JPH02263800A - Production of oxide single crystal electron beam sensor - Google Patents

Production of oxide single crystal electron beam sensor

Info

Publication number
JPH02263800A
JPH02263800A JP8155889A JP8155889A JPH02263800A JP H02263800 A JPH02263800 A JP H02263800A JP 8155889 A JP8155889 A JP 8155889A JP 8155889 A JP8155889 A JP 8155889A JP H02263800 A JPH02263800 A JP H02263800A
Authority
JP
Japan
Prior art keywords
single crystal
electron beam
oxide single
beam sensor
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8155889A
Other languages
Japanese (ja)
Inventor
Toshio Shoji
利男 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP8155889A priority Critical patent/JPH02263800A/en
Publication of JPH02263800A publication Critical patent/JPH02263800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the durable and highly efficient oxide single crystal electron beam sensor by roughening the specularly polished surface to be irradiated with an electron beam, then chemically etching the surface and doping the oxide single crystal with a fluorescent ion. CONSTITUTION:The following treatment is given in the production of an electron beam sensor consisting of an oxide single crystal doped with a fluorescent ion. Namely, both sides of the oxide single crystal sheet are specularly polished. Both specularly polished sides to be irradiated with an electron beam are roughened and then chemically etched. Since the surface of the oxide single crystal to be used as an electron beam sensor is roughened, the amt. of an electron beam to be absorbed is increased, and high efficiency is obtained. The working-strain layer is further removed by chemical etching, hence energy is smoothly transmitted in the crystal, the fluorescent ion is effectively excited, and the luminous efficiency is improved. In addition, an oxide single crystal beam sensor exhibiting luminous efficiency similar to that of the phosphor powder is obtained by this process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、走査型電子顕微鏡(SEM)や、EPMA装
置等に用いられる電子線センサに関し、特にその酸化物
単結晶螢光体の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electron beam sensor used in a scanning electron microscope (SEM), an EPMA device, etc., and particularly relates to a method for manufacturing an oxide single crystal phosphor thereof. It is related to.

[従来の技術] 従来、電子線センサとして蛍光体粉末をそのまま用いる
場合と、蛍光イオンをドープした酸化物単結晶から切り
出し加工したものを熱処理し、その後メカノケミカルボ
リジング法により表面を鏡面仕上して用いる場合とがあ
った。しかし、後者の酸化物単結晶は、前者の蛍光体粉
末(製品名、P−47)に比べ耐久力はあるが発光効率
が悪い。
[Prior art] Conventionally, phosphor powder has been used as an electron beam sensor as it is, or it has been cut and processed from an oxide single crystal doped with fluorescent ions, heat-treated, and then the surface has been mirror-finished using a mechanochemical boriding method. There were cases where it was used. However, the latter oxide single crystal is more durable than the former phosphor powder (product name: P-47) but has poor luminous efficiency.

そのため、高エネルギー電子線を用いるTEM装置など
では酸化物単結晶を用いることができるが、エネルギー
の低い電子線を用いるSEM等では酸化物中結晶は用い
ることができず、蛍光体粉末が用いられている。
Therefore, oxide single crystals can be used in TEM devices that use high-energy electron beams, but crystals in oxides cannot be used in SEMs that use low-energy electron beams, and phosphor powders are used. ing.

[発明が解決しようとする課題] しかしながら、蛍光体粉末(P−47)の場合、紫外線
や、電子線によって劣化するため数年ごとに交換しなけ
ればならないという不都合が生じた。
[Problems to be Solved by the Invention] However, in the case of the phosphor powder (P-47), it deteriorates due to ultraviolet rays and electron beams, so it has to be replaced every few years.

そのために高エネルギー及び低エネルギーのいずれにお
いても使用でき、電子線、及び紫外線に耐久力がある高
効率の電子線センサが要求されている。
Therefore, there is a need for a highly efficient electron beam sensor that can be used at both high and low energy and is resistant to electron beams and ultraviolet rays.

そこで、本発明の技術的課題は、電子線センサとして耐
久力のある酸化物単結晶を加工方法の改良により高効率
化し、耐久力のある高効率な酸化物単結晶電子線センサ
を提供することにある。
Therefore, the technical problem of the present invention is to improve the efficiency of a durable oxide single crystal as an electron beam sensor by improving the processing method, and to provide a durable and highly efficient oxide single crystal electron beam sensor. It is in.

[課題を解決するための手段] 本発明によれば、蛍光イオンをドープした酸化物単結晶
よりなる電子線センサの製造方法において、前記酸化物
単結晶の板の両面を鏡面研磨し、該鏡面研磨した両面の
電子線の照射面となる面を粗面加工し、その後、ケミカ
ルエツチングを行うことを特徴とする酸化物単結晶電子
線センサの製造方法が得られる。
[Means for Solving the Problems] According to the present invention, in a method for manufacturing an electron beam sensor made of an oxide single crystal doped with fluorescent ions, both sides of the oxide single crystal plate are mirror-polished, and the mirror-finished A method for manufacturing an oxide single crystal electron beam sensor is obtained, which comprises roughening the polished surfaces of both surfaces to be irradiated with an electron beam, and then chemically etching them.

[作 用] 本発明においては、電子線センサとして用いられる酸化
物単結晶の表面を荒すことにより、電子線の吸収量が大
きくなり高効率となる。さらに、ケミカルエツチングで
加工歪層を除去することによって、結晶中でのエネルギ
ーの伝播がスムーズになり、有効に螢光イオンを励起で
きるため、発光効率が向上する。
[Function] In the present invention, by roughening the surface of the oxide single crystal used as an electron beam sensor, the amount of electron beam absorption increases, resulting in high efficiency. Furthermore, by removing the process-strained layer by chemical etching, energy propagation in the crystal becomes smoother and fluorescent ions can be excited effectively, thereby improving luminous efficiency.

[実施例〕 次に本発明の実施例について説明する。[Example〕 Next, examples of the present invention will be described.

本実施例では、蛍光イオンとしてCeを含有する酸化物
単結晶であるCe:YAG原石より、超音波ロータリー
加工機で打抜いた単結晶板(直径3mm、厚さ1mm)
を用いた。この単結晶板の両面をメカノケミカルボリジ
ングして鏡面仕上げした試料、この鏡面仕上げした単結
晶板の片面(電子線照射面)を#400研磨材で荒削り
した試料、さらにこの荒削りした単結晶をリン酸中に浸
漬して加熱し3分程度エツチングし、表面の加工歪み層
を取り除いた試料、及び蛍光粉末(P−47)の4種類
を用意し、各々の電子線センサの電子線発光強度(カソ
ードルミネッセンス)をEPMA装置で評価した。
In this example, a single crystal plate (diameter 3 mm, thickness 1 mm) was punched from Ce:YAG raw stone, which is an oxide single crystal containing Ce as a fluorescent ion, using an ultrasonic rotary processing machine.
was used. A sample in which both sides of this single crystal plate were mechanochemically borated to a mirror finish, a sample in which one side (electron beam irradiation surface) of this mirror finished single crystal plate was roughly ground with #400 abrasive, and a sample in which this rough ground single crystal was Four types of samples were prepared: a sample whose surface was immersed in phosphoric acid, heated and etched for about 3 minutes to remove the processed strain layer, and a fluorescent powder (P-47), and the electron beam emission intensity of each electron beam sensor was measured. (Cathodoluminescence) was evaluated using an EPMA apparatus.

尚、上記のエツチングした試料の表面は、荒削りした試
料よりも凹凸状態が更に明確となっている。電子線のビ
ーム径は100μm、繰り返し100Hz、加速電圧1
0kVで測定した。その結果を第1図に示す。
It should be noted that the surface of the etched sample has more pronounced irregularities than the rough-cut sample. The beam diameter of the electron beam is 100 μm, the repetition rate is 100 Hz, and the acceleration voltage is 1.
Measured at 0kV. The results are shown in FIG.

ケミカルポリシン・グした試料■のカソードルミネッセ
ンス強度を1とすると、荒削りした試料■では2.2、
荒削り後エツチングした試料■で4、蛍光粉末体(P−
47)■で5,1のカソードルミネッセンス強度が夫々
得られた。蛍光粉末体■は測定開始時に試料■の1.2
倍のカソードルミネッセンス強度を示すが、測定開始の
40秒後には試料■と同程度まで低下する。更に時間が
経過すると、試料■の1/2にまでカソードルミネッセ
ンス強度が低下する。酸化物単結晶電子線センサ(試料
■、■、■)では、この様な出力の低下が全く見られな
かった。
If the cathodoluminescence intensity of the chemically polished sample (■) is 1, that of the rough-cut sample (■) is 2.2,
4. Fluorescent powder (P-
47) Cathodoluminescence intensities of 5 and 1 were obtained in (1) and 1, respectively. Fluorescent powder ■ is 1.2% of sample ■ at the start of measurement.
Although it shows twice the cathodoluminescence intensity, it drops to the same level as sample ① 40 seconds after the start of the measurement. As time further elapses, the cathodoluminescence intensity decreases to 1/2 of that of sample (2). No such decrease in output was observed in the oxide single crystal electron beam sensors (samples ①, ②, ②).

[発明の効果] 以上述べたごとく、本発明の酸化物単結晶電子線センサ
の製造方法によれば、鏡面加工した電子線センサの電子
線照射面を荒削りした後ケミカルエツチングすることに
より、蛍光体粉末と同程度の発光効率を示す酸化物単結
晶電子線センサを得ることができる。
[Effects of the Invention] As described above, according to the method for manufacturing an oxide single crystal electron beam sensor of the present invention, the electron beam irradiation surface of the mirror-finished electron beam sensor is rough-cut and then chemically etched to form a phosphor. An oxide single crystal electron beam sensor that exhibits luminous efficiency comparable to that of powder can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る酸化物単結晶電子iセン
サのカソードルミネッセンスの時間変化を示す図で、比
較例として従来の螢光体粉末、鏡面加工した酸化物単結
晶試料、・及びこの鏡面加工した酸化物単結晶を荒削り
した試料についても併せて示した。 図中1は表面を鏡面研磨したCe:YAG単結晶、2は
表面を#400研磨材で研磨したCe:YAG単結晶、
3は#400研磨材で研磨した後、ケミカルエツチング
したCe:YAG単晶、4は粉末蛍光体(P−47)で
、それぞれのカソードルミネッセンス強度を示す。 以下余゛白
FIG. 1 is a diagram showing the temporal change in cathodoluminescence of an oxide single crystal electronic i-sensor according to an example of the present invention.As a comparative example, a conventional phosphor powder, a mirror-finished oxide single crystal sample, and A rough-cut sample of this mirror-finished oxide single crystal is also shown. In the figure, 1 is a Ce:YAG single crystal whose surface has been mirror-polished, 2 is a Ce:YAG single crystal whose surface has been polished with #400 abrasive,
3 is a Ce:YAG single crystal that has been chemically etched after polishing with a #400 abrasive, and 4 is a powdered phosphor (P-47), and the cathodoluminescence intensity of each is shown. Below is the margin

Claims (1)

【特許請求の範囲】[Claims] 1、蛍光イオンをドープした酸化物単結晶よりなる電子
線センサの製造方法において、前記酸化物単結晶の板の
両面を鏡面研磨し、該鏡面研磨した両面の電子線の照射
面となる面を粗面加工し、その後、ケミカルエッチング
を行うことを特徴とする酸化物単結晶電子線センサの製
造方法。
1. In a method for manufacturing an electron beam sensor made of an oxide single crystal doped with fluorescent ions, both sides of the oxide single crystal plate are mirror-polished, and the surfaces of the mirror-polished surfaces that will be irradiated with an electron beam are A method for manufacturing an oxide single crystal electron beam sensor, comprising roughening the surface and then performing chemical etching.
JP8155889A 1989-04-03 1989-04-03 Production of oxide single crystal electron beam sensor Pending JPH02263800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155889A JPH02263800A (en) 1989-04-03 1989-04-03 Production of oxide single crystal electron beam sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8155889A JPH02263800A (en) 1989-04-03 1989-04-03 Production of oxide single crystal electron beam sensor

Publications (1)

Publication Number Publication Date
JPH02263800A true JPH02263800A (en) 1990-10-26

Family

ID=13749619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155889A Pending JPH02263800A (en) 1989-04-03 1989-04-03 Production of oxide single crystal electron beam sensor

Country Status (1)

Country Link
JP (1) JPH02263800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106270523A (en) * 2016-09-30 2017-01-04 中国人民大学 A kind of large-area ultrathin monocrystalline and method for fast growing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106270523A (en) * 2016-09-30 2017-01-04 中国人民大学 A kind of large-area ultrathin monocrystalline and method for fast growing thereof

Similar Documents

Publication Publication Date Title
US8137574B2 (en) Processing method of glass substrate, and highly flat and highly smooth glass substrate
EP1688990A2 (en) Method for manufacturing SOI substrate
US6900113B2 (en) Method for producing bonded wafer and bonded wafer
Xu et al. Vacancy clusters on surfaces of Au nanoparticles embedded in MgO
DE60128302T2 (en) Plasma remains quartz glass holder
JP2004067443A (en) Process for treating glass
JPH02263800A (en) Production of oxide single crystal electron beam sensor
JPS58125829A (en) Dry etching method
KR20130025612A (en) An etching solution composition for oxide layer containing gallium
Ramos et al. Evidence of chemical effects in niobium implanted oxides
JP2010033908A (en) Light emitting device, its usage,its manufacturing method, and display
JP3488383B2 (en) Quartz glass member for dry etching and dry etching apparatus equipped with the same
JPS61160939A (en) Method of dry removal of si surface damage after dry etching
JPS59936B2 (en) Manufacturing method of luminescent screen
JP2024028041A (en) Soi wafer and method for manufacturing the same
CN117468089A (en) Silicon wafer, processing method and preparation method of silicon wafer
JPS5897836A (en) Gettering method for semicondutor substrate
Fink et al. Compaction of fullerite films after high fluence ion and electron bombardment
JPH06326076A (en) Formation method of thin film
Dubbelday et al. Study of Photoluminescent Thin Film Porous Silicon on Sapphire
SU1019965A1 (en) Method of enhancing adhesion of thin metallic films to substrates
US6875698B2 (en) Dry etching method
JPH01258413A (en) Manufacture of semiconductor device
JPS61224424A (en) Surface processing of semiconductor
JPS63301529A (en) Method of processing semiconductor substrate against rear side damage