JPH02262372A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH02262372A
JPH02262372A JP8428589A JP8428589A JPH02262372A JP H02262372 A JPH02262372 A JP H02262372A JP 8428589 A JP8428589 A JP 8428589A JP 8428589 A JP8428589 A JP 8428589A JP H02262372 A JPH02262372 A JP H02262372A
Authority
JP
Japan
Prior art keywords
layer
substrate
impurity concentration
region
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8428589A
Other languages
Japanese (ja)
Inventor
Kazuo Tanaka
和夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8428589A priority Critical patent/JPH02262372A/en
Publication of JPH02262372A publication Critical patent/JPH02262372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To manufacture SBD in reduced parasitic series-resistance structure regardless of the thickness and impurity concentration of an epitaxial layer by a method wherein the second buried region in the same conductivity type as that of an element formation layer and higher impurity concentration than that of the same layer is provided between the surface of a substrate and the first buried layer. CONSTITUTION:A buried layer 2 in the same conductivity type as that of an element formation layer 3 and higher impurity concentration than that of the layer 3 is provided on the position at the first distance from the surface of a substrate 1 in the depth direction within the semiconductor substrate 1 wherein the element formation layer 3 in the first impurity concentration is formed; a buried region 7 (n<+> region) in the same conductivity type as that of the said element formation layer 3 and higher impurity concentration than that of the layer 3 is provided on the position at the second distance from the surface of the substrate 1 shorter than the first distance; and then Schottky barrier diodes are formed on the surface of the substrate 1 opposite to the said buried region 7 holding the said element formation layer 3. For example, a part of an n<-> epitaxial layer 3 is implanted with As<+> at high energy level and heat- treated for activation to form the n<+>region 7.

Description

【発明の詳細な説明】 〔概 要] 本発明は主としてバイポーラ型素子で構成される集積回
路中にショットキバリャダイオード(SBD)を形成す
る構造および方法に関し、他素子設計上の制約には無関
係にSBDの寄生直列抵抗を低減することを目的とし、 半導体基板のSBD形成頭域を、該領域の表面部分の不
純物濃度は所望の素子特性に合致した値とし、同領域内
部には該領域と同導電型の高不純物濃度埋め込み領域が
設けられ、表面にSBDが形成されるように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a structure and method for forming a Schottky barrier diode (SBD) in an integrated circuit mainly composed of bipolar elements, and is independent of constraints on the design of other elements. With the aim of reducing the parasitic series resistance of the SBD, the SBD formation head area of the semiconductor substrate is set such that the impurity concentration at the surface portion of the area is a value that matches the desired device characteristics, and the inside of the area is A high impurity concentration buried region of the same conductivity type is provided, and an SBD is formed on the surface.

また上記構造の中、SBD形成領域内部に設けられる高
不純物濃度領域は、加速電圧がMeV級の高エネルギ型
イオン注入装置を用い、多量の不純物を素子形成層の中
心面よりも深くイオン注入することによって形成される
In addition, in the above structure, the high impurity concentration region provided inside the SBD formation region is formed by implanting a large amount of impurity deeper than the central plane of the element formation layer using a high energy ion implantation device with an acceleration voltage of MeV class. formed by

〔産業上の利用分野〕[Industrial application field]

本発明はバイポーラ型集積回路に設けられたSBDの構
造及び該構造の形成方法に関わり、特にSBDの寄生直
列抵抗を減する処理に関わる。
The present invention relates to the structure of an SBD provided in a bipolar integrated circuit and a method of forming the structure, and in particular to a process for reducing the parasitic series resistance of the SBD.

半導体基板に形成される集積回路(IC)の中、バイポ
ーラTrを主たる構成素子とするものでは、反対導電型
の基板上にTr影形成通した不純物濃度のエピタキシャ
ル層を成長させ、そこに各種の素子を形成するのが通常
である。而して、寄生的に生ずるTrのコレクタ直列抵
抗を低減するために、高濃度埋め込み層がエピタキシャ
ル層の下に設けられる。また、エピタキシャル層の不純
物濃度と厚さはバイポーラTrの特性に合わせて設定さ
れることになる。
Among integrated circuits (ICs) formed on semiconductor substrates, in those whose main constituent elements are bipolar transistors, an epitaxial layer with an impurity concentration through which transistor shadow formation is grown is grown on a substrate of the opposite conductivity type, and various types of It is usual to form elements. Therefore, in order to reduce the parasitic collector series resistance of the Tr, a heavily doped buried layer is provided under the epitaxial layer. Further, the impurity concentration and thickness of the epitaxial layer are set according to the characteristics of the bipolar transistor.

近年、ICの高速化の要求が強まっているが、それに応
える方策として、少数キャリヤの蓄積の無いSBDを利
用することが行われている。SBDは、その整流性を利
用する場合に高速であることは勿論であるが、バイポー
ラTrのコレクタ/ベース間をSBDでクランプするこ
とによりTrを高速化するといった使い方もされる。
In recent years, there has been an increasing demand for higher speed ICs, and as a measure to meet this demand, SBDs that do not accumulate minority carriers have been used. SBDs are of course high-speed when utilizing their rectifying properties, but they are also used to increase the speed of bipolar transistors by clamping the collector/base of the transistor with the SBD.

〔従来の技術と発明が解決しようとする課題〕SBDを
ICの高速化に効果的に利用する際には、SBD自体の
寄生直列抵抗が低いものであることが要求される。SB
Dは通常第3図の如くIC形成に合わせて構成された半
導体基板に形成される。このような構造のSBDに於け
る寄生直列抵抗の発生について、該図面を参照しながら
説明する。なお、該図の1はp型Siである基板、2は
n層埋め込み層、3はn−型エピタキシャル層であって
、n−は例えばl XIO”am−’であり、n層は1
0cm−’以上の濃度である。
[Prior Art and Problems to be Solved by the Invention] When an SBD is effectively used to speed up an IC, it is required that the parasitic series resistance of the SBD itself be low. S.B.
D is usually formed on a semiconductor substrate configured for IC formation as shown in FIG. The generation of parasitic series resistance in an SBD having such a structure will be explained with reference to the drawings. In the figure, 1 is a p-type Si substrate, 2 is an n-layer buried layer, and 3 is an n-type epitaxial layer, where n- is, for example, lXIO"am-', and the n layer is 1
The concentration is 0 cm-' or more.

n−エピタキシャル層とアノード電極5との間にショッ
トキ障壁(SB)8が存在し、ダイオードが形成されて
いる。ショットキ障壁の高さはn層の不純物濃度とアノ
ード電極材料により定まり、ダイオードのカソード側は
n6埋め込み層2およびn0接続拡散4を経由してカソ
ード電極6によって配線に接続される。
A Schottky barrier (SB) 8 is present between the n-epitaxial layer and the anode electrode 5, forming a diode. The height of the Schottky barrier is determined by the impurity concentration of the n layer and the material of the anode electrode, and the cathode side of the diode is connected to the wiring via the cathode electrode 6 via the n6 buried layer 2 and the n0 connection diffusion 4.

また、同図に符号BTで示されている領域は同じ基板に
作り込まれたバイポーラ・トランジスタの構造を模式的
に表すもので、該素子はエミッタE、ベースB及びコレ
クタCから成り、n層埋め込み層2は基板表面からコレ
クタへの接続を低抵抗化する目的で設けられている。n
−エピタキシャル層手3はこのトランジスタ形成に合わ
せた厚さを持つことになる。
In addition, the region indicated by the symbol BT in the same figure schematically represents the structure of a bipolar transistor fabricated on the same substrate, and this element consists of an emitter E, a base B, and a collector C, and has an The buried layer 2 is provided for the purpose of reducing the resistance of the connection from the substrate surface to the collector. n
- The epitaxial layer 3 will have a thickness adapted to the formation of this transistor.

上記のSBDの構造に於いて、n“埋め込み層2或いは
n°接続拡散領域4は低抵抗であるのに対し、n−エピ
タキシャル層は高比抵抗で成る程度の厚さを持つから、
この領域の抵抗成分が寄生的にダイオードの直列抵抗と
して存在することになる。寄生直列抵抗を低減するには
核層を低抵抗化するか又はその厚さを減じることが必要
である。
In the above SBD structure, the n" buried layer 2 or the n° connection diffusion region 4 has a low resistance, whereas the n- epitaxial layer is thick enough to have a high specific resistance.
The resistance component in this region parasitically exists as a series resistance of the diode. To reduce the parasitic series resistance, it is necessary to lower the resistance of the core layer or reduce its thickness.

ところが、このエピタキシャル層の不純物濃度や厚さは
、上記の如く同じ基板内に形成されるバイポーラ・トラ
ンジスタの設計に従って選択されるものであるから、み
だりに変更することは許されない、この制約に対処する
ものとして、SBD形成領域に選択的に不純物を拡散し
て低抵抗化することも考えられるが、表面領域の不純物
濃度が変わるとショットキ障壁の高さも変化し、SBD
の使用目的に適合しなくなる。従って、このような方法
は一般的に有効とは言えない。
However, since the impurity concentration and thickness of this epitaxial layer are selected according to the design of the bipolar transistor formed in the same substrate as mentioned above, it is not allowed to change them without permission. One possibility is to selectively diffuse impurities into the SBD formation region to lower the resistance, but if the impurity concentration in the surface region changes, the height of the Schottky barrier also changes, and the SBD
becomes unsuitable for its intended use. Therefore, such a method cannot be said to be generally effective.

本発明の目的は、n−エピタキシャル層の厚さや不純物
濃度に拘束されることなく、寄生直列抵抗が低減された
構造のSBDとそのような構造を形成する処理法を提供
することであり、それによって、より高速に作動するI
Cの形成法を提供することである。
An object of the present invention is to provide an SBD with a structure in which parasitic series resistance is reduced without being restricted by the thickness or impurity concentration of the n-epitaxial layer, and a processing method for forming such a structure. I operate faster due to
An object of the present invention is to provide a method for forming C.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の装置は第1の不純物
濃度の素子形成層を表面に有する半導体基板内に、 該基板表面から深さ方向に第1の距離を隔てた位置に、
前記素子形成層と同導電型でより高い不純物濃度の埋め
込み層が設けられ、 前記基板表面と前記埋め込み層との間の位置であって前
記基板表面から深さ方向に第1の距離より小である第2
の距離を隔てた位置に、前記素子形成層と同導電型でよ
り高い不純物濃度の埋め込み領域が設けられ、 前記素子形成層を挟んで前記埋め込み領域(7)に対向
する位置の前記基板表面にシッットキ・バリヤ・ダイオ
ードが形成されて成ることを特長としており、 また、本発明の半導体装置の製造方法は該半導体装置を
製造する方法であって、 前記素子形成層を表面領域に備え且つ表面から深さ方向
に第1の距離を隔てた位置に前記素子形成層と同導電型
でより高い不純物濃度の埋め込み層が設けられた半導体
基板を準備する工程、該半導体基板の素子形成層の選択
された領域に対し、分布中心の深さが前記第1の距離の
172より大となる加速エネルギで、前記素子形成層と
同導電型の不純物をイオン注入し、熱処理することによ
って前記高不純物濃度の埋め込み領域を形成する工程、
及び 前記素子形成層を挟んで前記埋め込み領域に対向する位
置の前記基板表面にシラットキ・バリヤ・ダイオードを
形成する工程を包含することを特徴としている。
In order to achieve the above object, the apparatus of the present invention includes, within a semiconductor substrate having an element formation layer with a first impurity concentration on the surface, a position spaced a first distance from the surface of the substrate in the depth direction;
A buried layer having the same conductivity type as the element formation layer and having a higher impurity concentration is provided, and the buried layer is located between the substrate surface and the buried layer and is smaller than a first distance from the substrate surface in the depth direction. certain second
A buried region having the same conductivity type as the element forming layer and having a higher impurity concentration is provided at a distance of , and a buried region is provided on the substrate surface at a position opposite to the buried region (7) with the element forming layer in between. A method of manufacturing a semiconductor device according to the present invention is characterized in that a Sittke barrier diode is formed. preparing a semiconductor substrate provided with a buried layer of the same conductivity type and higher impurity concentration as the element formation layer at a position separated from the element formation layer by a first distance in the depth direction; The high impurity concentration is achieved by ion-implanting an impurity of the same conductivity type as the element formation layer into the region with an acceleration energy such that the depth of the distribution center is greater than the first distance of 172, and heat-treating the region. forming a buried region;
and forming a Schillatke barrier diode on the surface of the substrate at a position opposite to the buried region with the element formation layer in between.

上記製造工程は実施例に則して言うと、MeV級の高エ
ネルギ型のイオン注入装置によってn−エピタキシャル
層にAsやPを深く且つ多量に注入し、表面領域の不純
物濃度は変更することなく、内部のエピタキシャル層を
低抵抗化してSBDを形成するものである。
In the above manufacturing process, according to the embodiment, As and P are implanted deeply and in large quantities into the n-epitaxial layer using a MeV class high energy ion implanter, without changing the impurity concentration in the surface region. , an SBD is formed by lowering the resistance of the internal epitaxial layer.

本発明の半導体装置に包含されるSBDの断面構造は第
1図に模式的に示されている。該構造と第3図の構造と
の相違は、上記処理により第2の埋め込み領域であるn
″頭域7が形成されている点にあり、M9M域上部のn
−層表面にSBDが形成されている。また、同じ基板に
バイポーラ・トランジスタを組み込んだ場合、第3図と
同様に、その構造は符号BTで示された部分のようにな
る。
The cross-sectional structure of the SBD included in the semiconductor device of the present invention is schematically shown in FIG. The difference between this structure and the structure shown in FIG. 3 is that the second embedded region n
``It is located at the point where head area 7 is formed, and n in the upper part of M9M area.
- SBD is formed on the layer surface. Furthermore, when a bipolar transistor is incorporated into the same substrate, its structure becomes the part indicated by the symbol BT, as in FIG.

〔作 用〕[For production]

このような構造であれば、表面領域の不純物濃度は変わ
らないのでショットキ障壁の高さも変わらず、然も、従
来寄生抵抗を生じていた領域の大部分が低抵抗化される
ことから、寄生直列抵抗が大幅に低減され、SBDの特
性は優れたものとな通常バイポーラ・トランジスタ形成
のためのn−エピタキシャル層は数μmの厚さであり、
深さ方向の殆ど全域にわたってこれを低抵抗化するには
、不純物イオンの注入量を多量にすると共に、分布中心
を深くしなければならない。
With such a structure, the impurity concentration in the surface region does not change, so the height of the Schottky barrier does not change.However, since the resistance of most of the region that conventionally caused parasitic resistance is reduced, the parasitic series The resistance is significantly reduced and the SBD properties are excellent. Normally, the n-epitaxial layer for bipolar transistor formation is several μm thick.
In order to reduce the resistance over almost the entire depth direction, it is necessary to implant a large amount of impurity ions and to deepen the center of the distribution.

かかるイオン注入による素子形成層の低抵抗化を最も効
率よ〈実施するには、注入されたイオンの分布中心が素
子形成層の厚さ方向の中心面より0、1−0.2μm深
(なるような加速エネルギで注入を行うことが要求され
るが、実用上の許容範囲を考慮すれば、分布中心を素子
形成層の中心面よりも深く設定することによって本発明
の目的が達成されることになる。
In order to most efficiently reduce the resistance of the element formation layer by such ion implantation, the distribution center of the implanted ions should be 0.1 to 0.2 μm deeper than the central plane in the thickness direction of the element formation layer. However, considering the practical tolerance, the object of the present invention can be achieved by setting the distribution center deeper than the center plane of the element forming layer. become.

S+基板の素子形成層の厚さが3.0 a mの場合、
1.6μmの深さにAs”イオンを注入するには加速電
圧を2.0 M e Vとすることが必要であり、この
ようなイオン注入は最近実用に供されるようになったM
eV級の注入装置を使用することで初めて可能となった
ものである。
When the thickness of the element formation layer of the S+ substrate is 3.0 am,
In order to implant As'' ions to a depth of 1.6 μm, it is necessary to set the accelerating voltage to 2.0 M e V, and such ion implantation is performed using the M
This was made possible for the first time using an eV class injection device.

〔実施例〕〔Example〕

第2図は本発明の製造方法の実施例の工程を示す断面模
式図である。以下該図面を参照しながら、工程を説明す
る。
FIG. 2 is a schematic cross-sectional view showing steps in an embodiment of the manufacturing method of the present invention. The steps will be described below with reference to the drawings.

(81図は従来のバイポーラ型ICの形成に用いられる
基板の構造を示しており、該構造は以下の処理によって
形成される。
(Figure 81 shows the structure of a substrate used to form a conventional bipolar IC, and this structure is formed by the following process.

先ず、p型の単結晶Si基Fil 1の表面に選択的に
n゛拡敞領域を形成し、その上に気相エピタキシャル成
長によりn”エピタキシャル層13を成長させる。この
時、前記n゛拡散領域11から不純物が上方に拡散し、
n゛埋め込み層12が形成される。
First, an n'' diffusion region is selectively formed on the surface of the p-type single-crystal Si-based Fil 1, and an n'' epitaxial layer 13 is grown thereon by vapor phase epitaxial growth.At this time, the n'' diffusion region Impurities diffuse upward from 11,
A buried layer 12 is formed.

更に、選択拡散によりn゛接続領域14を形成して(a
)図の状態が得られる。上記処理は通常のIC製造工程
に従って実施される。また、基板表面はSiO□膜15
膜上5て被覆されている。
Furthermore, n' connection region 14 is formed by selective diffusion (a
) The state shown in the figure is obtained. The above processing is carried out according to normal IC manufacturing processes. In addition, the surface of the substrate is a SiO□ film 15.
The membrane is coated with 5 layers.

以下本発明の処理に入り、(ト))図の如く、イオン注
入を選択的に行うための金属マスク16を設けてAs”
を高エネルギで注入する。この時の加速電圧は、注入さ
れたAsの分布中心が前記エピタキシャル層のはり中央
或いはそれよりゃ\深くなるように選択する。−例をあ
げれば、前記エピタキシャル層の厚さが3.0μmの場
合、加速電圧は2、0 M e Vであり、分布中心の
深さは1.6μmである。注入するイオンはAs”の他
にP0或いはSb゛などn型の不純物であれば何でもよ
く、集束イオンビームによるマスク無し選択注入を行っ
てもよい。
Next, the process of the present invention begins, and (g) As shown in the figure, a metal mask 16 for selectively performing ion implantation is provided.
is injected with high energy. The accelerating voltage at this time is selected so that the distribution center of the implanted As is at the center of the beam of the epitaxial layer or deeper than that. - For example, if the epitaxial layer has a thickness of 3.0 μm, the accelerating voltage is 2.0 M e V and the depth of the distribution center is 1.6 μm. The ions to be implanted may be any n-type impurity such as P0 or Sb' in addition to As', and selective implantation without a mask may be performed using a focused ion beam.

これを900°Cで30分熱処理し、注入されたAsを
活性化すると、(C)図のようにSBD形成領域の内部
にn″領域17が形成され、その上部領域の不純物濃度
はn−のまま残されるので、通常の処理により、該領域
表面にショットキ障壁を持つ電極を形成すれば、第1図
の構造となり、寄生直列抵抗が低減され且つダイオード
特性の優れたSBDが得られる。
When this is heat-treated at 900°C for 30 minutes to activate the implanted As, an n'' region 17 is formed inside the SBD formation region as shown in (C), and the impurity concentration in the upper region is n- If an electrode with a Schottky barrier is formed on the surface of this region by normal processing, the structure shown in FIG. 1 will be obtained, and an SBD with reduced parasitic series resistance and excellent diode characteristics can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に包含されるSBDは第2
の埋め込み層であるn465域によって寄生直列抵抗が
大幅に低減されるので、■cの特性向上に大きく寄与す
ることになる。また、高エネルギイオン注入装置を用い
る本発明の方法により、上記構造のSBDの形成が可能
となる。
As explained above, the SBD included in the present invention is
Since the parasitic series resistance is greatly reduced by the n465 region which is the buried layer, it greatly contributes to improving the characteristics of (2)c. Further, the method of the present invention using a high-energy ion implantation device enables the formation of an SBD with the above structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のSBDの構造を示す断面模式第2図は
本発明実施例の工程を示す断面模式図、第3図は従来の
SBDの構造を示す断面模式図であって、 図に於いて 1はP型Si基板、 2はn゛埋め込み層、 3はn−型エピタキシャル層、 4はn゛接続拡散、 5はアノード電極、 6はカソード電極、 7はn0領域、 8はショットキ障壁(SB)、 11ばp型Si基板、 12はn゛埋め込み層、 13はn−型エピタキシャル層、 14はn1接続gJI域、 15はSiO□膜、 16は金属マスク、 17はn′領領域 BTはバイポーラ・トランジスタ領域 である。 BT 本発明のSBDの構造を示す断面模式図案 図 従来のSBDの構造を示す断面模式図 案 図 本発明実施例の工程を示す断面模式図 案 図
FIG. 1 is a schematic cross-sectional view showing the structure of the SBD of the present invention. FIG. 2 is a schematic cross-sectional view showing the steps of an embodiment of the present invention. FIG. 1 is a P-type Si substrate, 2 is an n-type buried layer, 3 is an n-type epitaxial layer, 4 is an n-connection diffusion, 5 is an anode electrode, 6 is a cathode electrode, 7 is an n0 region, and 8 is a Schottky barrier. (SB), 11 is a p-type Si substrate, 12 is an n-type buried layer, 13 is an n-type epitaxial layer, 14 is an n1-connected gJI region, 15 is a SiO□ film, 16 is a metal mask, 17 is an n' region BT is a bipolar transistor region. BT Schematic cross-sectional diagram showing the structure of the SBD of the present invention Schematic cross-sectional diagram showing the structure of the conventional SBD Schematic cross-sectional diagram showing the process of the embodiment of the present invention

Claims (2)

【特許請求の範囲】[Claims] (1)第1の不純物濃度の素子形成層(3)を表面に有
する半導体基板(1)内に、 該基板表面から深さ方向に第1の距離を隔てた位置に、
前記素子形成層(3)と同導電型でより高い不純物濃度
の埋め込み層(2)が設けられ、前記基板表面と前記埋
め込み層(2)との間の位置であって前記基板表面から
深さ方向に第1の距離より小である第2の距離を隔てた
位置に、前記素子形成層(3)と同導電型でより高い不
純物濃度の埋め込み領域(7)が設けられ、 前記素子形成層(3)を挟んで前記埋め込み領域(7)
に対向する位置の前記基板表面にショットキ・バリヤ・
ダイオードが形成されて成ることを特徴とする半導体装
置。
(1) In a semiconductor substrate (1) having an element formation layer (3) with a first impurity concentration on its surface, at a position separated from the substrate surface by a first distance in the depth direction,
A buried layer (2) having the same conductivity type as the element forming layer (3) and having a higher impurity concentration is provided at a position between the substrate surface and the buried layer (2) and at a depth from the substrate surface. A buried region (7) having the same conductivity type as the element forming layer (3) and having a higher impurity concentration is provided at a position separated from the element forming layer (3) by a second distance that is smaller than the first distance in the direction; The embedded area (7) with (3) in between
A Schottky barrier is placed on the surface of the substrate at a position opposite to
A semiconductor device comprising a diode.
(2)請求項(1)の半導体装置を製造する方法であっ
前記素子形成層(3)を表面領域に備え且つ表面から深
さ方向に第1の距離を隔てた位置に前記素子形成層(3
)と同導電型でより高い不純物濃度の埋め込み層(2)
が設けられた半導体基板(1)を準備する工程、 該半導体基板(1)の素子形成層(3)の選択された領
域に対し、分布中心の深さが前記第1の距離の1/2よ
り大となる加速エネルギで、前記素子形成層と同導電型
の不純物をイオン注入し、熱処理することにより前記高
不純物濃度の埋め込み領域(7)を形成する工程、及び 前記素子形成層(3)を挟んで前記埋め込み領域(7)
に対向する位置の前記基板表面にショットキ・バリヤ・
ダイオードを形成する工程を包含することを特徴とする
半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device according to claim (1), wherein the element forming layer (3) is provided in a surface region, and the element forming layer (3) is provided at a position separated from the surface by a first distance in the depth direction. 3
) with the same conductivity type and higher impurity concentration (2)
a step of preparing a semiconductor substrate (1) provided with a distribution center of a selected region of the element formation layer (3) of the semiconductor substrate (1), the depth of which is 1/2 of the first distance; forming the buried region (7) with a high impurity concentration by ion-implanting an impurity of the same conductivity type as the element forming layer with a higher acceleration energy and performing heat treatment, and the element forming layer (3). The embedded area (7) with
A Schottky barrier is placed on the surface of the substrate at a position opposite to
A method for manufacturing a semiconductor device, comprising a step of forming a diode.
JP8428589A 1989-04-03 1989-04-03 Semiconductor device and manufacture thereof Pending JPH02262372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8428589A JPH02262372A (en) 1989-04-03 1989-04-03 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8428589A JPH02262372A (en) 1989-04-03 1989-04-03 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02262372A true JPH02262372A (en) 1990-10-25

Family

ID=13826195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8428589A Pending JPH02262372A (en) 1989-04-03 1989-04-03 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02262372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284741A (en) * 1997-03-31 1998-10-23 Toko Inc Diode device
JP2011044573A (en) * 2009-08-21 2011-03-03 Oki Semiconductor Co Ltd Method of manufacturing schottky diode
JP2013038390A (en) * 2011-07-13 2013-02-21 Canon Inc Diode element and detection element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284741A (en) * 1997-03-31 1998-10-23 Toko Inc Diode device
JP2011044573A (en) * 2009-08-21 2011-03-03 Oki Semiconductor Co Ltd Method of manufacturing schottky diode
JP2013038390A (en) * 2011-07-13 2013-02-21 Canon Inc Diode element and detection element

Similar Documents

Publication Publication Date Title
US6168981B1 (en) Method and apparatus for the localized reduction of the lifetime of charge carriers, particularly in integrated electronic devices
US7282753B2 (en) Vertical conducting power semiconducting devices made by deep reactive ion etching
CN105874607A (en) Semiconductor device and semiconductor device manufacturing method
JP2003533047A (en) Method for implanting hydrogen into buffer region of punch-through non-epitaxial IGBT
JP2001501382A (en) Bipolar transistor controllable by field effect and method of manufacturing the same
US6426248B2 (en) Process for forming power MOSFET device in float zone, non-epitaxial silicon
WO2001097258A2 (en) Fast recovery diode and method for its manufacture
US4357178A (en) Schottky barrier diode with controlled characteristics and fabrication method
US7482205B2 (en) Process for resurf diffusion for high voltage MOSFET
JPH09307104A (en) Semiconductor device and manufacture thereof
JP4123913B2 (en) Manufacturing method of semiconductor device
US5838027A (en) Semiconductor device and a method for manufacturing the same
GB2056166A (en) Hot-electron or hot-hole transistor
US4373166A (en) Schottky Barrier diode with controlled characteristics
US4178190A (en) Method of making a bipolar transistor with high-low emitter impurity concentration
CA1144285A (en) Ion implanted reverse-conducting thyristor
JP2002203965A (en) Semiconductor device
US3729811A (en) Methods of manufacturing a semiconductor device
US7195994B2 (en) Method for production of deep p regions in silicon, and semiconductor components produced using the method
US4101349A (en) Integrated injection logic structure fabricated by outdiffusion and epitaxial deposition
JP3977676B2 (en) Semiconductor device and manufacturing method thereof
JPH02262372A (en) Semiconductor device and manufacture thereof
JPH09153466A (en) Method of decreasing accumulation of carrier of semiconductor device
JP2004039842A (en) Semiconductor device and its manufacturing method
KR100299912B1 (en) Method for fabricating insulating gate bipolar transistor