JPH02261985A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPH02261985A
JPH02261985A JP8083889A JP8083889A JPH02261985A JP H02261985 A JPH02261985 A JP H02261985A JP 8083889 A JP8083889 A JP 8083889A JP 8083889 A JP8083889 A JP 8083889A JP H02261985 A JPH02261985 A JP H02261985A
Authority
JP
Japan
Prior art keywords
valve body
control valve
opening
ports
energized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8083889A
Other languages
Japanese (ja)
Inventor
Kyosuke Mizuno
水野 恭佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP8083889A priority Critical patent/JPH02261985A/en
Publication of JPH02261985A publication Critical patent/JPH02261985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PURPOSE:To facilitate remove operation for moving a valve body by furnishing a resilient member which energizes opening/closing to either of them, and providing a current supply responsive deforming member, which deforms when current is supplied and which moves the valve body continuously against the energization. CONSTITUTION:If a current supply responsive deforming member 15 is in dead condition, a valve body 8 is moved down by a spring 17 to shut a variable throttle 9, and the area of communication between two ports 5A, 5B is minimized. When rectangular pulses from an operational circuit 16 are supplied to this member 15, it is heated in accordance with the duty ratio of the rectangular pulse and deformed to assume a coil, that causes shortening of its length to raise a shaft 13, which moves the valve body 8 in the direction of opening. As a result the degree of opening of a throttle 9 is increased to enlarge the area of communication between the two ports 5A, 5B. With a control valve 1 in this constitution the degree of opening of the throttle 9 can be adjusted only by controlling the amount of current supply to the deforming member 15, that should facilitate remote operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、遠隔操作を容易にした流量制御弁に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow control valve that can be easily operated remotely.

〔従来の技術〕[Conventional technology]

従来の流量制御弁としては、例えば、第4図に示すよう
なものが知られている。
As a conventional flow control valve, one shown in FIG. 4, for example, is known.

この流量制御弁lは、ハウジング3と、このハウジング
3に外嵌する枠体4とで構成される弁本体2を有し、ハ
ウジング3には、軸方向に挿通孔3aが貫通している。
The flow control valve 1 has a valve body 2 composed of a housing 3 and a frame 4 that is fitted onto the housing 3. The housing 3 has an insertion hole 3a passing through it in the axial direction.

枠体4は、ハウジング3に外嵌する円筒部4aと、この
円筒部4aの周方向に突設した突設部4bとから構成さ
れていて、突設部4bに設けた第1ポート5Aは、通路
4Cと、周溝3bと、横孔3cとを介して、挿通孔3a
に連通している。
The frame body 4 is composed of a cylindrical portion 4a that is fitted onto the housing 3, and a protruding portion 4b that protrudes in the circumferential direction of the cylindrical portion 4a, and a first port 5A provided on the protruding portion 4b is , the insertion hole 3a via the passage 4C, the circumferential groove 3b, and the horizontal hole 3c.
is connected to.

そして、挿通孔3aの一方の開口部には、その内周面に
螺合して軸方向に進退自在の調整ネジ6が配設されてい
て、8周整ネジ6の外端には回転ノブ6aが固定され、
調整ネジ6の内端にはニードル6bが固定されている。
One opening of the insertion hole 3a is provided with an adjustment screw 6 that is screwed into the inner circumferential surface of the insertion hole 3a and can move forward and backward in the axial direction. 6a is fixed,
A needle 6b is fixed to the inner end of the adjustment screw 6.

また、挿通孔3内のニードル6bに対向する位置には、
軸方向に貫通した通路7aを有する筒体7が固定されて
いて、通路7aの一方の開口部と、ニードル6bの先端
に構成された弁体8とによつて可変絞り9が構成される
In addition, at a position facing the needle 6b in the insertion hole 3,
A cylindrical body 7 having a passage 7a penetrating in the axial direction is fixed, and a variable throttle 9 is constituted by one opening of the passage 7a and a valve body 8 formed at the tip of the needle 6b.

さらに、挿通孔3の他方の開口部には、第2ポート5B
が設けられている。
Furthermore, the other opening of the insertion hole 3 has a second port 5B.
is provided.

また、筒体7には、その内外部を連通ずる通路7bが穿
設されていると共に、その通路7bの開口部よりもニー
ドル6b側で、挿通孔3内周面と筒体7外面との間には
、第2ポート5B側からの流通は阻止するチエツクシー
ル10が介在している。なお、11a、11b及びli
eはシール部材、12はロックナツトである。
Further, the cylinder 7 has a passage 7b that communicates the inside and outside thereof, and the inner peripheral surface of the insertion hole 3 and the outer surface of the cylinder 7 are connected on the needle 6b side from the opening of the passage 7b. A check seal 10 is interposed in between to prevent flow from the second port 5B side. In addition, 11a, 11b and li
e is a sealing member, and 12 is a lock nut.

従って、この流量制御弁1をJIS記号で表すと、第5
図に示すようになる。
Therefore, if this flow control valve 1 is represented by the JIS symbol, the fifth
The result will be as shown in the figure.

そして、回転ノブ6aを手動で回して調整ネジ6を進退
させ、弁体8を開閉(上下)いずれかの方向に移動させ
れば、可変絞り9の開度、即ち両ポート5A及び5B間
の連通面積が連続的に可変となる。
Then, by manually turning the rotary knob 6a to move the adjusting screw 6 forward or backward, and moving the valve body 8 in either direction to open or close (up or down), the opening degree of the variable throttle 9, that is, the gap between the ports 5A and 5B can be changed. The communication area is continuously variable.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の流量制御弁1にあっては、両
ポート5A及び5B間の連通面積を、回転ノブ6aを回
転させて調整する構成であっ、たため、流量制御弁1を
手の届き難い位置(例えば、高所や、配管が密集してい
る場所等)に配設してしまうと、操作が非常に面倒にな
り、可変絞り9を流体圧機器(例えば、空気圧シリンダ
等)の動きに同調させることが困難であるという未解決
の課題があった。
However, in the conventional flow control valve 1 described above, the communication area between both ports 5A and 5B is adjusted by rotating the rotary knob 6a. If it is installed in a high place (for example, in a place where piping is crowded), it will be very difficult to operate, and the variable throttle 9 will be synchronized with the movement of fluid pressure equipment (for example, a pneumatic cylinder, etc.). There was an unresolved issue that it was difficult to do so.

従来、このような問題点は、例えば電動モータ等によっ
て調整ネジ6を駆動するようにして、遠隔操作を可能に
するか、或いは、配管を延長する等して操作の容易な場
所に流量制御弁を移動させることにより解決していたが
、流量制御弁の大型化やコスト上昇を招いてしまうので
、充分な解決策とはいえなかった。
Conventionally, this problem has been solved by driving the adjustment screw 6 with an electric motor or the like to enable remote control, or by installing the flow control valve in a location where it can be easily operated, such as by extending the piping. This problem was solved by moving the flow control valve, but this was not a sufficient solution as it led to an increase in the size and cost of the flow control valve.

そこで、この発明は、このような従来の技flテが有す
る未解決の課題に着目してなされたものであり、遠隔操
作が容易に行える流量制御弁を提供することを目的とし
ている。
Therefore, the present invention has been made by focusing on the unresolved problems of the conventional technology, and aims to provide a flow rate control valve that can be easily operated remotely.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、この発明のvLt制御弁は
、弁本体に設けられた第1及び第2ポートと、前記弁本
体内で移動して前記第1及び第2ポート間の連通面積を
連続的に可変とする弁体と、この弁体を開閉いずれか一
方に付勢する弾性体と、通電によって変形して前記弁体
を前記弾性体の付勢に抗して連続的に移動させる通電変
形部材と、を備えている。
In order to achieve the above object, the vLt control valve of the present invention has first and second ports provided in a valve body, and a communication area between the first and second ports by moving within the valve body. A continuously variable valve body, an elastic body that biases the valve body to either open or close, and deforms when energized to continuously move the valve body against the bias of the elastic body. An energized deformable member.

〔作用〕[Effect]

通電変形部材の通電量が零であると、弁体は、弾性体の
付勢力によって決まる位置に維持され、第1及び第2ポ
ート間の連通面積を、最大若しくは最小とする。
When the amount of current applied to the energized deformable member is zero, the valve body is maintained at a position determined by the biasing force of the elastic body, and the communication area between the first and second ports is maximized or minimized.

そして、通電変形部材に通電してこれを変形させると、
弁体が弾性体の付勢に抗して移動するから、第1及び第
2ポート間の連通面積は、連続的に増加若しくは減少す
る。
Then, when the energized deformable member is energized and deformed,
Since the valve body moves against the bias of the elastic body, the communication area between the first and second ports continuously increases or decreases.

(実施例〕 以下、この発明の実施例を図面に基づいて説明する。(Example〕 Embodiments of the present invention will be described below based on the drawings.

第1図及び第2図は、本発明の一実施例を示したもので
ある。なお、従来の説明で用いた第4図と同様若しくは
同等の部材及び部位には、同じ符号を付し、その重複し
た説明は省略する。
1 and 2 show an embodiment of the present invention. Note that the same reference numerals are given to the same or equivalent members and parts as in FIG. 4 used in the conventional explanation, and the redundant explanation thereof will be omitted.

先ず、構成を説明する。First, the configuration will be explained.

第1図において、先端に弁体8が固定されて挿通孔3a
に内在するシャフト13は、挿通孔3a内周面に設けら
れた隔壁14を貫通し、その上端は、形状記憶合金製の
通電変形部材15に固着されている。なお、隔壁14に
は、シャフト13に外嵌するシール部材f4aが埋設し
である。
In FIG. 1, a valve body 8 is fixed to the tip of the insertion hole 3a.
The shaft 13 inside passes through a partition wall 14 provided on the inner circumferential surface of the insertion hole 3a, and its upper end is fixed to an electrically deformable member 15 made of a shape memory alloy. Note that a sealing member f4a that fits onto the shaft 13 is embedded in the partition wall 14.

通電変形部材15は、その両端が、ハウジング3に固定
された端子15a及び15bに固着され、その中央部が
シャフト13の上端に固着されていて、両端子15a及
び15bは、作動回路16に接続されている。
Both ends of the energizing deformable member 15 are fixed to terminals 15a and 15b fixed to the housing 3, the center part is fixed to the upper end of the shaft 13, and both terminals 15a and 15b are connected to the operating circuit 16. has been done.

作動回路16は、所定電圧で所定周波数の連続した矩形
パルスをii4端子15a及び15bを通じて通電変形
部材15に供給するものである。なお、その矩形パルス
のデユーティ比は、例えば作動回路16内の図示しない
半固定抵抗の抵抗値を変えることにより、任意の値に調
整できる。
The operating circuit 16 supplies continuous rectangular pulses at a predetermined voltage and a predetermined frequency to the energized deformable member 15 through the ii4 terminals 15a and 15b. Note that the duty ratio of the rectangular pulse can be adjusted to an arbitrary value by, for example, changing the resistance value of a semi-fixed resistor (not shown) in the operating circuit 16.

そして、通電変形部材15は、連続した矩形パルスが供
給されて通電状態となると、自身の電気抵抗によって発
熱し、コイル状に変形(形状回復)する。その発熱量、
即ち変形量は、供給される矩形パルスのデユーティ比に
応じてリニアに変化するものであり、非通電状態(デユ
ーティ比は零)であれば第2図(a)に示すように通電
変形部材15の変形量は零であるが、デユーティ比が増
加するに従って変形量も連続的に大きくなり、あるデユ
ーティ比の矩形パルスが供給された時に、第2図(b)
に示すような最大の変形量が得られる。なお、通電変形
部材15は、必ずしもコイル状に形状記憶させる必要は
なく、直線状のまま伸縮するようにしてもよい。
When the energized deformable member 15 is supplied with continuous rectangular pulses and becomes energized, it generates heat due to its own electrical resistance and deforms into a coil shape (recovers its shape). Its calorific value,
In other words, the amount of deformation changes linearly according to the duty ratio of the supplied rectangular pulse, and in the non-energized state (duty ratio is zero), the energized deformable member 15 as shown in FIG. 2(a). The amount of deformation is zero, but as the duty ratio increases, the amount of deformation also increases continuously, and when a rectangular pulse with a certain duty ratio is supplied, as shown in Fig. 2 (b)
The maximum amount of deformation shown in is obtained. Note that the energizing deformable member 15 does not necessarily have to have a shape memorized in a coil shape, and may be made to expand and contract while remaining in a linear shape.

さらに、弁体日及び隔壁14間には、可変絞り9が閉じ
る方向に弁体8を付勢する弾性体としてのバネ17が、
シャフト13と同軸に介挿されている。
Further, between the valve body and the partition wall 14, there is a spring 17 as an elastic body that biases the valve body 8 in the direction in which the variable throttle 9 closes.
It is inserted coaxially with the shaft 13.

そして、この流量制御弁1eJIS記号で表すと、第4
図で説明した流量制御弁と同様に、第5図に示すように
なる。
And, if this flow control valve 1e is expressed in JIS symbol, the fourth
The flow control valve shown in FIG. 5 is similar to the flow control valve described in the figure.

次に、上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.

通電変形部材15が非通電状態であれば、弁体8はバネ
17によって下方に移動するから、可変絞り9は閉じら
れて、両ポート5A及び5B間の連通面積は最小の状態
(第1ポー)5Aから第2ポート5Bへの流量はチエツ
クシール10によって決まり、第2ポー)5Bから第1
ポート5Aへの流量は零である。)となる。
When the energized deformable member 15 is in a non-energized state, the valve body 8 is moved downward by the spring 17, so the variable throttle 9 is closed and the communication area between both ports 5A and 5B is in the minimum state (first port )5A to the second port 5B is determined by the check seal 10, and the flow rate from the second port)5B to the first port
The flow rate to port 5A is zero. ).

そして、作動回路16が出力する矩形パルスを通電変形
部材15に供給すると、そのときの矩形パルスのデユー
ティ比に応じて通電変形部材15が加熱され、コイル状
に変形する。
Then, when the rectangular pulse outputted by the operating circuit 16 is supplied to the energized deformable member 15, the energized deformable member 15 is heated and deformed into a coil shape according to the duty ratio of the rectangular pulse at that time.

通電変形部材15がコイル状に変形すると、その長さが
短(なるので、シャフト13が上昇し、弁体8が開方向
に移動する。その結果、可変絞り9の絞り開度が増大し
、両ボー)5A及び5B間の連通面積は大きくなる。
When the energized deformable member 15 is deformed into a coil shape, its length becomes shorter, so the shaft 13 rises and the valve body 8 moves in the opening direction.As a result, the opening degree of the variable restrictor 9 increases, The communication area between 5A and 5B becomes larger.

この状態から、例えば作動回路16が出力する矩形パル
スのデユーティ比を小さくすれば、通電変形部材15の
発熱量が低くなってその変形量が減少するので、バネ1
7の付勢力によって弁体8が下降して可変絞り9の開度
が減少し、両ポート5A及び5B間の連通面積は小さく
なるし、逆に矩形パルスのデユーティ比を大きくすれば
、通電変形部材15の変形量が増すので、両ポート5A
及び5B間の連通面積はさらに大きくなる。
From this state, for example, if the duty ratio of the rectangular pulse outputted by the actuating circuit 16 is decreased, the amount of heat generated by the energized deformable member 15 will be lowered, and the amount of deformation thereof will be reduced.
The valve body 8 is lowered by the biasing force 7, the opening degree of the variable throttle 9 is reduced, and the communication area between both ports 5A and 5B becomes smaller. Conversely, if the duty ratio of the rectangular pulse is increased, the energization deformation is reduced. Since the amount of deformation of the member 15 increases, both ports 5A
The communication area between and 5B becomes even larger.

このように、上記実施例の流量制御弁1によれば、通電
変形部材15への通電量、即ち、作動回路16が出力す
る矩形パルスのデユーティ比を制御するだけで、可変絞
り9の開度を調整することができる。
As described above, according to the flow rate control valve 1 of the above embodiment, the opening degree of the variable throttle 9 can be adjusted by simply controlling the amount of current applied to the energized deformable member 15, that is, the duty ratio of the rectangular pulse outputted by the actuating circuit 16. can be adjusted.

従って、手の届き難い位置に流量制御弁1を配置する場
合であっても、作動回路16を操作室内に配置すれば、
流量制御弁1の調整は、遠隔操作で、容易に行うことが
できる。
Therefore, even if the flow control valve 1 is placed in a difficult-to-reach location, if the actuation circuit 16 is placed inside the operation chamber,
Adjustment of the flow rate control valve 1 can be easily performed by remote control.

しかも、電動モータや減速機等を必要としないので、流
量制御弁1の大型化やコストの上昇を招くこともない。
Moreover, since an electric motor, a speed reducer, etc. are not required, the flow control valve 1 does not become larger or the cost increases.

なお、上記実施例では、通電変形部材15に供給する連
続した矩形パルスのデユーティ比を変化させることによ
り、その変形量を調整するようにしているが、これに限
定されるものではなく、例えば、デユーティ比を固定と
し、矩形パルスの電圧値を変化させて変形量を調整する
ことも可能である。
In the above embodiment, the amount of deformation is adjusted by changing the duty ratio of the continuous rectangular pulses supplied to the energized deformable member 15, but the present invention is not limited to this, and for example, It is also possible to fix the duty ratio and adjust the amount of deformation by changing the voltage value of the rectangular pulse.

また、上記実施例では、バネ17が弁体8を閉じる方向
に付勢しているが、逆に弁体8を開く方向に付勢するよ
うにしてもよく、その場合には、通電変形部材15は、
通電変形によって、弁体8を閉じる方向に移動させるよ
うにすればよい。
Further, in the above embodiment, the spring 17 biases the valve body 8 in the closing direction, but it may be biased in the opposite direction to open the valve body 8. In that case, the energized deformable member 15 is
The valve body 8 may be moved in the closing direction by energization and deformation.

さらに、通電変形部材15及びバネ17の構成は、上記
実施例に限定されるものではなく、例えば、第3図に示
すように、弾性体としてバイアスバネ25を用いると共
に、通電変形部材を形状記憶合金製のワイヤ26とし、
太いプラスチックパイプ27と、これにテレスコピック
に係合する細いプラスチックパイプ28との内部にワイ
ヤ26を通して、その両端をメープル端子29を利用し
て張設したものも考えられる。
Furthermore, the configurations of the energized deformable member 15 and the spring 17 are not limited to the above embodiments. For example, as shown in FIG. 3, a bias spring 25 is used as the elastic body, and the energized deformable member is An alloy wire 26,
It is also conceivable that the wire 26 is passed through a thick plastic pipe 27 and a thin plastic pipe 28 telescopically engaged with the thick plastic pipe 27, and both ends of the wire are stretched using maple terminals 29.

そして、ワイヤ26を通電すると、ワイヤ26は自身の
電気抵抗によって発熱し、その温度変化によるワイヤ2
6の収縮力と、バイアスバネ25の付勢力とのバランス
によって、この部材が伸縮するから、この部材の一端に
弁体8を固定し、他端を挿通孔3aの上端面に固定し、
ワイヤ26の両端を作動回路16に接続すれば、上記実
施例と同様の作用効果が得られる。
Then, when the wire 26 is energized, the wire 26 generates heat due to its own electrical resistance, and the wire 26 due to the temperature change.
Since this member expands and contracts due to the balance between the contraction force of 6 and the biasing force of the bias spring 25, the valve body 8 is fixed to one end of this member, and the other end is fixed to the upper end surface of the insertion hole 3a.
By connecting both ends of the wire 26 to the actuating circuit 16, the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の流量制御弁によれば、弁
本体内で移動して前記第1及び第2ポート間の連通面積
を連続的に可変とする弁体の移動を、弁体を開閉いずれ
か一方に付勢する弾性体と、通電によって変形して弁体
を弾性体の付勢に抗して連続的に移動させる通電変形部
材とによって行うようにしたため、通電変形部材への通
電量を制御するだけで第1及び第2ポート間の連通面積
を調整することができるから、流量制御弁の大型化やコ
ストの上昇を招くことなく、遠隔掻作を容易に行えると
いう効果がある。
As explained above, according to the flow control valve of the present invention, the movement of the valve body that moves within the valve body to continuously vary the communication area between the first and second ports is controlled by moving the valve body. This is done using an elastic body that biases the valve to open or close, and an energized deformable member that deforms when energized and continuously moves the valve body against the bias of the elastic body. Since the communication area between the first and second ports can be adjusted simply by controlling the amount, remote scraping can be easily performed without increasing the size of the flow control valve or increasing costs. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す断面図、第2図
はこの実施例における通電変形部材の変形量の説明図で
あり、同図(a)は非通電、同図(b)は最大変形時を
表す。第3図は通電変形部材と弾性体との他の例を示す
正面図、第4図は従来の流量制御弁の構成を示す断面図
、第5図は上記実施例及び従来例で説明した流量制御弁
をJIS記号で表した図である。 1・・・流量制御弁、2・・・弁本体、5A・・・第1
ポート、5B・・・第2ポート、8・・・弁体、15・
・・通電変形部材、17・・・バネ(弾性体)、25・
・・バイアスバネ(弾性体)、26・・・ワイヤ(通電
変形部材)。 特許出廓人 株式会社潤
FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the amount of deformation of the energized deformable member in this embodiment. ) represents the time of maximum deformation. FIG. 3 is a front view showing another example of the energized deformable member and the elastic body, FIG. 4 is a sectional view showing the configuration of a conventional flow control valve, and FIG. 5 is a flow rate explained in the above embodiment and conventional example. It is a diagram showing a control valve using JIS symbols. 1...Flow rate control valve, 2...Valve body, 5A...First
Port, 5B...Second port, 8...Valve body, 15.
...Electricity deformable member, 17... Spring (elastic body), 25.
...Bias spring (elastic body), 26...wire (current-carrying deformable member). Patent distributor Jun Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)弁本体に設けられた第1及び第2ポートと、前記
弁本体内で移動して前記第1及び第2ポート間の連通面
積を連続的に可変とする弁体と、この弁体を開閉いずれ
か一方に付勢する弾性体と、通電によって変形して前記
弁体を前記弾性体の付勢に抗して連続的に移動させる通
電変形部材と、を備えたことを特徴とする流量制御弁。
(1) First and second ports provided in a valve body, a valve body that moves within the valve body to continuously vary the communication area between the first and second ports, and this valve body. The valve body is characterized by comprising an elastic body that biases the valve body to either open or close, and an energized deformable member that deforms when energized and continuously moves the valve body against the bias of the elastic body. Flow control valve.
JP8083889A 1989-03-31 1989-03-31 Flow control valve Pending JPH02261985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8083889A JPH02261985A (en) 1989-03-31 1989-03-31 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8083889A JPH02261985A (en) 1989-03-31 1989-03-31 Flow control valve

Publications (1)

Publication Number Publication Date
JPH02261985A true JPH02261985A (en) 1990-10-24

Family

ID=13729516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8083889A Pending JPH02261985A (en) 1989-03-31 1989-03-31 Flow control valve

Country Status (1)

Country Link
JP (1) JPH02261985A (en)

Similar Documents

Publication Publication Date Title
EP1664604B1 (en) A system, method and apparatus for reducing frictional forces and for compensating shape memory alloy-actuated valves and valve systems at high temperatures
US6843465B1 (en) Memory wire actuated control valve
US6011346A (en) Apparatus and method for generating electricity from energy in a flowing stream of fluid
CN107061785B (en) Shape memory alloy actuated valve assembly and valve subassembly therefor
US5211371A (en) Linearly actuated valve
US5447287A (en) Fuel control device and methods of making the same
US4979672A (en) Shape memory actuator
US6705342B2 (en) Modulating gas valve with natural/LP gas conversion capability
US4560871A (en) Actuator for control valves and related systems
EP2227647B1 (en) Flow control valve
JPS61197802A (en) Piston cylinder unit
US6098957A (en) Electro-mechanical torque limiter for valve actuators
US20050092952A1 (en) Proportional poppet valve
JPH02261985A (en) Flow control valve
US5355214A (en) Flow control device
JP2000249251A (en) Dew condensation preventing needle valve
JPH028573A (en) Valve device
JP2005155691A (en) Electric control valve
KR100441130B1 (en) control valve of gas
GB2280944A (en) Gas valve
KR960006629B1 (en) Automatic temp. control device
JP2787390B2 (en) Automatic setting pressure reducing valve
JPH0324381A (en) Three-way valve
JPS59137676A (en) Expansion valve
JPH06265028A (en) Flow rate control valve device for fluid