒径が1〜20μmの範囲に
あることを特徴とする請求項(1)〜(7)のいずれか
1項に記載の滑面形成体。
(8) The smooth surface forming body according to any one of claims (1) to (7), wherein the inorganic powder has an average particle size in a range of 1 to 20 μm.
(9)前記耐熱性樹脂がポリフェニレンサルファイド、
ポリアミドイミド、ポリイミド、ポリエーテルサルフォ
ン、ポリエーテルエーテルケトン、エポキシ樹脂、フェ
ノール樹脂、エステル樹脂の群から選ばれた少なくとも
1種からなる請求項(1)〜(8)のいずれか1項に記
載の滑面形成体。
(9) the heat-resistant resin is polyphenylene sulfide;
According to any one of claims (1) to (8), consisting of at least one selected from the group of polyamideimide, polyimide, polyethersulfone, polyetheretherketone, epoxy resin, phenol resin, and ester resin. smooth surface formation.
(10)空隙率が0.5%〜30.0%の範囲にあるこ
とを特徴とする請求項(1)〜(9)のいずれか1項に
記載の滑面形成体。
(10) The smooth surface forming body according to any one of claims (1) to (9), wherein the porosity is in the range of 0.5% to 30.0%.
(11)高速移動体のゴムタイヤとの初期接触部に、請
求項(1)〜(10)のいずれか1項に記載の滑面形成
体を配置した高速移動体用走路。
(11) A running track for a high-speed moving body, wherein the smooth surface forming body according to any one of claims (1) to (10) is disposed at an initial contact portion with a rubber tire of the high-speed moving body.
(12)請求項(1)〜(10)のいずれか1項に記載
の滑面形成体を高速移動体用走路の資材として使用する
滑面形成体の使用方法。
(12) A method of using a smooth surface forming body, comprising using the smooth surface forming body according to any one of claims (1) to (10) as a material for a runway for a high-speed moving body.
JP1236333A 1988-09-13 1989-09-12 Formed body for sliding surface, track for high-speed moving unit and usage of formed body for sliding surface Pending JPH02263834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236333A JPH02263834A (en) 1988-09-13 1989-09-12 Formed body for sliding surface, track for high-speed moving unit and usage of formed body for sliding surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22948688 1988-09-13
JP63-229486 1988-09-13
JP1236333A JPH02263834A (en) 1988-09-13 1989-09-12 Formed body for sliding surface, track for high-speed moving unit and usage of formed body for sliding surface

Publications (1)

Publication Number Publication Date
JPH02263834A true JPH02263834A (en) 1990-10-26

Family

ID=16892920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236333A Pending JPH02263834A (en) 1988-09-13 1989-09-12 Formed body for sliding surface, track for high-speed moving unit and usage of formed body for sliding surface

Country Status (1)

Country Link
JP (1) JPH02263834A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430474C1 (en) * 1994-08-27 1996-03-28 Glyco Metall Werke Plain bearing material and its use for the production of a composite layer material
TR28543A (en) * 1993-08-26 1996-10-02 Du Pont Cooking set coating system.
WO1997007586A1 (en) * 1995-08-15 1997-02-27 United Technologies Corporation Interlaced conductor/back-iron secondary for induction motors
CN111349297A (en) * 2020-04-03 2020-06-30 中国科学院兰州化学物理研究所 Organic-inorganic filler modified polytetrafluoroethylene-based friction material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101601A (en) * 1979-01-31 1980-08-02 Akebono Brake Ind Sliding guide track for motive body
JPS6153349A (en) * 1984-08-22 1986-03-17 Youbea Le-Ron Kogyo Kk Tetrafluoroethylene resin composition
JPS62105623A (en) * 1985-11-01 1987-05-16 Nippon Valqua Ind Ltd Manufacture of molded product having polytetrafluoroethylene for its base
JPS62185748A (en) * 1986-02-12 1987-08-14 Ube Ind Ltd Wear-resistant molding for use as sliding material
JPS63280922A (en) * 1987-05-08 1988-11-17 Oiles Ind Co Ltd Manufacture of sliding member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101601A (en) * 1979-01-31 1980-08-02 Akebono Brake Ind Sliding guide track for motive body
JPS6153349A (en) * 1984-08-22 1986-03-17 Youbea Le-Ron Kogyo Kk Tetrafluoroethylene resin composition
JPS62105623A (en) * 1985-11-01 1987-05-16 Nippon Valqua Ind Ltd Manufacture of molded product having polytetrafluoroethylene for its base
JPS62185748A (en) * 1986-02-12 1987-08-14 Ube Ind Ltd Wear-resistant molding for use as sliding material
JPS63280922A (en) * 1987-05-08 1988-11-17 Oiles Ind Co Ltd Manufacture of sliding member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR28543A (en) * 1993-08-26 1996-10-02 Du Pont Cooking set coating system.
DE4430474C1 (en) * 1994-08-27 1996-03-28 Glyco Metall Werke Plain bearing material and its use for the production of a composite layer material
WO1997007586A1 (en) * 1995-08-15 1997-02-27 United Technologies Corporation Interlaced conductor/back-iron secondary for induction motors
CN111349297A (en) * 2020-04-03 2020-06-30 中国科学院兰州化学物理研究所 Organic-inorganic filler modified polytetrafluoroethylene-based friction material and preparation method thereof
CN111349297B (en) * 2020-04-03 2021-08-03 中国科学院兰州化学物理研究所 Organic-inorganic filler modified polytetrafluoroethylene-based friction material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101098493B1 (en) Friction material
US11879513B2 (en) Friction material
EP3425234A1 (en) Ferrous based friction material
EP3091247B1 (en) Methods for the preparation of a friction material and for the manufacturing of a brake pad using such friction material
KR100350332B1 (en) Unsaturated friction materials containing powdered silicone resins and powdered phenolic resins and methods for preparing the same
CA1212491A (en) Fluoroelastomer-based friction material having improved frictional properties
CN108367347B (en) Novel iron-based composite powder
JPH084811A (en) Improved friction material
CA2187433A1 (en) Brake rotors, clutch plates and like parts and methods for making the same
KR20010049947A (en) Non-asbestos friction materials
KR102503720B1 (en) friction material
Pai et al. Tribological response of waste tire rubber as micro-fillers in automotive brake lining materials
AU7544894A (en) Friction pads for use in disc brakes
JPH02263834A (en) Formed body for sliding surface, track for high-speed moving unit and usage of formed body for sliding surface
Lancaster et al. Third body formation and the wear of PTFE fibre-based dry bearings
Muralidhara et al. Optimization of abrasive wear behaviour of halloysite nanotubes filled carbon fabric reinforced epoxy hybrid composites
KR20090123815A (en) Disk rotor for disk brake
JP2002147617A (en) Seal ring for mechanical seal, and mechanical seal using the same
Singh et al. Performance assessment of phenolic-based Non-asbestos organic brake friction composite materials with different abrasives
CN115160728B (en) Super-hydrophilic super-oleophobic composite material, 3D printing part and printing method
Walker Jr Persistence of granular structure during compaction processes
CN100396952C (en) Friction device
Kadhim et al. Wear and Compressibility of Hybrid Composite Clutch
JPH03282028A (en) Friction material
JPH02191672A (en) Oil-containing composite heating form, production thereof and track for high-speed mobile body