JPH02263160A - Method of evaluating remaining life of ferritic heat resisting steel - Google Patents

Method of evaluating remaining life of ferritic heat resisting steel

Info

Publication number
JPH02263160A
JPH02263160A JP1084027A JP8402789A JPH02263160A JP H02263160 A JPH02263160 A JP H02263160A JP 1084027 A JP1084027 A JP 1084027A JP 8402789 A JP8402789 A JP 8402789A JP H02263160 A JPH02263160 A JP H02263160A
Authority
JP
Japan
Prior art keywords
replicas
damage
life
damages
investigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1084027A
Other languages
Japanese (ja)
Inventor
Nobuhiko Nishimura
宣彦 西村
Fujimitsu Masuyama
不二光 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1084027A priority Critical patent/JPH02263160A/en
Publication of JPH02263160A publication Critical patent/JPH02263160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To estimate the life of a high-temp. apparatus by evaluating the life thereof simply by drawing replicas and extracted replicas from the surface of a high-temp. member. CONSTITUTION:The creep rupture test of a sample material is carried out in order to divide the changes in the structure arising from the accumulation of creep damages by ranks according to the degrees of the progression of the damages and the test is interrupted at each of the various life ratios to the rupture, then the replicas and the extracted replicas are drawn and the optical microsopic structure investigation and deposit distribution condition investigation are carried out. The optical microsopic structure investigation and deposit distribution condition investigation with the material interrupted of the above-mentioned creep rupture test are then carried out and the conditions of the respective changes in the structures are classified to the damage segments corresponding to the degrees of the damages in contrast with standard structures. The reference chart for evaluating the damages is obtd. by connecting the boundaries where the changes in the structure corresponding to the progression of the damages are admitted and the overall damage sections obtd. from the correlations of the various conditions of the changes in the structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温機器とし7て長時間使用されているフェラ
イト系耐熱鋼の保守管理に適用される非破壊検査法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nondestructive testing method applied to the maintenance and management of ferritic heat-resistant steel, which is used as high-temperature equipment for a long period of time.

〔従来の技術〕[Conventional technology]

従来、高温機器に使用されているフエライ(−系耐熱鋼
の寿命評価法としては、長期使用材を抜管し、クリープ
破断試験等の破壊試験に供する方法、理論解析による方
法及び損傷の蓄積によって生しるき裂等の欠陥を検査す
る超音波探傷法、磁粉探傷法等の非破壊検査法がある。
Conventionally, methods for evaluating the lifespan of heat-resistant steels used in high-temperature equipment include methods for removing long-term used materials and subjecting them to destructive tests such as creep rupture tests, methods based on theoretical analysis, and methods for evaluating the lifespan of heat-resistant steels by There are non-destructive testing methods such as ultrasonic flaw detection and magnetic particle flaw detection to detect defects such as mark cracks.

〔発明が解決しようとする課題] 前述し、た破壊検査法は、実際に機器部材として長時間
使用材の破壊試験を行なうことから、最も精度の高い寿
命評価法として従来から多用されているが、特に肉厚部
等では大規模な抜管、復旧工事が必要であるトに、クリ
ープ破断試験に約半年の期間を必要としていた。また、
理論解析法では、当該部の使用温度を必要とするが、特
に火力発電用ボイラの伝熱鋼管等では、使用温度を精度
よく求めることは困難であった。
[Problems to be Solved by the Invention] The destructive testing method described above has been widely used as the most accurate life evaluation method because it actually performs destructive tests on materials used for long periods of time as equipment components. In particular, large-scale pipe removal and restoration work was required, especially in thick-walled areas, and creep rupture tests required approximately six months. Also,
In the theoretical analysis method, the operating temperature of the relevant part is required, but it has been difficult to accurately determine the operating temperature, especially for heat transfer steel pipes of boilers for thermal power generation.

本発明は、−上記技術水牛に鑑み、高温機器とし゛ζ長
時間使用されているフェライト系耐熱鋼の保守管理に適
用される簡便な非破壊検査法を提供しようとするもので
ある。
The present invention, in view of the above-mentioned technology, provides a simple non-destructive testing method that can be applied to the maintenance and management of ferritic heat-resistant steel, which is used as high-temperature equipment for long periods of time.

r課題を解決するだめの手段〕 本発明者らはフェライト系耐熱鋼を長時間高温応カート
で保持することによって生じるクリープ破断強度の低下
が組織変化と関連することを見出した。その知見に基づ
いζ、本発明は高温部材表面の非破壊な組織検査法であ
るレプリカ、抽出レプリカ法を用いて、長時間使用によ
る光学顕微鏡組織及び析出物分布状況の変化を観察し、
実験室試験において種々の程度のクリープ損傷を与えた
材料の光学顕微鏡組織及び析出物の分布状況の調査を行
うことによっ−ζ作成した標準光学顕微鏡組織及び標準
析出物の分布状況と対比することによって、各々の組織
状態を4〜5の区分に分け、前述した実験室試験をもと
に作成した、−上記光学顕微鏡組織ならびに析出物の分
布状況の区分、負荷応力及びクリープ損傷の程度との関
係を示ずノ1命評価ノ、(牛線図に、高温部材の光学顕
微鏡組織及び析出物の分布状況の変化の程度に応じた区
分と、そごに負荷される応力値をあてはめることによっ
てクリープ損傷の程度を評価できるようにしたものであ
る。
[Means for Solving the Problem] The present inventors have discovered that the decrease in creep rupture strength caused by holding ferritic heat-resistant steel in a high-temperature heating cart for a long period of time is related to structural changes. Based on this knowledge, the present invention uses the replica and extraction replica method, which is a non-destructive microstructure inspection method for the surface of high-temperature components, to observe changes in the structure and precipitate distribution with an optical microscope due to long-term use,
By investigating the optical microscopic structure and the distribution of precipitates of materials that have been subjected to various degrees of creep damage in laboratory tests, we compared them with the standard optical microscopic structure and standard precipitate distribution that were created. The structure was divided into 4 to 5 categories based on the above-mentioned laboratory tests. (By applying the classification according to the degree of change in the optical microscopic structure and the distribution of precipitates of the high-temperature member and the stress value applied to the part to the cow diagram) This allows the degree of creep damage to be evaluated.

すなわち、本発明は高温機器として使用されているフェ
ライト系耐熱鋼の余寿命を評価する方法において、該耐
熱鋼から採取し、たレプリカ及び抽出レプリカから観察
されるそれぞれの光学顕微鏡組織及び析出物の分4j状
況を、クリープ損傷の蓄積に伴う各々の組織の劣化状況
を複数段階にランク分けした標準組織と対仕するごとに
よって組織の劣化状況を判定する工程と、上記光学顕微
鏡組織ならびに析出物の分布状況、負荷応力及びクリー
プ損傷の程度との関係を示す寿命評価基準線図に上記工
程にて判定した組織の劣化状況及び調査、位置の負荷応
力をあてはめることによってクリープ損傷の程度を判定
することを特徴とするフェライト系耐熱鋼の余寿命評価
方法である。
That is, the present invention provides a method for evaluating the remaining life of ferritic heat-resistant steel used as high-temperature equipment, in which optical microscopic structures and precipitates observed from replicas and extracted replicas sampled from the heat-resistant steel are used. A process of determining the state of deterioration of the structure by comparing the state of deterioration of each structure with a standard structure in which the state of deterioration of each structure is ranked in multiple stages due to the accumulation of creep damage, and Determine the extent of creep damage by applying the tissue deterioration state determined in the above process, the investigation, and the applied stress at the position to the life evaluation standard diagram showing the relationship between the distribution situation, applied stress, and the extent of creep damage. This is a method for evaluating the remaining life of ferritic heat-resistant steel.

〔作 用] 本発明方法によれば、高温部材表面からレプリカ、抽出
レプリカを採取するだけで寿命評価を行うことから、破
壊試験のように大規検な試験片採取及び復旧工事を必要
としない。また、組織変化を観察するだけで寿命評価を
行うことから、破壊試験のように長時間の試験を必要と
しない。さらに、長時間使用された高温部材の損傷と直
接対応する組織変化にもとすいて寿命評価を行うことか
ら、理論解析法のように用いる温度データ、未使用材強
度データのばらつきによる寿命評価精度の問題も生じな
い。
[Function] According to the method of the present invention, life evaluation is performed by simply collecting replicas and extracted replicas from the surface of the high-temperature member, so there is no need for large-scale specimen collection and restoration work unlike in destructive tests. Furthermore, since the lifespan is evaluated simply by observing structural changes, there is no need for a long test unlike a destructive test. Furthermore, since life evaluation is performed based on structural changes that directly correspond to damage to high-temperature parts that have been used for a long time, the accuracy of life evaluation is based on variations in temperature data and unused material strength data used as in the theoretical analysis method. No problem arises.

〔実施例〕〔Example〕

以下、本発明の一実施例として高温機器部材として使用
されている2ZCr1Mo鋼の余寿命評価例を示す。
Below, as an example of the present invention, an example of evaluating the remaining life of 2ZCr1Mo steel used as a high-temperature equipment member will be shown.

まず、クリープ損傷の蓄積に伴う組織変化を損傷の進展
の程度に応じてランク分けするために、以下の条件で供
試材のクリープ破断試験を行ないは破断(破断時間−L
r)までの種々の寿命比(0,]tr)毎に試験を中断
し、レプリカ、抽出レプリカを採取して、光学顕微鏡組
織調査及び析出物分布状況調査を行った。
First, in order to rank the structural changes associated with the accumulation of creep damage according to the degree of damage progression, a creep rupture test was conducted on the specimen material under the following conditions.
The test was interrupted at various life ratios (0,]tr) up to r), replicas and extracted replicas were collected, and an optical microscopic structure investigation and a precipitate distribution state investigation were conducted.

600”CX 10kgf/mm2 600°CX 9kgf/mm” 60f)”CX 8kgf/mm2 600°CX 7kgf/mm2 600”CX 6kgf/n+il” 650°CX 5kgf/mm2 650°C×4kgf/llll112650°CX 
3kgf/+*m2 これらの組織調査結果をもとに、各々の組織を損傷の進
展に応じて4〜5の段階に区分した。
600"CX 10kgf/mm2 600°CX 9kgf/mm"60f)"CX 8kgf/mm2 600°CX 7kgf/mm2 600"CX 6kgf/n+il" 650°CX 5kgf/mm2 650°C×4kgf/llll112650 °CX
3 kgf/+*m2 Based on these tissue investigation results, each tissue was classified into 4 to 5 stages according to the progression of damage.

第1図及び第2図にそれぞれ光学顕微鏡組織(倍率30
0倍)及び析出物分布状況(倍率1500倍)のクリー
プ損傷の進展に対する組織変化の標準組織の模式図を示
す。
Figures 1 and 2 show optical microscope structures (magnification: 30
0) and the precipitate distribution state (1500x magnification) of the standard structure of the structure change with respect to the progress of creep damage.

第1図の光学顕微鏡組織ではフェライト1粒内の炭化物
2の析出のイj無、パーライト3内炭化物の収縮、分散
の有無及び粒界析出物4の周囲の無析出帯5の有無によ
って5段階に分けた。
In the optical microscopic structure shown in Fig. 1, there are five stages depending on the presence or absence of precipitation of carbide 2 within one ferrite grain, the presence or absence of contraction and dispersion of carbide within pearlite 3, and the presence or absence of precipitation-free zone 5 around grain boundary precipitate 4. Divided into.

また、第2図の析出物の分布状況では、粒界析出物4の
有無、粒界無析出帯5の有無及びパーライト内炭化物6
形状変化に着目して4段階に区分した。
In addition, the distribution of precipitates in Figure 2 shows the presence or absence of grain boundary precipitates 4, the presence or absence of grain boundary precipitate-free zones 5, and the presence or absence of carbides in pearlite 6.
It was divided into four stages focusing on changes in shape.

次に、前述したクリープ破断試験の中断材について光学
顕微鏡組織調査及び析出物分布調査を行い、第1図及び
第2図に示した標準組織と対比して各々の組織変化状況
を損傷の程度に応した損傷区分に分類した。
Next, we conducted an optical microscope structure investigation and a precipitate distribution investigation on the material that had been interrupted in the creep rupture test mentioned above, and compared each structure change state to the degree of damage by comparing it with the standard structure shown in Figures 1 and 2. The damage was classified into corresponding damage categories.

その結果を第3図に示すが、損傷の進展に応じた組織変
化が認められ、各々の組織変化状況の相関から得られる
総合損傷区分が変化する境界を結んで(第3図中の点線
)損傷評価基中線図とした。
The results are shown in Figure 3. Tissue changes that correspond to the progression of damage are observed, and the overall damage classification obtained from the correlation of each tissue change state connects the changing boundaries (dotted lines in Figure 3). It was made into a damage evaluation baseline diagram.

第3図は下記の如き技術的意義を有する。前記の試験条
件(600°CX10kgf/mm2. 600−CX
9kgf/mm2. 600°CX 8kgf/+++
n”、  600°CX7kgf/++v+2. 60
0°CX 6kgf/mm2. 650°CX5kgf
/mm”、  650°CX 4kgf/m+n265
0°CX3kgf/mm2)でクリープ破断試験を実施
し、破断材の光学顕微鏡組織調査及び析出物の分布状況
調査を行うとともに、各試験条件Fでの試験片の破断時
間trを求める。次に、同し供試材から作成した試験片
の上記試験条件でのクリープ破断試験を実施し、0.I
Lr毎に試験を中断して試験片の表面からレプリカ法、
抽出レプリカ法によって表面組織を転写し、その光学顕
微鏡組織調査及び析出物の分布状況調査を行う。これら
の手順によって各応力条件下での寿命消費率10%(−
〇、ILr)、 20!(−〇、2 trL 30Z 
(=0.3tr)。
FIG. 3 has the following technical significance. The above test conditions (600°CX10kgf/mm2.600-CX
9kgf/mm2. 600°CX 8kgf/+++
n”, 600°CX7kgf/++v+2.60
0°CX 6kgf/mm2. 650°CX5kgf
/mm”, 650°CX 4kgf/m+n265
A creep rupture test is carried out at 0° C. Next, a creep rupture test was conducted on a test piece made from the same sample material under the above test conditions, and 0. I
The test was interrupted every Lr and the replica method was applied from the surface of the test piece.
The surface structure is transferred using the extraction replica method, and the structure is investigated using an optical microscope and the distribution of precipitates is investigated. Through these procedures, the life consumption rate under each stress condition is 10% (-
〇, ILr), 20! (-〇、2 trL 30Z
(=0.3tr).

、9o%(= 0.9 tr) 、 1(IOZ(= 
tr)の試験片の光学顕微鏡組織調査結果及び析出物の
分布状況調査結果が得られるので、前記第1図、第2図
のそれぞれの標準組織と対比することによって各試験片
の光学顕微鏡組織の損傷区分及び析出物分布の損傷区分
を得る。そこで、クリープ破断寿命消費率の対数を横軸
に、応力を縦軸に取ったグラフ上に各試験片の損傷区分
をプロン1〜すると第3図が得られるが、第3図では図
示したように顕微鏡組織がIM、析出物分布がI、とな
ったものを総合損傷区分Aとし、それぞれがIIs、I
p となるものをB、I[1M  LIPをCと順次符
号付けして記載している。
, 9o% (= 0.9 tr) , 1 (IOZ (=
Since the results of the optical microscopic structure investigation and precipitate distribution investigation results of the test piece (tr) can be obtained, the optical microscopic structure of each test piece can be compared with the standard microstructures shown in Figures 1 and 2 above. Obtain damage classification and damage classification of precipitate distribution. Therefore, if we plot the damage classification of each test piece from 1 to 1 on a graph with the logarithm of the creep rupture life consumption rate on the horizontal axis and the stress on the vertical axis, Figure 3 is obtained. Those with a microscopic structure of IM and a precipitate distribution of I are classified as comprehensive damage classification A, and are classified as IIs and I, respectively.
p is indicated by B, and I[1M LIP is indicated by C.

第4図に火力発電用ボイラの伝熱管として長時間使用さ
れた2 Va Cr−I Mo鋼の表面から採取したレ
プリカの光学顕微鏡組織(倍率300倍)と抽出レプリ
カの析出物分布状況(倍率1500倍)の組織の模式図
を示す。顕微鏡組織ではフェライト1粒内に炭化物2が
析出しており、パーライト3内の炭化物は収縮しており
、第1図に示した標m !11織と対比すると顕微鏡組
織の損傷区分は■9に分類された。また、析出物分布で
は粒界析出物4が析出していたが、パーライト内炭化物
6の収縮は生しておらず、また粒界無析出帯も認められ
なかったことから、第2図に示した標準組織と対比する
と析出物分布の損傷区分は[Pに分類された。
Figure 4 shows the optical microscopic structure (magnification: 300x) of a replica taken from the surface of 2 Va Cr-I Mo steel that was used for a long time as a heat exchanger tube in a thermal power generation boiler, and the precipitate distribution state of the extracted replica (magnification: 1500x). A schematic diagram of the tissue is shown. In the microscopic structure, carbide 2 is precipitated within each ferrite grain, and the carbide within pearlite 3 is shrinking, as shown in the mark m! shown in Figure 1. In contrast to the No. 11 weave, the damage category of the microscopic tissue was classified as ■9. In addition, although grain boundary precipitates 4 were precipitated in the precipitate distribution, no shrinkage of carbides 6 within pearlite occurred, and no grain boundary precipitate-free zone was observed, as shown in Figure 2. When compared with the standard structure, the damage classification of precipitate distribution was classified as [P].

そごで、第3図に基づいて作成した各組織の損傷区分、
応力とクリープ破断寿命消費率との関係を用いて、調査
位置の寿命評価を行った。
So, damage classification of each tissue created based on Figure 3,
Using the relationship between stress and creep rupture life consumption rate, the lifespan of the surveyed locations was evaluated.

なお、調査位置には内圧応力が作用しており、平均径公
式から求めた相当応力は5.0kgf/mm2であった
。第5図に寿命評価結果を示すが、調査位置の顕微鏡組
織の損傷区分■。及び析出物分布の損傷区分lip及び
負荷応力5.Okgf/+ua2から調査位置のクリー
プ破断寿命消費率は8〜30%と推定された。
Note that internal pressure stress was acting on the surveyed position, and the equivalent stress calculated from the average diameter formula was 5.0 kgf/mm2. Figure 5 shows the life evaluation results, and the damage classification of the microscopic structure at the survey location is ■. and damage division lip of precipitate distribution and applied stress5. From Okgf/+ua2, the creep rupture life consumption rate at the investigated position was estimated to be 8 to 30%.

そごで、この調査の後、調査位置を含む伝熱管を抜管し
、試験温度650°Cでクリープ破断試験を行った結果
を第6図に示す。図中には未使用材のクリープ破断試験
結果を併記したが、これに比べ、抜管材のクリープ破断
強度は低下していた。
After this investigation, the heat exchanger tube including the investigation location was extruded and a creep rupture test was conducted at a test temperature of 650°C. The results are shown in FIG. The figure also shows the results of the creep rupture test for the unused material, and compared to this, the creep rupture strength of the extubated material was lower.

そこで応力6.0kgf/n+m2における未使用材及
び使用材のクリープ破断をもとに、下式によって求めた
クリープ破断寿命消費率を本発明方法によって評価した
Therefore, based on the creep rupture of unused material and used material at a stress of 6.0 kgf/n+m2, the creep rupture life consumption rate determined by the following formula was evaluated by the method of the present invention.

X100(%) クリープ破断寿命消費率を比較して第7図に示す。第7
図より、クリープ破断試験によって評価したクリープ破
断寿命消費率と本発明によるクリープ破断寿命消費率と
はほば−・致しており、本発明方法によって高温機器部
材としてに時間使用されたフェライト系耐熱鋼の余寿命
を非破壊的に評価できた。
X100 (%) Figure 7 shows a comparison of creep rupture life consumption rates. 7th
From the figure, the creep rupture life consumption rate evaluated by the creep rupture test and the creep rupture life consumption rate according to the present invention are almost the same. We were able to non-destructively evaluate the remaining life of the

〔発明の効果〕〔Effect of the invention〕

以上、詳述した如く、本発明方法によれば高温機器部材
として長時間使用されたフェライト系耐熱鋼の余寿命を
部材を破壊することなく、その外表面の組織観察を行う
ことによって簡便に行う方法を提供できることから、高
温機器の寿命を推定することが可能となり、老巧化した
設備の保守管理を効率的に行うことができる。
As detailed above, according to the method of the present invention, the remaining life of ferritic heat-resistant steel that has been used for a long time as a high-temperature equipment component can be easily determined by observing the structure of the outer surface without destroying the component. Since the method can be provided, it becomes possible to estimate the lifespan of high-temperature equipment, and maintenance management of aging equipment can be performed efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の−・実施例として作成した2%Crl
Mo鋼のクリープ損傷の進展に関する標準光学顕微鏡組
織の模式図、第2図は本発明の一実施例として作成した
2% Cr  I No鋼のクリープ損傷の進展に関す
る標準析出物分布の模式図、第3図は本発明の一実施例
として作成した2 %Cr−I Mo鋼の光学顕微鏡組
織、析出物分布の損傷区分、負荷応力及びクリープ破断
寿命消費率の関係を2 Va Cr  l Mo鋼の損
傷評価基it線図、第4図は火力発電用ボイラの伝熱鋼
として長時間使用された2 % Cr−I Mofiの
光学顕微鏡組織及び析出物の分布状況を示す模式図、第
5図は上記長時間使用材の光学顕微鏡組織と析出物分類
の第1図及び第2図にもとすく損傷分類結果をもとに行
った寿命評価結果、第6図は上記長時間使用材及び未使
用材のクリープ破断時間一応力線図、第7図はクリープ
破断試験による寿命評価結果と本発明方法に、よる寿命
評価結果の比較図である。 (剋11J/+fDx )α2 CD Xト (ご拡V+s羽ばq
Figure 1 shows 2% Crl prepared as an example of the present invention.
Fig. 2 is a schematic diagram of a standard optical microscope structure related to the progress of creep damage in Mo steel. Figure 3 shows the optical microscopic structure of 2% Cr-I Mo steel prepared as an example of the present invention, the relationship between damage classification of precipitate distribution, applied stress, and creep rupture life consumption rate. Evaluation standard IT diagram; Figure 4 is a schematic diagram showing the optical microscopic structure and precipitate distribution of 2% Cr-I Mofi, which has been used for a long time as a heat transfer steel for thermal power generation boilers; Figure 5 is the above-mentioned Figures 1 and 2 show the optical microscopic structure and precipitate classification of the material used for a long time, and the life evaluation results based on the damage classification results. Figure 6 shows the long-time use material and the unused material. FIG. 7 is a comparison diagram of the life evaluation results by the creep rupture test and the life evaluation result by the method of the present invention. (Ki 11J/+fDx)α2 CD

Claims (1)

【特許請求の範囲】[Claims] 高温機器として使用されているフェライト系耐熱鋼の余
寿命を評価する方法において、該耐熱鋼から採取したレ
プリカ及び抽出レプリカから観察されるそれぞれの光学
顕微鏡組織及び析出物の分布状況を、クリープ損傷の蓄
積に伴う各々の組織の劣化状況を複数段階にランク分け
した標準組織と対比することによって組織の劣化状況を
判定する工程と、上記光学顕微鏡組織ならびに析出物の
分布状況、負荷応力及びクリープ損傷の程度との関係を
示す寿命評価基準線図に上記工程にて判定した組織の劣
化状況及び調査位置の負荷応力をあてはめることによっ
てクリープ損傷の程度を判定することを特徴とするフェ
ライト系耐熱鋼の余寿命評価方法。
In a method for evaluating the remaining life of ferritic heat-resistant steel used as high-temperature equipment, the optical microstructure and the distribution of precipitates observed from replicas and extracted replicas taken from the heat-resistant steel are evaluated for creep damage. A process of determining the state of deterioration of each structure due to accumulation by comparing it with a standard structure ranked in multiple stages, and a process of determining the state of deterioration of each structure with an optical microscope, the distribution of precipitates, applied stress, and creep damage. The degree of creep damage is determined by applying the deterioration state of the structure determined in the above process and the applied stress at the investigation position to a life evaluation standard diagram showing the relationship between the degree and the degree of creep damage. Lifespan evaluation method.
JP1084027A 1989-04-04 1989-04-04 Method of evaluating remaining life of ferritic heat resisting steel Pending JPH02263160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084027A JPH02263160A (en) 1989-04-04 1989-04-04 Method of evaluating remaining life of ferritic heat resisting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084027A JPH02263160A (en) 1989-04-04 1989-04-04 Method of evaluating remaining life of ferritic heat resisting steel

Publications (1)

Publication Number Publication Date
JPH02263160A true JPH02263160A (en) 1990-10-25

Family

ID=13819070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084027A Pending JPH02263160A (en) 1989-04-04 1989-04-04 Method of evaluating remaining life of ferritic heat resisting steel

Country Status (1)

Country Link
JP (1) JPH02263160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240552A (en) * 1991-01-23 1992-08-27 Nippon Steel Corp Method for evaluating residual life of metal welding member under high temperature stress
JP2016075521A (en) * 2014-10-03 2016-05-12 中国電力株式会社 Remaining life expectancy estimating method, and remaining life expectancy estimating apparatus, for low alloy steel
JP2018059763A (en) * 2016-10-04 2018-04-12 株式会社Ihi Service temperature estimation method of stainless steel and life calculation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240552A (en) * 1991-01-23 1992-08-27 Nippon Steel Corp Method for evaluating residual life of metal welding member under high temperature stress
JP2016075521A (en) * 2014-10-03 2016-05-12 中国電力株式会社 Remaining life expectancy estimating method, and remaining life expectancy estimating apparatus, for low alloy steel
JP2018059763A (en) * 2016-10-04 2018-04-12 株式会社Ihi Service temperature estimation method of stainless steel and life calculation method thereof

Similar Documents

Publication Publication Date Title
US6606910B1 (en) Method and apparatus for evaluating damage of metal material
Dong et al. Monitoring fatigue crack propagation of ferromagnetic materials with spontaneous abnormal magnetic signals
CN111656182A (en) Method for inspecting plant equipment
JPH02263160A (en) Method of evaluating remaining life of ferritic heat resisting steel
De Vroey et al. Corrosion investigations in 2-ethanolamine based post-combustion CO2 capture pilot plants
RU2210766C1 (en) Procedure to conduct acoustic emission test with use of single-channel equipment
JPH10170503A (en) Evaluation method for creep life of tempered martensite heat-resisting steel
JP2540630B2 (en) Method of evaluating remaining life of ferritic heat resistant steel
Nadzir et al. Reduction of Creep Strength in T91 Superheater Tubes due to Thickening of Steam Oxide Scale on Internal Tube Surface
Vivekanand et al. Nde techniques for reliable inspection of carbon steel tubes
Xing et al. MMM fatigue damage evaluation and life prediction modeling for ferromagnetic materials
RU2793369C1 (en) Method for detecting growing defects in the pipe wall and welds of pipelines and repair structures installed on pipelines
Roskosz Capabilities and limitations of using the residual magnetic field in NDT
Devine et al. Magnescope: Applications in nondestructive evaluation
Dat et al. Design and assembly of an apparatus system based on the Villari effect for detecting stress concentration zone on ferromagnetic materials
Samal et al. Creep damage evaluation of a power plant header using combined FEM analysis and quantitative metallography
Pathy CONDITION ASSESSMENT OF BOILER AND IT’S COMPONENTS
Norberg Evaluation of Crack Depth Meter-An investigation of the crack depth meters possibilities and limitations for commonly occurring damage mechanisms
Muzhitskii et al. Ten years of experience in inspection of stress-corrosion and other surface defects of gas trunk pipelines
Muravin et al. QUANTITATIVE ACOUSTIC EMISSION NDI FOR ANALYSING DYNAMIC FRACTURE
Muravin et al. Revealing systems of flaws in high-pressure reactors operating under dynamic pulse loading
JPS63235861A (en) Evaluation of remaining life of heat resistant steel
TW202338341A (en) Piping life prediction method
BG60884B1 (en) Method for monitoring of intercrystalline corrosion in nickelchromium tubes
Xing et al. Fatigue Property of Steel Q235 Based on Metal Magnetic Memory Testing