JPH0226034Y2 - - Google Patents

Info

Publication number
JPH0226034Y2
JPH0226034Y2 JP12648783U JP12648783U JPH0226034Y2 JP H0226034 Y2 JPH0226034 Y2 JP H0226034Y2 JP 12648783 U JP12648783 U JP 12648783U JP 12648783 U JP12648783 U JP 12648783U JP H0226034 Y2 JPH0226034 Y2 JP H0226034Y2
Authority
JP
Japan
Prior art keywords
conduit
electrode
conductive material
liquid
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12648783U
Other languages
Japanese (ja)
Other versions
JPS6033622U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12648783U priority Critical patent/JPS6033622U/en
Publication of JPS6033622U publication Critical patent/JPS6033622U/en
Application granted granted Critical
Publication of JPH0226034Y2 publication Critical patent/JPH0226034Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は電磁流量計発信器(以下、必要に応じ
て発信器と略称する)に係り、特に接液電極を改
良した発信器に適用して有用な考案に関する。 〈従来技術〉 第1図は従来の発信器の横断面を示す断面図で
ある。1は被測定流体2の内圧に耐える導管であ
り、その内面は絶縁性のライニング材3でライニ
ングされている。導管1の外側には同心状のケー
ス4が配置されパイプ状のボス5a,5bなどで
導管1と一体に固定されている。導管1とケース
4との間には励磁コイル6a,6bが設けられて
おり、被測定流体2に磁場Bを与える。ボス5
a,5bの内側もライニング材3でライニングさ
れており、その内側に接液電極7a,7bが挿入
され部材8a,8bで固定されている。ケース4
の下部には脚9がボルト10で固定されている。 被測定流体2が紙面に直角方向に流れることに
より磁場Bの印加のもとで接液電極7a,7bに
被測定流体の流量に対応した電圧が発生する。 この様な従来の発信器では電極7の取付部分が
口径に比べてかなりの大きさに達するので口径が
小さくなるとこの種の電極構造は採用し難くな
る。また、電極部の構造が複雑なので多数対の電
極構造が採用し難く、実用的には2対止まりであ
る。さらに、接液電極を増すと電極からの液漏れ
の原因が増え、信頼性の低下につながる。その
上、多数対の電極構造をとると励磁コイルと電極
部の位置が取付上一致する場合が生じ、接液電極
を最適の位置に取付けることができなくなる。等
の欠点がある。 〈考案の目的〉 本考案は、前記の従来技術に鑑み、簡単な構成
でかつ取付スペースの少ない接液電極の構造を得
ることを目的とするものである。 〈考案の構成〉 この目的を達成する本考案は、繊維状の導電性
材料を絶縁性樹脂に混入させ押し出し成形により
成形した成形材により作られた導管を前記導管の
成形方向が磁場と前記導管の軸方向との双方に直
角となるように配置し、前記導管の外周面に前記
導電性材料と一体となつて接液電極を形成し、成
形方向にのみ導電性を有する前記導管の性質を利
用して接液電極の構成を簡単にしたことを特徴と
するものである。 〈実施例〉 以下、本考案の実施例を図面に基づき詳細に説
明する。なお、従来技術と同一機能を有する部分
には同一符号を付し、重複する説明は省略する。 第2図は本考案の第1の実施例の要部を示す横
断面図である。11は被測定流体2を流す導管で
ある。導管11の軸方向(紙面に直角方向)とは
直角に磁場Bが印加されている。導管11は樹脂
111と繊維状の導電材料112などで構成され
ている。樹脂111に繊維状の導電材料112を
混ぜ適当な条件で押し出し成形をすると、成形方
向に繊維状の導電材料が配列され導電材料112
同志が接触して成形方向の導電性は非常に良くな
るが、反面成形方向と直角方向の導電性が極めて
悪くなる性質がある。この種の材料としては、例
えば四弗化樹脂にグラフアイトを混ぜたものとし
て、淀川化成株式会社製「商品名(ヨドフロン:
YR−15)」がある。導管11はこの種の材料を
その成形方向が磁場Bと導管11の軸方向とに直
角な方向が成形方向Mとなるように配置してあ
る。導管11の外周面にはボルト12a,12b
および13a,13bが、各々ラグ板14a,1
4bおよび15a,15bを介して挿入固定され
ている。導管11中の導管材料112とボルト1
2a,12bおよび13a,13bとは電気的に
接触し各々接液電極16a16bまたは17
a,17bを構成している。ラグ板14a,14
bと15a,15bの間はリード線20a,20
bで接続され、その中点より信号端子21a,2
1bが導出されている。この様に構成された導管
11を例えば第1図における導管11およびライ
ニング3の代りに挿入することにより本実施例の
発信器が構成できる。 導管11に磁場Bが印加された状態で被測定流
体2が流れると信号電圧eが矢印の方向に発生す
る。この場合に導管11の導電性について方向性
がなく全て一様であるときは、点線22で示した
ように導管11で信号電圧eが短絡され接液電極
16a,16b17a17bに発生する電圧
は大幅に減少する。しかし、本実施例のように矢
印Mの方向にのみ導電性がある場合には点線22
で示された電圧短絡路が形成されないので信号電
圧eは減少しない。しかも矢印Mの方向には充分
な大きさの導電性があるので接液電極16a
6bまたは17a17bには減衰しない信号電
圧を検出することができる。本実施例では2組の
点電極として構成する例を示したが、必要に応じ
て更に多くの組としても構成できる。 第3図は本考案の第2の実施例の要部を示す横
断面図である。第2図の実施例では接液電極を点
電極としたときの例であるが、本実施例は接液面
積が広い面電極としたときの例である。第3図a
はバネ材23a,23bをボルト12a,12b
および13a,13bで導管11の外周に押圧固
定し、バネ材23a,23bの中央より信号端子
24a,24bを出して導電材料112と共に接
液電極25a25bを構成したものである。第
3図bは導管11の外周面に内面が歯形状とされ
た導電板26b(他方のa側も同じ)がボルト2
7b,28bによりスプリング29b,30bを
介してそれぞれ押圧固定され、導電材料112と
の良好な接触を保つようにして接液電極31b
構成するようにしたものである。接液電極からの
信号電圧は100MΩ程度の入力インピーダンスの
高い変換器(図示せず)で受信するので導電材料
と導電板との間の抵抗は数KΩのオーダであつて
も動作に影響を与えることはない。第3図で示す
ような面電極とした場合には上流側の配管状態で
変化する流速分布の影響を減少させることがで
き、更に被測定流体2と導電材料112との間に
生ずる電気化学的雑音を平均化する効果が得られ
る。 第4図は本考案の第3の実施例の要部を示す斜
視図である。第4図では被測定流体の流れる方向
に面積を持つ長方形導電材32b(他方のa側も
同じ)が導管11の外周面に固定され、導電材料
112と共に接液電極33bが形成された構成で
ある。この様な接液電極は従来ならば導管の内周
面に設けなければならずその固定または液シール
が困難であるが、本実施例によれば導管11の外
周面に固定するのでその固定が簡単であり、また
液シールの心配もない。この様な電極形状にする
と点電極の場合に比べて流速分布の影響および電
気科学的雑音の影響を軽減できる。接液電極の形
状は本実施例では長方形の形状としたが、必要に
応じて円形、菱形その他の複雑な形状とすること
も容易である。最適な形状を採用することにより
流速分布の影響を最小のものとすることができ
る。 第5図は本考案の第4の実施例の要部を示す斜
視図である。本実施例では信号電圧を検出するた
めの電極34b(他方のa側も同じ)の上下流側
の導管11の外周に導電板35,36でリング上
に取り巻き、外部から混入する雑音を導電板3
5,36を接地点37で接地することにより遮断
している。導電板35,36は各々導電材料11
2と接触し接液電極3839を構成している。
この接液電極3839はアースリングとしての
機能を有している。 〈本考案の効果〉 以上実施例と共に具体的に説明したように本考
案によれば、導管の外周面にボルト等をねじ込む
だけで接液電極を構成できるのでその電極構造は
きわめて簡単である。したがつて多電極形の発信
器とすることが極めて容易である。しかも接液電
極を増やしても液漏れの心配はなく高い信頼性を
確保することができる。また口径が比較的小さい
発信器においても励磁コイルに電極取付部が当る
心配がないので流速分布の影響を最も受け難い最
適の位置に電極を選定することができる。 更に任意の形状の接液電極を容易に作ることが
できるので相手の配管の状態に応じて流速分布の
影響が最小になる最適の電極の形状を選定するこ
とができる。
[Detailed description of the invention] <Industrial application field> The present invention relates to an electromagnetic flowmeter transmitter (hereinafter abbreviated as a transmitter when necessary), and is particularly applicable to a transmitter with an improved wetted electrode. Concerning useful ideas. <Prior Art> FIG. 1 is a sectional view showing a cross section of a conventional transmitter. Reference numeral 1 designates a conduit that can withstand the internal pressure of the fluid to be measured 2, and its inner surface is lined with an insulating lining material 3. A concentric case 4 is disposed outside the conduit 1 and is integrally fixed to the conduit 1 with pipe-shaped bosses 5a, 5b. Excitation coils 6a and 6b are provided between the conduit 1 and the case 4, and apply a magnetic field B to the fluid 2 to be measured. boss 5
The insides of a and 5b are also lined with a lining material 3, and liquid contact electrodes 7a and 7b are inserted inside and fixed with members 8a and 8b. case 4
A leg 9 is fixed to the lower part of the frame with a bolt 10. As the fluid to be measured 2 flows in a direction perpendicular to the plane of the paper, a voltage corresponding to the flow rate of the fluid to be measured is generated in the liquid contact electrodes 7a and 7b under the application of the magnetic field B. In such a conventional transmitter, the mounting portion of the electrode 7 is considerably larger than the aperture, so as the aperture becomes smaller, it becomes difficult to employ this type of electrode structure. Further, since the structure of the electrode portion is complicated, it is difficult to adopt a structure with many pairs of electrodes, and in practical terms, the number of pairs is limited to two. Furthermore, increasing the number of electrodes in contact with liquid increases the number of causes of liquid leakage from the electrodes, leading to a decrease in reliability. Furthermore, if a large number of pairs of electrodes are used, the positions of the excitation coil and the electrode portion may coincide with each other, making it impossible to mount the liquid-contacted electrode at an optimal position. There are drawbacks such as. <Purpose of the invention> In view of the above-mentioned prior art, the present invention aims to obtain a structure of a liquid-contacted electrode that has a simple configuration and requires less installation space. <Structure of the invention> The present invention achieves this object by forming a conduit made of a molded material obtained by mixing a fibrous conductive material into an insulating resin and molding it by extrusion molding. The conductive material is arranged so as to be perpendicular to both the axial direction of the conduit, and a wetted electrode is formed integrally with the conductive material on the outer peripheral surface of the conduit, and the property of the conduit is that it is conductive only in the forming direction. This feature is characterized in that the structure of the liquid-contacted electrode is simplified by using the liquid-contact electrode. <Example> Hereinafter, an example of the present invention will be described in detail based on the drawings. Note that parts having the same functions as those in the prior art are given the same reference numerals, and redundant explanations will be omitted. FIG. 2 is a cross-sectional view showing the main parts of the first embodiment of the present invention. 11 is a conduit through which the fluid 2 to be measured flows. A magnetic field B is applied at right angles to the axial direction of the conduit 11 (direction perpendicular to the plane of the paper). The conduit 11 is made of resin 111, fibrous conductive material 112, and the like. When fibrous conductive material 112 is mixed with resin 111 and extrusion molded under appropriate conditions, the fibrous conductive material is arranged in the molding direction to form conductive material 112.
When they come into contact with each other, the conductivity in the molding direction becomes very good, but on the other hand, the conductivity in the direction perpendicular to the molding direction becomes extremely poor. This type of material is, for example, a mixture of graphite and tetrafluoride resin, manufactured by Yodogawa Kasei Co., Ltd. under the trade name (Yodofuron:
YR-15). The conduit 11 is made of this type of material and is arranged such that its forming direction is perpendicular to the magnetic field B and the axial direction of the conduit 11 , which is the forming direction M. Bolts 12a and 12b are attached to the outer peripheral surface of the conduit 11.
and 13a, 13b are lug plates 14a, 1, respectively.
4b and 15a, 15b. Conduit material 112 and bolt 1 in conduit 11
2a, 12b and 13a, 13b are in electrical contact with liquid contact electrodes 16a , 16b or 17, respectively.
a and 17b . Lug plates 14a, 14
Lead wires 20a, 20 between b and 15a, 15b
b, and the signal terminals 21a, 2 are connected from the midpoint thereof.
1b has been derived. The transmitter of this embodiment can be constructed by inserting the conduit 11 constructed in this way in place of the conduit 11 and lining 3 in FIG. 1, for example. When the fluid 2 to be measured flows while the magnetic field B is applied to the conduit 11 , a signal voltage e is generated in the direction of the arrow. In this case, when the conductivity of the conduit 11 has no directionality and is uniform, the signal voltage e is short-circuited in the conduit 11 as shown by the dotted line 22 , and is generated at the wetted electrodes 16a, 16b , 17a , and 17b . The voltage will be significantly reduced. However, if there is conductivity only in the direction of arrow M as in this embodiment, the dotted line 22
Since the voltage short circuit shown in is not formed, the signal voltage e does not decrease. Moreover, since there is sufficient conductivity in the direction of arrow M, the wetted electrodes 16a , 1
6b or 17a , 17b , a signal voltage that is not attenuated can be detected. Although this embodiment shows an example in which the electrodes are configured as two sets of point electrodes, it is possible to configure more sets as necessary. FIG. 3 is a cross-sectional view showing the main parts of a second embodiment of the present invention. The embodiment shown in FIG. 2 is an example in which a point electrode is used as the electrode in contact with the liquid, but this embodiment is an example in which a surface electrode with a large area in contact with the liquid is used. Figure 3a
The spring materials 23a and 23b are connected to the bolts 12a and 12b.
and 13a, 13b are pressed and fixed to the outer periphery of the conduit 11 , and signal terminals 24a, 24b are brought out from the center of the spring members 23a, 23b to form liquid contact electrodes 25a , 25b together with the conductive material 112. FIG. 3b shows a conductive plate 26b (the same is true for the other side a) having a tooth-shaped inner surface on the outer peripheral surface of the conduit 11 , and a bolt 2
The electrodes 7b and 28b are press-fixed via springs 29b and 30b, respectively, to maintain good contact with the conductive material 112, thereby forming the wetted electrode 31b . The signal voltage from the wetted electrode is received by a converter (not shown) with a high input impedance of about 100 MΩ, so even if the resistance between the conductive material and the conductive plate is on the order of several KΩ, it will affect the operation. Never. When using a surface electrode as shown in FIG. 3, it is possible to reduce the influence of the flow velocity distribution that changes depending on the piping condition on the upstream side, and furthermore, it is possible to reduce the effects of electrochemical The effect of averaging noise can be obtained. FIG. 4 is a perspective view showing the main parts of a third embodiment of the present invention. In FIG. 4, a rectangular conductive material 32b (same for the other side a) having an area in the flow direction of the fluid to be measured is fixed to the outer peripheral surface of the conduit 11 , and a liquid contact electrode 33b is formed together with the conductive material 112. be. Conventionally, such a liquid-contact electrode must be provided on the inner circumferential surface of the conduit, making it difficult to fix or liquid-seal it, but in this embodiment, it is fixed to the outer circumferential surface of the conduit 11 , making it easy to fix. It is simple and there is no need to worry about liquid seals. With such an electrode shape, the influence of flow velocity distribution and electrochemical noise can be reduced compared to the case of point electrodes. Although the shape of the liquid-contact electrode is rectangular in this embodiment, it can easily be formed into a circular, diamond-shaped, or other complicated shape as required. By adopting an optimal shape, the influence of flow velocity distribution can be minimized. FIG. 5 is a perspective view showing the main parts of a fourth embodiment of the present invention. In this embodiment, the outer periphery of the conduit 11 on the upstream and downstream sides of the electrode 34b for detecting the signal voltage (the same is true for the other a side) is surrounded by conductive plates 35 and 36 in a ring shape, and the conductive plates block noise coming in from the outside. 3
5 and 36 are grounded at a grounding point 37 to isolate them. The conductive plates 35 and 36 are each made of conductive material 11
2 and constitute liquid contact electrodes 38 and 39 .
These liquid contact electrodes 38 and 39 have a function as an earth ring. <Effects of the Present Invention> As specifically explained above with reference to the embodiments, according to the present invention, the electrode structure is extremely simple because the wetted electrode can be constructed by simply screwing a bolt or the like onto the outer peripheral surface of the conduit. Therefore, it is extremely easy to create a multi-electrode type transmitter. Moreover, even if the number of electrodes in contact with liquid is increased, there is no fear of liquid leakage, and high reliability can be ensured. Further, even in a transmitter having a relatively small diameter, there is no fear that the electrode mounting portion will hit the excitation coil, so the electrode can be selected at the optimum position where it is least affected by the flow velocity distribution. Furthermore, since a wetted electrode of any shape can be easily made, the optimal shape of the electrode that minimizes the influence of the flow velocity distribution can be selected depending on the state of the mating piping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の発信器の横断面を示す断面図、
第2図は本考案の第1の実施例の要部を示す横断
面図、第3図は本考案の第2の実施例の要部を示
す横断面図、第4図は本考案の第3の実施例の要
部を示す斜視図、第5図は本考案の第4の実施例
の要部を示す斜視図である。 1……導管、2……被測定流体、3……ライニ
ング材、4……ケース、11……導管、111…
…樹脂、112……導電材料、16a16b
17a,17b……接液電極、25a25b
…接液電極。
FIG. 1 is a sectional view showing a cross section of a conventional transmitter.
Figure 2 is a cross-sectional view showing the main parts of the first embodiment of the present invention, Figure 3 is a cross-sectional view showing the main parts of the second embodiment of the invention, and Figure 4 is the cross-sectional view showing the main parts of the second embodiment of the invention. FIG. 5 is a perspective view showing the main parts of the fourth embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Conduit, 2... Fluid to be measured, 3... Lining material, 4... Case, 11 ... Conduit, 111...
...resin, 112...conductive material, 16a , 16b ,
17a, 17b ...liquid contact electrode, 25a , 25b ...
...Wetted electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 繊維状の導電性材料を絶縁性樹脂に混入させ押
し出し成形により成形した成形材により作られた
導管を前記導管の成形方向が磁場と前記導管の軸
方向との双方に直角となるように配置し、前記導
管の外周面に前記導電性材料と一体となつて接液
電極を形成したことを特徴とする電磁流量計発信
器。
A conduit made of a molded material made by mixing a fibrous conductive material with an insulating resin and molding it by extrusion molding is arranged so that the molding direction of the conduit is perpendicular to both the magnetic field and the axial direction of the conduit. . An electromagnetic flowmeter transmitter, characterized in that a liquid contact electrode is formed integrally with the conductive material on the outer peripheral surface of the conduit.
JP12648783U 1983-08-16 1983-08-16 electromagnetic flowmeter transmitter Granted JPS6033622U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12648783U JPS6033622U (en) 1983-08-16 1983-08-16 electromagnetic flowmeter transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12648783U JPS6033622U (en) 1983-08-16 1983-08-16 electromagnetic flowmeter transmitter

Publications (2)

Publication Number Publication Date
JPS6033622U JPS6033622U (en) 1985-03-07
JPH0226034Y2 true JPH0226034Y2 (en) 1990-07-17

Family

ID=30287597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12648783U Granted JPS6033622U (en) 1983-08-16 1983-08-16 electromagnetic flowmeter transmitter

Country Status (1)

Country Link
JP (1) JPS6033622U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234458A (en) * 1987-03-20 1988-09-29 Pioneer Electronic Corp Drop-out detecting circuit
JPH02181505A (en) * 1989-01-06 1990-07-16 Nec Corp Multiplying circuit

Also Published As

Publication number Publication date
JPS6033622U (en) 1985-03-07

Similar Documents

Publication Publication Date Title
JPS5947821U (en) Electromagnetic flow meter unit
US4322652A (en) Piezoelectric resonator support with direction-oriented conductive plastic plate
JPH0226034Y2 (en)
US4499754A (en) Electromagnetic flowmeter
US4585966A (en) Submerged electric motor
US4269071A (en) Electrodes for an electromagnetic flow meter
CN110785636B (en) Electromagnetic flowmeter
JPH0228408Y2 (en)
JPS63210623A (en) Electromagnetic flowmeter
JPH041460Y2 (en)
CN115882254A (en) Conductive terminal and electric power-assisted braking system
JPH0318891Y2 (en)
JPS645209Y2 (en)
JP3043586B2 (en) Electromagnetic flow meter
JPH0474931A (en) Fitting structure of electrode for electromagnetic flowmeter
JPH069320Y2 (en) Electromagnetic flowmeter earth ring
JP2944836B2 (en) Anchor connector
JPH067318Y2 (en) Electromagnetic flow meter
JPH0355063Y2 (en)
JPH0226032Y2 (en)
JPS5930521Y2 (en) High voltage feed-through capacitor
JPH067319Y2 (en) Electromagnetic flow meter
JPH0226031Y2 (en)
JPH068500Y2 (en) Electromagnetic flow meter
JPH0228410Y2 (en)