JPH02260837A - Optical ping pong transmission system - Google Patents
Optical ping pong transmission systemInfo
- Publication number
- JPH02260837A JPH02260837A JP1078462A JP7846289A JPH02260837A JP H02260837 A JPH02260837 A JP H02260837A JP 1078462 A JP1078462 A JP 1078462A JP 7846289 A JP7846289 A JP 7846289A JP H02260837 A JPH02260837 A JP H02260837A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- light
- communication
- excitation light
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 50
- 230000003287 optical effect Effects 0.000 title claims description 34
- 230000006854 communication Effects 0.000 claims abstract description 82
- 238000004891 communication Methods 0.000 claims abstract description 82
- 239000013307 optical fiber Substances 0.000 claims abstract description 70
- 230000008878 coupling Effects 0.000 claims abstract description 18
- 238000010168 coupling process Methods 0.000 claims abstract description 18
- 238000005859 coupling reaction Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 6
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 6
- 230000005284 excitation Effects 0.000 claims description 46
- 230000007175 bidirectional communication Effects 0.000 claims description 3
- 230000000644 propagated effect Effects 0.000 claims description 2
- 230000003321 amplification Effects 0.000 abstract description 10
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 10
- 230000002457 bidirectional effect Effects 0.000 abstract description 6
- 230000001902 propagating effect Effects 0.000 abstract description 2
- 230000004936 stimulating effect Effects 0.000 abstract 6
- 241000270295 Serpentes Species 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 102000016955 Erythrocyte Anion Exchange Protein 1 Human genes 0.000 description 2
- 108010014384 Erythrocyte Anion Exchange Protein 1 Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- QKLPUVXBJHRFQZ-UHFFFAOYSA-N 4-amino-n-(6-chloropyrazin-2-yl)benzenesulfonamide Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=CN=CC(Cl)=N1 QKLPUVXBJHRFQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- OIPMQULDKWSNGX-UHFFFAOYSA-N bis[[ethoxy(oxo)phosphaniumyl]oxy]alumanyloxy-ethoxy-oxophosphanium Chemical compound [Al+3].CCO[P+]([O-])=O.CCO[P+]([O-])=O.CCO[P+]([O-])=O OIPMQULDKWSNGX-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Landscapes
- Light Guides In General And Applications Therefor (AREA)
- Bidirectional Digital Transmission (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光ファイバの両端に接続された通信者間で、
双方向時分割通信を行う光ピンポン伝送方式に関するも
のである。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for communicating between communication parties connected to both ends of an optical fiber.
This invention relates to an optical ping-pong transmission system that performs bidirectional time-division communication.
[従来の技術]
通信者AとBとの間で光ファイバを用いて同一波長での
通信を行う従来の方式を第3図に示す。[Prior Art] FIG. 3 shows a conventional system for communicating at the same wavelength between communication parties A and B using optical fibers.
第3図において、31は通信者A側に設けた信号光源S
A、 33は同じく受光系しであり、32は通信者B側
に設けた信号光源SR,34は同じく受光系RBである
。通イエ者A側の信号光源SAは1本の光ファイバ35
を介して通信者B側の受光系りに、通信者B側の信号光
源Saはもう1本の光ファイバ36を介して通信者A側
の受光系RAに接続されている。このように、従来では
多重化を行わない場合においても通信者AとBとの間で
双方向の通信を行うためには2本の光ファイバを必要と
していた。In Fig. 3, 31 is a signal light source S provided on the communication party A side.
A and 33 are also light receiving systems, 32 is a signal light source SR provided on the communication party B side, and 34 is a light receiving system RB. The signal light source SA on the customer A side is one optical fiber 35.
The signal light source Sa of the communication party B side is connected to the light reception system RA of the communication party A side via another optical fiber 36. As described above, in the past, two optical fibers were required to perform bidirectional communication between communication parties A and B even when multiplexing was not performed.
[発明が解決しようとする課題]
上述したように、従来の方式においては、多重化を行わ
ないときでも双方向通信を行うためには、メタリックケ
ーブルに比べて高価な2木の光ファイバを必要とするこ
とや、伝送距離を延長し適用領域を拡大するために電気
的な増幅回路を用いようとすると受信系の増幅回路を高
性能なものにする必要があることなどの問題点があった
。[Problem to be solved by the invention] As mentioned above, in the conventional system, in order to perform bidirectional communication even when multiplexing is not performed, two optical fibers, which are more expensive than metallic cables, are required. However, if an electric amplifier circuit was used to extend the transmission distance and expand the range of applications, there were problems such as the need for a high-performance amplifier circuit in the receiving system. .
このようなことから、光ファイバケーブルを、一般的に
運ばれるトラヒック量が小さい加入者系伝送路へ用いる
ことは、光ファイバケーブルの有する伝送上の高速・高
帯域性などの利点を考慮しても経済性の点から制約を受
けていた。For this reason, it is important to consider the advantages of optical fiber cables, such as high-speed and high-bandwidth transmission, when using optical fiber cables for subscriber transmission lines that generally carry a small amount of traffic. was also constrained by economic considerations.
これらに加えて、従来の電気的な増幅回路を用いる場合
には、伝送方式を変えると、それに対応して複雑な回路
変更を行う必要があり、伝送方式変更に対する融通性上
の問題点や、高度の接続技術を要する光ファイバ心線接
続を一対向について2本ずつ行わなければならないこと
から生ずる信頼性上の問題点などもあった。In addition, when using conventional electrical amplification circuits, if the transmission method is changed, it is necessary to make complex circuit changes in response to the change, and there are problems with flexibility when changing the transmission method. There were also problems with reliability due to the need to connect two optical fibers in each direction, which required sophisticated connection technology.
そこで、本発明の目的は、伝送路として1本の光ファイ
バだけを用いて双方向の時分割通信を行うことができ、
しかも無中継伝送距離の拡大あるいは伝送速度の高速化
が可能であり、かつ伝送方式の変更に対する融通性およ
び光ファイバ心線接続上の信頼性を高めた光ビンボン伝
送方式を提供することにある。Therefore, an object of the present invention is to be able to perform bidirectional time-division communication using only one optical fiber as a transmission path.
Moreover, it is an object of the present invention to provide an optical optical transmission system that can extend the non-relay transmission distance or increase the transmission speed, has flexibility in changing the transmission system, and has improved reliability in optical fiber connection.
[課題を解決するための手段]
このような目的を達成するために、本発明は、光ファイ
バ伝送路の両端に、通信信号光の発生手段および当該通
信信号光の受光手段を配置して双方向通信を行う光伝送
方式において、所定波長の励起光を発生する励起光発生
手段と、希土類材料がドープされた第2の光ファイバと
、光ファイバ伝送路と第2の光ファイバとの間に配置さ
れ、および励起光を選択的に受光可能であって、光ファ
イバ伝送路から伝搬されてきた通信信号光および励起光
を第2の光ファイバに向けて送出する第1の結合手段と
、第2の光ファイバと発生手段との間に配置され、およ
び励起光を選択的に受光可能であって、発生手段で発生
された通信信号光および励起光を第2の光ファイバに向
けて送出する第2の結合手段と、励起光発生手段に結合
され、励起光を第1および第2の結合手段のいずれか一
方に選択的に導く選択手段とを具え、受信時には第1の
結合手段から第2の光ファイバに導かれて励起光によっ
て励起されて増幅された通イ8信号光を第2の結合手段
を介して受光手段に導き、送信時には、第2の結合手段
から第2の光ファイバに導かれて励起光によって励起さ
れて増幅された通信信号光を第1の結合手段を介して光
ファイバ伝送路に送出するようにしたことを特徴とする
ものである。[Means for Solving the Problems] In order to achieve such an object, the present invention arranges a means for generating communication signal light and a means for receiving the communication signal light at both ends of an optical fiber transmission line. In an optical transmission system for direct communication, an excitation light generating means for generating excitation light of a predetermined wavelength, a second optical fiber doped with a rare earth material, and an optical fiber transmission line between the optical fiber transmission line and the second optical fiber. a first coupling means which is arranged and capable of selectively receiving excitation light and transmits communication signal light and excitation light propagated from the optical fiber transmission line toward a second optical fiber; The second optical fiber is disposed between the second optical fiber and the generating means, is capable of selectively receiving excitation light, and sends the communication signal light and excitation light generated by the generating means toward the second optical fiber. a second coupling means; and a selection means coupled to the excitation light generation means and selectively guiding the excitation light to either the first or second coupling means; The 8-signal light is guided to the second optical fiber, excited and amplified by the pumping light, and guided to the light receiving means via the second coupling means, and at the time of transmission, the signal light is transferred from the second coupling means to the second optical fiber. This is characterized in that the communication signal light guided by the pump light, excited by the pumping light, and amplified is sent out to the optical fiber transmission line via the first coupling means.
[作 用]
本発明によれば、通信者間の伝送路を構成する1本の光
ファイバの両端に、光信号の段階で増幅機能を持たせる
ために希土類材料でドープされた光ファイバを接続した
ことと、通信信号光に通信開始信号および完了信号を挿
入して、これらの信号に基く制御により励起光の伝搬方
向を切り替え、通信信号光の伝送方向と同方向に励起光
を伝搬させるようにしたこととから、通信信号光を電気
的な増幅手段を用いることなく増幅して通信することが
でき無中継伝送距離の拡大または伝送速度の高速化を可
能とした。[Function] According to the present invention, optical fibers doped with a rare earth material are connected to both ends of one optical fiber constituting a transmission path between communicating parties in order to provide an amplification function at the optical signal stage. In addition, a communication start signal and a communication completion signal are inserted into the communication signal light, and control based on these signals switches the propagation direction of the pump light so that the pump light propagates in the same direction as the transmission direction of the communication signal light. Because of this, communication signal light can be amplified and communicated without using electrical amplification means, making it possible to extend the non-relay transmission distance or increase the transmission speed.
[実施例]
以下に、図面を参照して本発明の実施例を詳細に説明す
る。[Examples] Examples of the present invention will be described in detail below with reference to the drawings.
本発明の一実施例を第1図に示す。ここで、Aは発光源
SA、受光系RA、方向性結合器DCAおよびコントロ
ーラCAを有する通信者、Bは受光系RB、発光源S6
、方向性結合器DC8およびコントローラCI、を有す
る通信者である。発光源SAは通信開始信号oAs b
通信信号OATおよび通信完了信号OAEを含むフォー
マットの通信光信号OAを発生する光源で、発光源SR
は同じく通信開始信号oss s通信信号01ITおよ
び通信完了信号OREを含むフォーマットの通信光信号
08を発生する光源である。これら発光源SAおよびS
Bで発生された通信光信号は、相手側に対応して設けら
れた受光系RaおよびRAで受光される。方向性結合器
DCAは発光源SAからの光信号を伝送路側′に、伝送
路側からの光信号を受光系りに結合する。同様に方向性
結合器DC,は発光源S8からの光信号を伝送路側へ、
伝送路側からの光信号を受光系R6に結合する。An embodiment of the present invention is shown in FIG. Here, A is a communication party having a light emitting source SA, a light receiving system RA, a directional coupler DCA, and a controller CA, and B is a communicating party having a light receiving system RB and a light receiving system S6.
, a directional coupler DC8 and a controller CI. The light emitting source SA sends a communication start signal oAs b
A light source that generates a communication optical signal OA in a format including a communication signal OAT and a communication completion signal OAE, and a light source SR
Similarly, a light source generates a communication optical signal 08 having a format including a communication start signal OSS_S communication signal 01IT and a communication completion signal ORE. These light sources SA and S
The communication optical signal generated by B is received by light receiving systems Ra and RA provided corresponding to the other party. The directional coupler DCA couples the optical signal from the light emitting source SA to the transmission line side and the optical signal from the transmission line side to the light receiving system. Similarly, the directional coupler DC sends the optical signal from the light source S8 to the transmission line side.
The optical signal from the transmission line side is coupled to the light receiving system R6.
コントローラCAは通信光43号の送信および受信に対
応して光スィッチO5Aを制御し、後述する励起光源P
Aでの通信光信号の送信時と受信時とにおける励起光P
。AおよびPRAの切換を行う。同しような目的で通信
者Bに設けられたコントローラC[lは光スィッチO5
8を制御し、励起光源P6での励起光P。6およびPR
8の切換を行う。PAは通信者A側で、送信時に例えば
波長1.43μmの励起光P。Aを光スィッチO5Aを
介してカブラCSAのESA2端子に入射し、受信時に
は例えば波長1.5μmの励起光PRAを光スィッチO
5Aを介してカブラCPAのEPA3端子に入射する励
起光源であり、P6は通信者B側で同じく送信時に例え
ば波長1.43μmの励起光F’oaを光スィッチO5
Bを介してカブラCs6のEsn1端子に入射し、受イ
3時には例えば波長1.5 μmの励起光PRIIIを
光スィッチO5Bを介してカブラcpBのEPa3端子
に入射する励起光源である。通信者A側のカブラCSA
のESAI端子と、カブラCPAのEPA 1端子との
間には光ファイバFAが、また通信者B側のカブラC8
aのε5IS1端子と、カブラcpaのEPa l端子
との間には光ファイバFBが接続されている。これらの
光ファイバFAおよびFBは、光信号の段階で増幅機能
を持たせるために接続されるもので、希土類材料、例え
ばエルビウムEr+3でドープされた光ファイバである
。通信者A側のカブラCPAのEPA2端子と、通信者
B側のカブラCPIIIのEPIS2端子との間には光
信号伝送用の光ファイバOFが接続されている。The controller CA controls the optical switch O5A in response to the transmission and reception of the communication light No. 43, and controls the excitation light source P, which will be described later.
Pumping light P when transmitting and receiving a communication optical signal at A
. A and PRA are switched. A controller C [l is an optical switch O5] installed in communication party B for the same purpose.
8, and the excitation light P from the excitation light source P6. 6 and PR
8. PA is the excitation light P having a wavelength of 1.43 μm, for example, at the communication party A side during transmission. A is input to the ESA2 terminal of the Cobra CSA through the optical switch O5A, and at the time of reception, the excitation light PRA with a wavelength of 1.5 μm, for example, is input to the optical switch O.
5A is an excitation light source that enters the EPA3 terminal of the CPA, and P6 is an excitation light source that enters the EPA3 terminal of the Kabra CPA at the communication party B side. Similarly, during transmission, P6 transmits excitation light F'oa with a wavelength of 1.43 μm to the optical switch O5.
This is an excitation light source that inputs excitation light PRIII with a wavelength of, for example, 1.5 .mu.m to the EPa3 terminal of the coupler cpB via the optical switch O5B. Kabra CSA on communication party A side
There is an optical fiber FA between the ESAI terminal of the Cable CPA and the EPA 1 terminal of the Cobra CPA.
An optical fiber FB is connected between the ε5IS1 terminal of a and the EPal terminal of the converter cpa. These optical fibers FA and FB are connected to provide an amplification function at the optical signal stage, and are optical fibers doped with a rare earth material, such as erbium Er+3. An optical fiber OF for optical signal transmission is connected between the EPA2 terminal of the Cobra CPA on the communication party A side and the EPIS2 terminal of the Cobra CPIII on the communication party B side.
第2図(A)〜(G)は第1図に示した一実施例での動
作を説明する図である。第2図における符号は第1図の
同一箇所におけるものと同様のものを用いた。FIGS. 2(A) to 2(G) are diagrams illustrating the operation of the embodiment shown in FIG. 1. The same reference numerals in FIG. 2 are used for the same parts in FIG. 1.
第1図および第2図(八)〜(G)を用いて実施例の動
作を以下に説明する。The operation of the embodiment will be described below using FIG. 1 and FIGS. 2 (8) to (G).
第2図(A)は、通信者Aおよび8間で通信がなされて
いない状態を示す。通信者A側において、励起光Tn
P Aからの、例えば波長1.5μmの励起光PRAが
カブラCp^のEPA3端子から入射され、通信者B側
において、励起光源PI、からの同しく波長1.5 μ
mの励起光PROがカブラ(’PRのEPB3端子から
入射されている。FIG. 2(A) shows a state in which communication is not taking place between communicators A and 8. FIG. On the communicating party A side, excitation light Tn
Excitation light PRA with a wavelength of 1.5 μm, for example, from P A is inputted from the EPA3 terminal of Cobra Cp^, and on the communicating party B side, excitation light PRA with a wavelength of 1.5 μm, also from the excitation light source PI, is input to
The excitation light PRO of m is input from the EPB3 terminal of the coupler ('PR).
第2図(B)は、通信者Aが通信者已に信号を送る場合
を示し、まずカブラCPAのEPA3への励起光源PA
からの励起光PRAを遮断し、励起光源PAからの例え
ば波長1.43μIの励起光P。AをカブラC5AのE
S A 2 O’t4子に入射する0次に発光源SA
からの通信光信号0^(=通信開始信号OAs+通信信
号OAT+通信完了信号0AE)のうちの通信開始信号
OASをカブラC5AのESA3端子より入射する。こ
の場合、光ファイバFA内で、は励起光POAと通信開
始信号OASが同方向に進行することにより、通信開始
信号OAsが増幅され、光ファイバケーブル11.カブ
ラCP6+光ファイバFISおよびカブラC3lIを通
過して通信者Bの受光系Raに到達する0通信者B側に
おいても励起光#tP aから励起光P□・が入射され
ているので、光ファイバFB内では、通信開始信号OA
Sの伝搬光信号oAs’と励起光PRBとは同方向に伝
搬するので同信号oAs ’は増幅される。この光ファ
イバFAおよびF6での増幅は通信光信号OAでの通信
信号OA?および通信完了信号0■についても同様に行
われる。FIG. 2(B) shows the case where the communication party A sends a signal to the communication party A. First, the excitation light source PA to the EPA3 of the cabra CPA is
The excitation light PRA from the excitation light source PA is blocked, and the excitation light P having a wavelength of 1.43 μI, for example, is emitted from the excitation light source PA. A is Kabra C5A E
S A 2 O't4 0th order light emitting source SA incident on the
The communication start signal OAS of the communication optical signal 0^ (=communication start signal OAs+communication signal OAT+communication completion signal 0AE) is input from the ESA3 terminal of the Cobra C5A. In this case, within the optical fiber FA, the excitation light POA and the communication start signal OAS travel in the same direction, so that the communication start signal OAs is amplified, and the optical fiber cable 11. Cobra CP6 + passes through optical fiber FIS and Cobra C3lI and reaches the light receiving system Ra of communication party B. Since the excitation light P□・ is also incident on the communication party B side from pump light #tP a, In the communication start signal OA
Since the propagating optical signal oAs' of S and the pumping light PRB propagate in the same direction, the signal oAs' is amplified. The amplification in the optical fibers FA and F6 is the communication optical signal OA? The same process is performed for the communication completion signal 0■.
第2図(C)は通信者Aが通信を終了する場合を示し、
まず、発光源SAから通信完了信号oA!を送出したの
ち、発光源SAからの通信光信号OAと励起光源PAか
らの励起光P。Aを遮断する0次に、通信者Bからの通
信光信号を増幅して受信できるように励起光源PAから
の励起光PRAをカブラCPAのEPA3端子に入射す
る。FIG. 2(C) shows a case where the communicating party A ends the communication,
First, a communication completion signal oA! is sent from the light emitting source SA! After sending out the communication optical signal OA from the light emitting source SA and the excitation light P from the excitation light source PA. Next, the pump light PRA from the pump light source PA is input to the EPA3 terminal of the converter CPA so that the communication optical signal from the communication party B can be amplified and received.
第2図(D)は、通信者Aからの通信完了信号0゛1受
信時の通信者B側の動作を示し、励起光源P、からの励
起光PRflのカブラcpaのEpas@子への入射を
遮断し、励起光P。8をカブラCSaのEsa2@子に
入射し、発光源S8からの通信光信号OISの送出に備
える。FIG. 2(D) shows the operation of the communication party B side when receiving the communication completion signal 0゛1 from the communication party A, and shows that the excitation light PRfl from the excitation light source P is incident on the Epas@ child of the cabra cpa. and excitation light P. 8 into Esa2@ of Kabra CSa in preparation for sending out the communication optical signal OIS from the light emitting source S8.
第2図(E)は通信者Bが通信者Aに信号を送る場合を
示し、第2図(B)で通信者A側と通信者B側とを入れ
替えた場合に対応する。同様に第2図(F)は通(g者
Bが通信を終了する場合を示し、第2図(C)に対応し
、第2図(G)は通信者Bからの通信完了信号0°BE
受信時の通信者A側の動作を示すもので、第2図(D)
に対応する。これら第2図(E)ないしくG)について
の説明は、上述した第2図(B)ないしくD)について
行った説明において、記号Aと記号Bを入れ替えれば全
く同じであるので省略する。FIG. 2(E) shows a case where communicator B sends a signal to communicator A, and corresponds to the case where communicator A side and communicator B side are swapped in FIG. 2(B). Similarly, FIG. 2(F) shows a case where party B ends the communication, and corresponds to FIG. 2(C), and FIG. 2(G) shows the communication completion signal 0° from party B. BE
Figure 2 (D) shows the operation of communication party A during reception.
corresponds to The explanations for these FIGS. 2(E) to 2G) are the same as those for FIGS. 2(B) to D) described above if symbols A and B are replaced, so the explanation will be omitted.
ここで、第2図(D)の状態で通信者Bが通信を続行し
ない場合および第2図(G)の状態で通信者Aが通信を
続行しない場合には、第2図(A)の状態に戻る。Here, if communicator B does not continue communication in the state of FIG. 2(D) and if communicator A does not continue communication in the state of FIG. 2(G), Return to state.
[発明の効果]
以上から明らかなように、本発明によれば、1木の光フ
ァイバを用いるのみで双方向時分割通信を行うことがで
き、しかも、光ファイバ内で通信光信号を増幅するよう
にして通信するので従来の2木の光ファイバを用いる場
合よりも無中継伝送距雛を拡大することができる。なお
、ここで従来と同一の伝送距雛の領域に本発明を適用す
るとすれば、光ファイバ内での増幅する分に見合ってビ
ットレートを高めることができ、ビンボン方式で行われ
る双方向通信におけるバースト周期を短くしてさらに高
速度の伝送を行わせるようにすることもできる。[Effects of the Invention] As is clear from the above, according to the present invention, bidirectional time-division communication can be performed only by using one optical fiber, and the communication optical signal can be amplified within the optical fiber. Since communication is carried out in this manner, the non-repeater transmission distance can be expanded compared to the conventional case of using two optical fibers. If the present invention is applied to the same transmission distance range as the conventional one, the bit rate can be increased commensurate with the amplification within the optical fiber, and the bit rate can be increased to compensate for the amplification within the optical fiber. It is also possible to shorten the burst period to perform higher-speed transmission.
また、上述したように、本発明においては、光信号の段
階で増幅機能を持たせるようにし、電気的な増幅回路を
用いないので、伝送方式を変更する場合でも複雑な回路
変更を行う必要がなく、このような場合に柔軟に対応で
きる。Furthermore, as mentioned above, the present invention provides an amplification function at the optical signal stage and does not use an electrical amplification circuit, so even when changing the transmission method, it is not necessary to make complicated circuit changes. This allows us to respond flexibly to such cases.
さらに、2木の光ファイバを用いて双方向伝送する場合
に比べて、同一光ファイバケーブルにおける光ファイバ
線の有効利用を図ることができる、例えば2木の光ファ
イバのうち節約される1本の光ファイバを用いて本発明
による光伝送システムをもう一対向設けることや、予備
線として伝送路の信頼性を向上させるために用いること
などが可能となる。Furthermore, compared to the case of bidirectional transmission using two optical fibers, it is possible to effectively utilize the optical fiber lines in the same optical fiber cable. For example, one of the two optical fibers is saved. It becomes possible to provide another optical transmission system according to the present invention using an optical fiber, or to use it as a backup line to improve the reliability of the transmission line.
第1図は本発明の一実施例を示すブロック図、第2図(
A)〜(G)は本発明実施例の動作を説明する図、
第3図は従来の方式の説明図である。
^、B・・・通信者、
OCA、DCa・・・方向性結合器、
sa、sa・・・発光源、
RA、RB・・・受光系、
CA、C,・・・コントローラ、
P^、pa・・・励起光源、
osA、osB・・・光スィッチ、
C!Arc!!Is ”’カブラ、
CPA+CPB・・・カブラ、
F^、Fll・・・希土類材料でドープされた光ファイ
バ、OF・・・光ファイバ、
ESA l〜ESA3’・・カブラC5AEPA l〜
EPA3・・・カブラCPAES81〜ESB3・・’
カブラC5aEpffil〜EPB3・・・カブラcp
aの端子、
の端子、
の端子、
の端子。
通信、i倒
ヨk ft、$ B (jlFIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 (
A) to (G) are diagrams for explaining the operation of the embodiment of the present invention, and FIG. 3 is a diagram for explaining the conventional system. ^, B...Communicator, OCA, DCa...Directional coupler, sa, sa...Light emitting source, RA, RB...Light receiving system, CA, C,...Controller, P^, pa...Excitation light source, osA, osB...Optical switch, C! Arc! ! Is '''Cabra, CPA+CPB...Cabra, F^, Fll...Optical fiber doped with rare earth material, OF...Optical fiber, ESA l~ESA3'...Cabra C5AEPA l~
EPA3...Cabra CPAES81~ESB3...'
Kabra C5aEpffil~EPB3... Kabra cp
Terminal a, terminal , terminal , terminal . Communication, ft, $B (jl
Claims (1)
および当該通信信号光の受光手段を配置して双方向通信
を行う光伝送方式において、 所定波長の励起光を発生する励起光発生手段と、 希土類材料がドープされた第2の光ファイバと、 前記光ファイバ伝送路と前記第2の光ファイバとの間に
配置され、および前記励起光を選択的に受光可能であっ
て、前記光ファイバ伝送路から伝搬されてきた通信信号
光および前記励起光を前記第2の光ファイバに向けて送
出する第1の結合手段と、 前記第2の光ファイバと前記発生手段との間に配置され
、および前記励起光を選択的に受光可能であって、前記
発生手段で発生された通信信号光および前記励起光を前
記第2の光ファイバに向けて送出する第2の結合手段と
、 前記励起光発生手段に結合され、前記励起光を前記第1
および前記第2の結合手段のいずれか一方に選択的に導
く選択手段と を具え、受信時には前記第1の結合手段から前記第2の
光ファイバに導かれて前記励起光によって励起されて増
幅された前記通信信号光を前記第2の結合手段を介して
前記受光手段に導き、送信時には、前記第2の結合手段
から前記第2の光ファイバに導かれて前記励起光によっ
て励起されて増幅された前記通信信号光を前記第1の結
合手段を介して前記光ファイバ伝送路に送出するように
したことを特徴とする光ピンポン伝送方式。[Claims] 1) In an optical transmission system in which a means for generating a communication signal light and a means for receiving the communication signal light are disposed at both ends of an optical fiber transmission line to perform bidirectional communication, excitation light of a predetermined wavelength is provided. excitation light generating means; a second optical fiber doped with a rare earth material; disposed between the optical fiber transmission line and the second optical fiber; and capable of selectively receiving the excitation light. a first coupling means for sending the communication signal light and the excitation light propagated from the optical fiber transmission line toward the second optical fiber; the second optical fiber and the generating means; a second optical fiber, which is disposed between the optical fiber and the optical fiber, and is capable of selectively receiving the excitation light, and transmits the communication signal light generated by the generation means and the excitation light toward the second optical fiber. a coupling means coupled to the excitation light generation means and configured to direct the excitation light to the first
and a selection means for selectively guiding the light to either one of the second coupling means, and when receiving, the light is guided from the first coupling means to the second optical fiber and is excited and amplified by the excitation light. The communication signal light is guided to the light receiving means via the second coupling means, and at the time of transmission, it is guided from the second coupling means to the second optical fiber, where it is excited and amplified by the excitation light. 1. An optical ping-pong transmission system, characterized in that said communication signal light is sent to said optical fiber transmission line via said first coupling means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1078462A JPH02260837A (en) | 1989-03-31 | 1989-03-31 | Optical ping pong transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1078462A JPH02260837A (en) | 1989-03-31 | 1989-03-31 | Optical ping pong transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02260837A true JPH02260837A (en) | 1990-10-23 |
Family
ID=13662694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1078462A Pending JPH02260837A (en) | 1989-03-31 | 1989-03-31 | Optical ping pong transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02260837A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020182120A (en) * | 2019-04-25 | 2020-11-05 | Kddi株式会社 | Optical repeater and fiber optic transmission system |
-
1989
- 1989-03-31 JP JP1078462A patent/JPH02260837A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020182120A (en) * | 2019-04-25 | 2020-11-05 | Kddi株式会社 | Optical repeater and fiber optic transmission system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09107142A (en) | Light amplifier | |
US6480328B2 (en) | Optical amplifier and optical amplification method for amplifying wavelength division multiplexed signal light | |
JP2935913B2 (en) | Optical communication system with optical fiber amplifier | |
JP4798997B2 (en) | Method and apparatus for distributing pump energy from a single pump device to optical fibers located in different pairs of fibers | |
US5005212A (en) | Interference suppression in optical communication systems | |
JPH02260837A (en) | Optical ping pong transmission system | |
JP3100386B2 (en) | Optical communication system | |
US5694238A (en) | Device for interconnecting an amplifying fiber | |
EP1315258A1 (en) | Modulated pump source for fiber raman amplifier | |
EP1492256A1 (en) | Raman amplification repeater | |
JP2000077758A (en) | Light amplifier and light transmission system | |
JP2000114624A (en) | Bi-directional excitation light direct amplifying device | |
KR19980075310A (en) | Bidirectional Fiber Optic Amplifier Using Single Active Fiber | |
JPH06164515A (en) | Optical amplifying repeater | |
JPH0311322A (en) | Two-way optical amplifying transmission circuit | |
JP3666552B2 (en) | Optical signal power amplifier | |
JP3290707B2 (en) | Optical amplifier | |
JPS6132813A (en) | Transmitter and receiver for optical signal | |
JPH04216224A (en) | Optical transmission equipment | |
JPH03192221A (en) | Optical active module | |
JPS58200641A (en) | Dual station system | |
JPH0349277A (en) | Constitution of optical fiber signal path | |
JPH06177458A (en) | Optical amplifier device | |
JPH0488734A (en) | Two-way optical fiber transmission system | |
JP2000224116A (en) | Optical relay amplifier |