JPH02263095A - Dc arc furnace wall electrode - Google Patents

Dc arc furnace wall electrode

Info

Publication number
JPH02263095A
JPH02263095A JP8629489A JP8629489A JPH02263095A JP H02263095 A JPH02263095 A JP H02263095A JP 8629489 A JP8629489 A JP 8629489A JP 8629489 A JP8629489 A JP 8629489A JP H02263095 A JPH02263095 A JP H02263095A
Authority
JP
Japan
Prior art keywords
rod
furnace
gas
shaped electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8629489A
Other languages
Japanese (ja)
Other versions
JPH0648142B2 (en
Inventor
Yukinobu Horikawa
堀川 幸悦
Masaki Niioka
新岡 正樹
Shinan Makinosumi
牧之角 四男
Isao Arimitsu
功 有光
Katsuhiro Morio
森尾 勝弘
Kiyosuke Mori
森 喜代助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1086294A priority Critical patent/JPH0648142B2/en
Publication of JPH02263095A publication Critical patent/JPH02263095A/en
Publication of JPH0648142B2 publication Critical patent/JPH0648142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharge Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To cool efficiently the tip of an electrode inside a furnace which is subjected to marked melting loss and improve its durability by providing a gas passage which is formed, penetrating a sleeve axially and a gas pipeline which blows gas into the furnace by way of said gas passage. CONSTITUTION:A sleeve 5 is fitted into an electrode 4 so that a gas passage 6 is provided, penetrating the sleeve axially 5. The gas 9 which is introduced from a gas supply source by way of a gas pipeline 8 is expanded once at a wind box 7, then transferred to the gas passage 6 so that the sleeve 5 or the tip of a rod-shaped electrode 4 may be cooled by the gas flowing through the gas passage 6. It is, therefore, possible to maintain the tip of the rod-shaped electrode 4 heat-damaged to a remarkable extent, especially by molten metal, at a low temperature and hence improve its durability. If an attempt is made to spray a cooling medium 20 to the rear end of the rod-shaped electrode 4 in addition to the gas cooling, more definite cooling action will be available.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属材料の溶解、溶融金属の精錬等に使用さ
れる直流アーク炉の炉壁電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a furnace wall electrode for a DC arc furnace used for melting metal materials, refining molten metal, and the like.

〔従来の技術〕[Conventional technology]

精錬用のアーク炉として、炉内に装入した溶融金属の上
方に配置した電極と、炉底、側壁等の炉壁に取り付けた
電極との間に電流を流し、溶融金属の精錬を行う直流ア
ーク炉が知られている。この種の直流アーク炉における
炉底電極は、炉内にある高温の溶融金属からの受熱、供
給電流が通過するときに発生するジュール発熱等によっ
て、極めて苛酷な使用雰囲気に曝される。
As an arc furnace for refining, a direct current is used to refine the molten metal by passing an electric current between an electrode placed above the molten metal charged into the furnace and an electrode attached to the furnace bottom, side wall, etc. Arc furnaces are known. The bottom electrode in this type of DC arc furnace is exposed to an extremely harsh operating atmosphere due to heat received from the high-temperature molten metal in the furnace, Joule heat generation generated when a supplied current passes through the furnace, and the like.

そこで、この雰囲気に耐え炉底電極の耐久性を向上させ
°るため、各種の提案が行われている。たとえば、特公
昭63−43675号公報の炉壁電極においては、炉壁
から突出している電極の部分(以下、これを後端部とい
う)の周囲に冷媒通路用の冷却スリーブを装着し、この
冷媒通路に水等の冷媒を循環させることにより、電極を
強制冷却することが開示されている。
Therefore, various proposals have been made to improve the durability of hearth bottom electrodes that can withstand this atmosphere. For example, in the furnace wall electrode disclosed in Japanese Patent Publication No. 63-43675, a cooling sleeve for the refrigerant passage is attached around the part of the electrode protruding from the furnace wall (hereinafter referred to as the rear end), and the refrigerant It has been disclosed that the electrodes are forcibly cooled by circulating a coolant such as water through the passage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、後端部を冷媒で冷却しても、電極内部の熱伝
導率が低いと、溶融金属に接する電極の先端部が依然と
して高温のままである。しかも、冷却スリーブを介し電
極を間接的に冷却する方式であるため、電極から冷媒へ
の熱伝達量も低い。
However, even if the rear end is cooled with a refrigerant, if the internal thermal conductivity of the electrode is low, the tip of the electrode in contact with the molten metal will still remain at a high temperature. Furthermore, since the electrodes are indirectly cooled through the cooling sleeve, the amount of heat transferred from the electrodes to the coolant is also low.

他方、損耗が生じ易いのは電極先端部であり、先端部が
高温であると、溶損等の損耗が盛んに行われる。そのた
め、前述の方式では、冷却能力が不充分となることが多
く、また電極の損耗を効果的に抑制することができない
On the other hand, it is the tip of the electrode that is prone to wear and tear, and when the tip is at a high temperature, wear such as melting damage occurs frequently. Therefore, in the above-mentioned method, the cooling capacity is often insufficient, and wear and tear on the electrodes cannot be effectively suppressed.

更には、冷媒として水を使用するとき、何らかの原因で
冷却水の供給が中断した場合、電極及び冷却スリーブが
高温に加熱されて湯漏れ等が発生し易くなる。このとき
、スリーブ内に残っている冷却水と高温の溶融金属が接
触し、危険である。
Furthermore, when water is used as a refrigerant, if the supply of cooling water is interrupted for some reason, the electrodes and cooling sleeve will be heated to a high temperature, making it easy for hot water to leak. At this time, the cooling water remaining in the sleeve comes into contact with the hot molten metal, which is dangerous.

そこで、本弁明は、棒状電極の周囲に設けたスリーブを
介してガスを炉内に吹き込むことによって、このガスで
棒状電極及びスリーブを全長にわたり冷却し、特に溶損
の激しい炉内側先端部の冷却を効率良く行うと共に、危
険がなく且つ耐久性に優れた炉壁電極を提供することを
目的とする。
Therefore, in this defense, gas is blown into the furnace through a sleeve provided around the rod-shaped electrode, and this gas is used to cool the rod-shaped electrode and the sleeve over the entire length. It is an object of the present invention to provide a furnace wall electrode that can be efficiently performed, is not dangerous, and has excellent durability.

また、棒状電極の後端部に噴射ノズルから冷却媒体を直
接吹き付けることによって、冷却能を向上せしめ耐久性
に優れた炉壁電極を提供することを目的とする。
Another object of the present invention is to provide a furnace wall electrode with improved cooling capacity and excellent durability by directly spraying a cooling medium from an injection nozzle onto the rear end of a rod-shaped electrode.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の炉壁電極は、その目的を達成するために、先端
部が直流アーク炉の炉壁を貫通して炉内に臨む棒状電極
と、該棒状電極の1囲と炉壁との間に設けられたスリー
ブと、該スリーブを軸方向に貫通して形成されたガス通
路と、該ガス通路を介して炉内にガスを吹き込むガス配
管とを備えていることを特徴とする。
In order to achieve the purpose, the furnace wall electrode of the present invention has a rod-shaped electrode whose tip part penetrates the furnace wall of a DC arc furnace and faces into the furnace, and a space between one surround of the rod-shaped electrode and the furnace wall. It is characterized by comprising a sleeve provided, a gas passage formed by penetrating the sleeve in the axial direction, and a gas pipe for blowing gas into the furnace through the gas passage.

また、先端部が炉壁を貫通して炉内に臨む棒状電極と、
炉壁から外部に突出した前記棒状電極の後端部に冷却媒
体を吹き付ける噴射ノズルとを備えていることを特徴と
する。
In addition, a rod-shaped electrode whose tip penetrates the furnace wall and faces into the furnace,
The apparatus is characterized in that it includes an injection nozzle that sprays a cooling medium onto the rear end of the rod-shaped electrode protruding from the furnace wall.

ここで、棒状電極を炉内方向に前進させる押上げ機構を
、たとえば棒状電極の後端部に設けても良い。
Here, a push-up mechanism for advancing the rod-shaped electrode toward the inside of the furnace may be provided, for example, at the rear end of the rod-shaped electrode.

〔作用〕[Effect]

本発明においては、棒状電極に嵌挿したスリーブに設け
たガス通路を介し、炉外から炉内にガスが吹き込まれる
。このガスは、スリーブのガス通路を通過する際に、棒
状電極からスリーブに伝達された熱を運び去る。そのた
め、棒状電極は、炉内に面する先端部でも効率良く冷却
される。また、ガス通路を通過した後のガスは、炉内に
吹き込まれ、溶解中或いは精錬中の溶融金属を強く撹拌
し、溶解及び精錬反応を促進させる作用も呈する。また
、棒状電極の後端部に、噴射ノズルから冷却媒体が直接
吹き付けられる。そのため、棒状電極は、効率的に強冷
却される。
In the present invention, gas is blown into the furnace from outside the furnace through a gas passage provided in a sleeve inserted into the rod-shaped electrode. As this gas passes through the gas passageway of the sleeve, it carries away the heat transferred from the rod electrode to the sleeve. Therefore, even the tip of the rod-shaped electrode facing into the furnace is efficiently cooled. Further, the gas after passing through the gas passage is blown into the furnace to strongly stir the molten metal that is being melted or refined, thereby promoting the melting and refining reactions. Further, the cooling medium is directly sprayed from the spray nozzle onto the rear end of the rod-shaped electrode. Therefore, the rod-shaped electrode is efficiently and strongly cooled.

〔実施例〕〔Example〕

第1図は、直流アーク炉の炉底に電極を装着した場合を
示すが、側壁に対しても本発明が同様に適用されること
は勿論である。
Although FIG. 1 shows the case where electrodes are attached to the bottom of a DC arc furnace, it goes without saying that the present invention can be similarly applied to the side walls.

直流アーク炉の炉底は、パーマレンガ1の内側に不定形
耐火物2がライニングされており、外側を鉄皮3で支持
している。これら鉄皮3.パーマレンガ1及び不定形耐
火物2で構成される炉壁を貫通して、棒状電極4が炉底
に装着される。
The bottom of the DC arc furnace has a permanent brick 1 lined with a monolithic refractory 2 on the inside and supported on the outside with an iron shell 3. These iron skins 3. A rod-shaped electrode 4 is attached to the bottom of the furnace by penetrating the furnace wall composed of permanent bricks 1 and monolithic refractories 2.

棒状電極4にはスリーブ5が嵌挿されており、ガス通路
6が軸方向にスリーブ5を貫通して穿設されている。ガ
ス通路6は、第2図に示すように複数個の細管6aを同
心円状にスリーブ5の内部に埋め込むことによって形成
される。或いは、スリーブ5を構成するレンガ自体にガ
ス通路6を穿設しても良い。スリーブ5の下端にはガス
通路6に連通する風箱7が設けられており、この風箱7
にガス配管8が接続されている。
A sleeve 5 is fitted into the rod-shaped electrode 4, and a gas passage 6 is bored through the sleeve 5 in the axial direction. The gas passage 6 is formed by embedding a plurality of thin tubes 6a concentrically inside the sleeve 5, as shown in FIG. Alternatively, the gas passage 6 may be formed in the brick itself constituting the sleeve 5. A wind box 7 communicating with the gas passage 6 is provided at the lower end of the sleeve 5.
A gas pipe 8 is connected to.

ガス配管8から送り込まれたガス9は、ガス通路6を通
る間に棒状電極4からスリーブ5に伝ゎった熱を奪い取
った後、炉内に吹き込まれる。そのため、棒状電極4の
先端部及びスリーブ5が全長にわたって冷却され、特に
苛酷な雰囲気に曝される炉内側部分の保護が図られる。
The gas 9 sent from the gas pipe 8 removes the heat transmitted from the rod-shaped electrode 4 to the sleeve 5 while passing through the gas passage 6, and is then blown into the furnace. Therefore, the tip of the rod-shaped electrode 4 and the sleeve 5 are cooled over their entire length, and the inner part of the furnace, which is exposed to a particularly harsh atmosphere, is protected.

なお、ガス配管8を分岐させて、別途に設けた風箱10
から、スリーブ5と棒状電極4との間にガスを吹き出し
、シールガス11として使用することもできる。
In addition, the gas pipe 8 is branched to form a separately provided wind box 10.
Gas can also be blown out between the sleeve 5 and the rod-shaped electrode 4 and used as the sealing gas 11.

棒状電極4の後端部には導電アーム12が接続されてふ
り、この導電アーム12を介して棒状電極4に対する給
電が行われる。なお、導電アーム12が接続された棒状
電極4の内部に、給水管13から冷却水を送り込み、接
続部を水冷した後で排水管14を介して排水する水冷機
構を内蔵させることもできる。
A conductive arm 12 is connected to the rear end of the rod-shaped electrode 4, and power is supplied to the rod-shaped electrode 4 via this conductive arm 12. It is also possible to incorporate a water cooling mechanism into the rod-shaped electrode 4 to which the conductive arm 12 is connected, which feeds cooling water from the water supply pipe 13, cools the connection part with water, and then drains the water through the drain pipe 14.

更に、第1図の例では、この棒状電極4を炉内方向に前
進させるため、棒状電極4の後端に押上げ機構15が配
置されている。押上げ機構15は、炉壁に固定された支
持アーム16に取り付けられており、その押圧面が絶縁
体17を介して棒状電極4の後端に対向している。炉内
の溶融金属等によって棒状電極4の先端部が損耗し、そ
の長さが短くなったとき、押上げ機構15を駆動させて
棒状電極4を炉内方向に前進させ、損耗分を押込み量で
補完する。これによって、棒状電極4の交換頻度を大幅
に低減することができる。
Furthermore, in the example shown in FIG. 1, a push-up mechanism 15 is disposed at the rear end of the rod-shaped electrode 4 in order to advance the rod-shaped electrode 4 toward the inside of the furnace. The push-up mechanism 15 is attached to a support arm 16 fixed to the furnace wall, and its pushing surface faces the rear end of the rod-shaped electrode 4 with an insulator 17 in between. When the tip of the rod-shaped electrode 4 is worn out by molten metal in the furnace and its length becomes short, the push-up mechanism 15 is driven to advance the rod-shaped electrode 4 in the direction of the furnace, and the amount of wear is replaced by the pushing amount. Complete with. Thereby, the frequency of replacing the rod-shaped electrode 4 can be significantly reduced.

第3図は、棒状電極4の後端部に冷却媒体をスプレーし
て冷却する方式を採用した例を示す。すなわち、炉壁か
ら突出している棒状電極4の後端部周面に対して、複数
の噴射ノズル18を同心円状に且つ多段に配置する。そ
して、供給管19を経由して供給された冷却媒体20は
、噴射ノズル18から棒状電極4の周面に吹き付けられ
、棒状電極4を冷却する。この方式で冷却媒体20とし
て冷却水を用いる場合、仮に何らかの原因で給水が停止
した場合にあっても、棒状電極4の周囲に冷却水が溜る
個所がないので、水蒸気爆発等の危険がない。
FIG. 3 shows an example in which a cooling medium is sprayed onto the rear end of the rod-shaped electrode 4 for cooling. That is, a plurality of injection nozzles 18 are arranged concentrically and in multiple stages around the peripheral surface of the rear end of the rod-shaped electrode 4 protruding from the furnace wall. The cooling medium 20 supplied via the supply pipe 19 is sprayed onto the circumferential surface of the rod-shaped electrode 4 from the injection nozzle 18 to cool the rod-shaped electrode 4 . When cooling water is used as the cooling medium 20 in this method, even if the water supply is stopped for some reason, there is no place for cooling water to accumulate around the rod-shaped electrode 4, so there is no danger of a steam explosion or the like.

噴射ノズル18から噴射された冷却媒体20が周囲に飛
散しないように、棒状電極4の下端部周辺をケーシング
21で取り囲み閉鎖空間としている。ケーシング21の
底面には排出管22が開口しており、噴射ノズル18か
ら噴射された冷却媒体20は、排出ポンプ23により排
出管22を経て強制的に排出される。
In order to prevent the cooling medium 20 injected from the injection nozzle 18 from scattering around, the periphery of the lower end of the rod-shaped electrode 4 is surrounded by a casing 21 to form a closed space. A discharge pipe 22 is opened at the bottom of the casing 21 , and the cooling medium 20 injected from the injection nozzle 18 is forcibly discharged through the discharge pipe 22 by a discharge pump 23 .

なお、棒状電極4の後端には給電ケーブル24が接続さ
れており、この給電ケーブル24を介して棒状電極4に
通電される。また、鉄皮3からのガス配管8の取出し口
及びガス配管8の途中には、絶縁体25が設けられてお
り、ガス配管8を経由する漏電を防止している。この絶
縁体25は、第1図では省略しているが、実際には第3
図と同様にして設けられている。また、同様な目的で、
供給管19及び排出管22の途中にも絶縁体26を介在
させる。
Note that a power supply cable 24 is connected to the rear end of the rod-shaped electrode 4, and electricity is supplied to the rod-shaped electrode 4 via this power supply cable 24. Further, an insulator 25 is provided at the outlet of the gas pipe 8 from the iron shell 3 and in the middle of the gas pipe 8 to prevent electrical leakage through the gas pipe 8. Although this insulator 25 is omitted in FIG.
It is provided in the same manner as shown in the figure. Also, for the same purpose,
An insulator 26 is also interposed between the supply pipe 19 and the discharge pipe 22.

ガス9は、ガス供給源(図示せず)からガス配管8を介
して風箱7に送り込まれる。このとき使用するガスとし
ては、棒状電極4及びスリーブ5の冷却を考慮し、大気
温度程度の低温ガスを使用することが好ましい。導入さ
れたガス9は、風箱7で一旦膨張した後、ガス通路6に
送り込まれる。
Gas 9 is fed into wind box 7 via gas piping 8 from a gas supply source (not shown). As the gas used at this time, in consideration of cooling the rod-shaped electrode 4 and sleeve 5, it is preferable to use a low-temperature gas at about atmospheric temperature. The introduced gas 9 is once expanded in the wind box 7 and then sent into the gas passage 6.

そのため、個々のガス通路6を通過するガス9の間で流
量の変化が生じず、スリーブ5の全周にわたり均一な流
量分布でガス9がガス通路6内を通過して、炉内に送り
込まれる。
Therefore, there is no change in the flow rate between the gases 9 passing through the individual gas passages 6, and the gases 9 pass through the gas passages 6 and into the furnace with a uniform flow rate distribution over the entire circumference of the sleeve 5. .

ガス通路6を流れるガス9によって、スリーブ5、ひい
ては棒状電極4先端部が冷却される。すなわち、従来の
ように先端部の熱を後端部に伝導させながら棒状電極4
の後端部を冷却する方式ではないので、棒状電極4の熱
伝導率如何に拘らず棒状電極4全体が均一に冷却される
。そのため、特に溶融金属による溶損の激しい棒状電極
4の先端部を低温に維持することができ、耐久性が大幅
に向上した。このガス9による冷却に加えて、棒状電極
4後端部に対して冷却媒体20をスプレーするとき、冷
却作用は一層確実なものとなる。
The gas 9 flowing through the gas passage 6 cools the sleeve 5 and, in turn, the tip of the rod-shaped electrode 4 . In other words, the rod-shaped electrode 4 is connected while the heat from the tip is conducted to the rear end as in the conventional case.
Since this method does not cool the rear end of the rod-shaped electrode 4, the entire rod-shaped electrode 4 is uniformly cooled regardless of the thermal conductivity of the rod-shaped electrode 4. Therefore, the tip of the rod-shaped electrode 4, which is subject to particularly severe erosion due to molten metal, can be maintained at a low temperature, and its durability is greatly improved. In addition to the cooling by the gas 9, when the cooling medium 20 is sprayed onto the rear end of the rod-shaped electrode 4, the cooling effect becomes even more reliable.

炉内に吹き込まれたガス9は、棒状電極4の先端部近傍
でガス冷却により形成される微細な孔を有したマツシュ
ルーム状の多層金属構造を通過した後、炉内の溶融金属
中に拡散するものと考えられる。すなわち、ガス9の吹
込みによって棒状電極4の先端部と溶融金属との直接接
触、或いは棒状電極4及びスリーブ5の先端部に加わる
溶湯静圧が軽減され、これも棒状電極4及びスリーブ5
の寿命を長くしているものと推察される。
The gas 9 blown into the furnace passes through a pine mushroom-shaped multilayer metal structure with fine holes formed by gas cooling near the tip of the rod-shaped electrode 4, and then diffuses into the molten metal inside the furnace. considered to be a thing. That is, direct contact between the tip of the rod-shaped electrode 4 and the molten metal or static pressure of the molten metal applied to the tip of the rod-shaped electrode 4 and the sleeve 5 is reduced by blowing the gas 9;
It is assumed that this increases the lifespan of the

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の炉壁電極においては、
棒状電極に嵌挿したスリーブを貫通してガスを炉内に送
り込み、このガスにより棒状電極及びスリーブの冷却を
行っている。そのため、スリーブ全長及び棒状電極先端
部の冷却が効率良く行われ、電極の寿命が大幅に延長さ
れる。特に炉内に面するスリーブや棒状電極の先端部の
溶損が抑制されるので、周囲の不定形耐火物に角部が生
じず、角部の欠は落ちもなくなる。また、吹き込まれた
ガスは、溶解或いは精錬されている材料を撹拌する作用
をもつので、溶解或いは精錬も迅速に行われる。
As explained above, in the furnace wall electrode of the present invention,
Gas is sent into the furnace through a sleeve fitted over the rod-shaped electrode, and the rod-shaped electrode and sleeve are cooled by this gas. Therefore, the entire length of the sleeve and the tip of the rod-shaped electrode are efficiently cooled, and the life of the electrode is greatly extended. In particular, melting damage of the tip of the sleeve and rod-shaped electrode facing the inside of the furnace is suppressed, so no corners are formed in the surrounding monolithic refractories, and no corner chips are removed. In addition, the blown gas has the effect of stirring the material being melted or refined, so that the melting or refining can be performed quickly.

また、たとえば冷却媒体として冷却水を使用する場合に
あっても、電極が効率的に強冷却され、電極寿命が飛躍
的に延長される。また、循環水を使用せず、スプレーに
よって棒状電極の後端部周面に吹き付けているため、棒
状電極の周辺部に滞留が生じず、水蒸気爆発等の危険を
伴うことなく炉壁電極の冷却が行われる。更に、損耗に
応じて棒状電極を炉内方向に前進させるとき、棒状電極
の交換頻度が大幅に軽減されるため、操業性も向上する
Furthermore, even when cooling water is used as a cooling medium, for example, the electrodes are efficiently and strongly cooled, and the life of the electrodes is dramatically extended. In addition, since circulating water is not used and the water is sprayed onto the peripheral surface of the rear end of the rod-shaped electrode, there is no accumulation around the rod-shaped electrode, and the furnace wall electrode is cooled without the risk of steam explosion. will be held. Furthermore, when the rod-shaped electrode is advanced toward the inside of the furnace in accordance with wear and tear, the frequency of replacing the rod-shaped electrode is significantly reduced, so that operability is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炉壁電極を直流アーク炉の炉底に適用
した例を示し、第2図はスリーブに設けるガス通路の詳
細を示し、第3図は棒状電極の後端部をスプレー冷却す
る例を示す。 4:棒状電極     5ニスリーブ 6:ガス通路     8:ガス配管 15:押上げ機構    18:噴射ノズル20:冷却
媒体
Figure 1 shows an example in which the furnace wall electrode of the present invention is applied to the bottom of a DC arc furnace, Figure 2 shows details of the gas passage provided in the sleeve, and Figure 3 shows the rear end of the rod-shaped electrode being sprayed. An example of cooling is shown. 4: Rod-shaped electrode 5 Ni sleeve 6: Gas passage 8: Gas piping 15: Push-up mechanism 18: Injection nozzle 20: Cooling medium

Claims (1)

【特許請求の範囲】 1、先端部が炉壁を貫通して炉内に臨む棒状電極と、該
棒状電極の周囲と炉壁との間に設けられたスリーブと、
該スリーブを軸方向に貫通して形成されたガス通路と、
該ガス通路を介して炉内にガスを吹き込むガス配管とを
備えていることを特徴とする直流アーク炉の炉壁電極。 2、先端部が炉壁を貫通して炉内に臨む棒状電極と、炉
壁から外部に突出した前記棒状電極の後端部に冷却媒体
を吹き付ける噴射ノズルとを備えていることを特徴とす
る直流アーク炉の炉壁電極。 3、先端部が炉壁を貫通して炉内に臨む棒状電極と、該
棒状電極の周囲と炉壁との間に設けられたスリーブと、
炉壁から外部に突出した前記棒状電極の後端部に冷却媒
体を吹き付ける噴射ノズルと、前記スリーブを軸方向に
貫通して形成されたガス通路と、該ガス通路を介して炉
内にガスを吹き込むガス配管とを備えていることを特徴
とする直流アーク炉の炉壁電極。 4、請求項1乃至3の何れかに記載の棒状電極を炉内方
向に前進させる押上げ機構を備えていることを特徴とす
る直流アーク炉の炉壁電極。
[Claims] 1. A rod-shaped electrode whose tip passes through the furnace wall and faces into the furnace, and a sleeve provided between the periphery of the rod-shaped electrode and the furnace wall;
a gas passage formed axially through the sleeve;
A furnace wall electrode for a DC arc furnace, comprising a gas pipe for blowing gas into the furnace through the gas passage. 2. It is characterized by comprising a rod-shaped electrode whose tip penetrates the furnace wall and faces into the furnace, and an injection nozzle that sprays a cooling medium onto the rear end of the rod-shaped electrode that protrudes from the furnace wall to the outside. Furnace wall electrode of DC arc furnace. 3. A rod-shaped electrode whose tip passes through the furnace wall and faces into the furnace, and a sleeve provided between the periphery of the rod-shaped electrode and the furnace wall;
an injection nozzle for spraying a cooling medium onto the rear end of the rod-shaped electrode protruding from the furnace wall; a gas passage formed by passing through the sleeve in the axial direction; and a gas passageway for introducing gas into the furnace. A furnace wall electrode for a DC arc furnace, characterized in that it is equipped with a blowing gas pipe. 4. A furnace wall electrode for a DC arc furnace, comprising a push-up mechanism for advancing the rod-shaped electrode according to any one of claims 1 to 3 in the direction of the furnace.
JP1086294A 1989-04-04 1989-04-04 Wall electrodes of DC arc furnace Expired - Fee Related JPH0648142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086294A JPH0648142B2 (en) 1989-04-04 1989-04-04 Wall electrodes of DC arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086294A JPH0648142B2 (en) 1989-04-04 1989-04-04 Wall electrodes of DC arc furnace

Publications (2)

Publication Number Publication Date
JPH02263095A true JPH02263095A (en) 1990-10-25
JPH0648142B2 JPH0648142B2 (en) 1994-06-22

Family

ID=13882815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086294A Expired - Fee Related JPH0648142B2 (en) 1989-04-04 1989-04-04 Wall electrodes of DC arc furnace

Country Status (1)

Country Link
JP (1) JPH0648142B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827365A3 (en) * 1996-08-30 1998-08-19 Nippon Carbon Co., Ltd. Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
KR100506389B1 (en) * 2000-11-14 2005-08-10 주식회사 포스코 Lower Electrode Cooling Mold of DC Electric Furnace
JP2013047172A (en) * 2011-07-27 2013-03-07 Avanstrate Inc Glass production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827365A3 (en) * 1996-08-30 1998-08-19 Nippon Carbon Co., Ltd. Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
KR100506389B1 (en) * 2000-11-14 2005-08-10 주식회사 포스코 Lower Electrode Cooling Mold of DC Electric Furnace
JP2013047172A (en) * 2011-07-27 2013-03-07 Avanstrate Inc Glass production method

Also Published As

Publication number Publication date
JPH0648142B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US7483471B2 (en) Cooling device for use in an electric arc furnace
JPH02263095A (en) Dc arc furnace wall electrode
EP1170385A2 (en) Device for applying injection lances or burners to the side walls of electric furnaces for steelmaking
US5233625A (en) Metallurgical vessel with metallic electrode having readily replaceable wear part
RU2639078C2 (en) Method for melting metal material in melting unit and melting plant
JPH0384386A (en) Furnace wall electrode for dc arc furnace
KR101159968B1 (en) Cooling Panel of Electric Furnace
US6015963A (en) Plasma arc furnace with improved replaceable electrodes
TWI418260B (en) An improved plasma torch for use in a waste processing chamber
JPS6047513B2 (en) Water cooling structure of furnace wall
US4101726A (en) Water cooling jacket for induction furnace water bushing
JP3060148B2 (en) Electrode sleeve for arc furnace lid
WO1998043030A1 (en) Device to protect graphite electrodes in an electric arc furnace
JP2946619B2 (en) Bottom electrode of DC arc furnace
JP3596639B2 (en) Method of cooling ceiling of electric arc furnace
JPH06302398A (en) Electrode structure for plasma torch
KR910000484B1 (en) Tuyere for blast furnace
JPH0520433Y2 (en)
US1513754A (en) Electric furnace
CA1114873A (en) Electrical insulation device
JPH11201438A (en) Body structure of ash treating electric melting furnace
JPH0625839Y2 (en) Wall electrodes of DC arc furnace
JP3249935B2 (en) Cooling method for metal smelting furnace inner wall
JPH0463218A (en) Cooling method for refractory wall of metallurgical furnace and metallurgical furnace
KR20040008409A (en) Combustion device for oxygen in electro furnace