JPH02260132A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPH02260132A
JPH02260132A JP1079126A JP7912689A JPH02260132A JP H02260132 A JPH02260132 A JP H02260132A JP 1079126 A JP1079126 A JP 1079126A JP 7912689 A JP7912689 A JP 7912689A JP H02260132 A JPH02260132 A JP H02260132A
Authority
JP
Japan
Prior art keywords
light
optical
information recording
recording medium
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1079126A
Other languages
Japanese (ja)
Other versions
JP2690550B2 (en
Inventor
Junichi Kitabayashi
淳一 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1079126A priority Critical patent/JP2690550B2/en
Priority to US07/454,366 priority patent/US5015835A/en
Publication of JPH02260132A publication Critical patent/JPH02260132A/en
Application granted granted Critical
Publication of JP2690550B2 publication Critical patent/JP2690550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To facilitate the installation and the adjustment of the under-mentioned light receiving elements by letting reflected light from an information recording medium pass through a double-sided grating element, and leading transmitted or diffracted light to the approximately same direction, and receiving it by separate trisected light receiving elements. CONSTITUTION:The reflected light from an optical disk is converged 26, and is made incident to an approximately straight line-shaped diffraction grating 31 on the surface of the double-sided grating element 27, and is separated into the transmitted light T and the diffracted light K. The separated trisected light receiving elements 29, 30 are irradiated with these lights T, K after being transmitted and diffracted through/by the approximately straight line-shaped diffraction grating 32 on a rear surface. At that item, since the optical path of the light K becomes longer than that of the light T, the focusing point P of the light P and the focusing point Q of the light T are positioned at this side and in the rear of a light receiving surface respectively. A focus can be controlled by using these elements 29, 30. Namely, since astigmatism is caused by arranging the element 27 at a Bragg's angle thetab, and the focusing point at the time of a focus error signal FE=0 becomes larger than that at the time of no astigmatism, the installation and the adjustment of the elements 29, 30 can be facilitated to be executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光情報記録媒体からの反射光を用いてフォー
カス制御やトラッキング制御を行う光ピックアップ装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical pickup device that performs focus control and tracking control using reflected light from an optical information recording medium.

従来の技術 従来、光情報記録媒体からの反射光を用いてフォーカス
制御やトラッキング制御を行う方法としては、まず、そ
の第一の従来例として、第5図に示すような装置がある
。これは、半導体レーザ1から出射された光をコリメー
トレンズ2に平行化した後、ビームスプリッタ3を透過
させ、対物レンズ4により集光して光情報記録媒体とし
ての光磁気ディスク5に照射し、この反射光を前記偏光
ビームスプリッタ3により反射して光磁気ディスク信号
検出光学系6に導く。この光磁気ディスク信号検出光学
系6においては、その反射光は1/2波長板7を通過し
た後、集光レンズ8により集光してマイクロプリズムデ
ィテクタ9(第6図参照)のマイクロプリズム10内に
導かれ、偏光ビームスプリッタ11により透過又は反射
され、透過した光は直接ディテクタ12の3分割された
図示しない受光素子に導かれ、反射した光はミラー13
を介して前記ディテクタ12の3分割された図示しない
受光素子に導かれる。この場合、周知のビームサイズ法
を用いて2つの受光素子にそれぞれ検出された光の受光
量を調べることによって、フォーカスエラー信号や光磁
気信号の検出を行い、光磁気ディスクのフォーカス制御
や情報の再生を行っている。
2. Description of the Related Art Conventionally, as a method for performing focus control and tracking control using reflected light from an optical information recording medium, there is a device as shown in FIG. 5 as a first conventional example. This involves collimating light emitted from a semiconductor laser 1 through a collimating lens 2, transmitting it through a beam splitter 3, condensing it through an objective lens 4, and irradiating it onto a magneto-optical disk 5 as an optical information recording medium. This reflected light is reflected by the polarizing beam splitter 3 and guided to the magneto-optical disk signal detection optical system 6. In this magneto-optical disk signal detection optical system 6, the reflected light passes through a 1/2 wavelength plate 7, and then is condensed by a condenser lens 8 to form a microprism 10 of a microprism detector 9 (see FIG. 6). The transmitted light is transmitted or reflected by the polarizing beam splitter 11, and the transmitted light is directly guided to a light receiving element (not shown) divided into three parts of the detector 12, and the reflected light is transmitted to the mirror 13.
The light is guided through the detector 12 to three divided light receiving elements (not shown). In this case, the focus error signal and magneto-optical signal are detected by checking the amount of light detected by each of the two light-receiving elements using the well-known beam size method, and the focus control and information of the magneto-optical disk are detected. Playing is in progress.

その第二の例として、第7図(a)(b)(c)に示す
ような装置がある。これは、半導体レーザ14から出射
された光をコリメートレンズ15により平行化し、偏光
ビームスプリッタ16により反射して1/4波長板17
を介して、対物レンズ18により集光して光デイスク1
9面上に照射し、その光ディスク19からの反射光を前
記偏光ビームスプリッタ16に透過させた後、光デイス
ク信号検出光学系20内に導く。この光デイスク信号検
出光学系20内において、前記光ディスク19がらの反
射光は集光レンズ21により集光した後、ビームスプリ
ッタ22により透過又は反射させ、それぞれの光路上に
配置された受光素子23,24に検出させることによっ
て、ビームサイズ法によりフォーカスエラー信号等の検
出を行い、これにより光ディスク19のフォーカス制御
等を行っている。
As a second example, there is a device as shown in FIGS. 7(a), (b), and (c). This is because the light emitted from the semiconductor laser 14 is collimated by a collimating lens 15, reflected by a polarizing beam splitter 16, and then reflected by a quarter-wave plate 17.
is focused by the objective lens 18 to the optical disk 1.
After the reflected light from the optical disk 19 is transmitted through the polarization beam splitter 16, it is guided into the optical disk signal detection optical system 20. In this optical disk signal detection optical system 20, the reflected light from the optical disk 19 is focused by a condensing lens 21, and then transmitted or reflected by a beam splitter 22, and a light receiving element 23 arranged on each optical path, 24, a focus error signal or the like is detected by the beam size method, and thereby the focus control of the optical disc 19 or the like is performed.

発明が解決しようとする課題 まず、第一の従来例の場合、光磁気ディスク信号検出光
学系6のマイクロプリズムディテクタ9により信号の検
出を行っているが、この場合、マイクロプリズム1oと
ディテクタ12の基板とが一体化して構成されているた
め、偏光ビームスプリッタ3により透過又は反射され、
それぞれ別々の受光素子に導かれる2つの光スポットの
位置調整を単独に行うことができないという問題がある
Problems to be Solved by the Invention First, in the case of the first conventional example, the signal is detected by the microprism detector 9 of the magneto-optical disk signal detection optical system 6, but in this case, the microprism 1o and the detector 12 are Since it is integrated with the substrate, it is transmitted or reflected by the polarizing beam splitter 3,
There is a problem in that the positions of the two light spots guided to separate light receiving elements cannot be adjusted independently.

一方、第二の従来例の場合、光デイスク信号検出光学系
20内において、2つの受光素子23゜24が直交配置
されているため、スペースの省略化を図ることができな
いという問題がある。
On the other hand, in the case of the second conventional example, since the two light receiving elements 23 and 24 are arranged orthogonally in the optical disk signal detection optical system 20, there is a problem in that the space cannot be saved.

課題を解決するための手段 そこで、このような問題点を解決するために、請求項1
記載の発明は、レーザ光源から出射された光を光情報記
録媒体に照射し情報の記録を行うと共に、その光情報記
録媒体からの反射光を信号検出光学系に導き前記光情報
記録媒体の位置制御を行う光ピックアップ装置において
、前記信号検出光学系の光路上に前記光情報記録媒体か
らの反射光を集束する集光レンズを設け、この集光レン
ズからの集束光を透過又は回折する両面に略直線状回折
格子の形成された両面グレーティング素子を配設し、こ
の両面グレーティング素子を透過又は回折した光を受光
する2つの3分割受光素子を同一平面内に配設した。
Means for Solving the Problem Therefore, in order to solve such problems, claim 1
The described invention records information by irradiating light emitted from a laser light source onto an optical information recording medium, and guides reflected light from the optical information recording medium to a signal detection optical system to determine the position of the optical information recording medium. In an optical pickup device that performs control, a condenser lens is provided on the optical path of the signal detection optical system to converge the reflected light from the optical information recording medium, and a condenser lens is provided on both surfaces that transmit or diffract the condensed light from the condenser lens. A double-sided grating element on which a substantially linear diffraction grating was formed was disposed, and two three-part light receiving elements for receiving light transmitted or diffracted through the double-sided grating element were disposed in the same plane.

また、請求項2記載の発明は、レーザ光源から出射され
た光を光情報記録媒体に照射し情報の記録を行うと共に
、その光情報記録媒体からの反射一 光を信号検出光学系に導き前記光情報記録媒体の位置制
御を行う光ピックアップ装置において、前記信号検出光
学系の光路上に前記光情報記録媒体からの反射光を集束
する集光レンズを設け、この集光レンズからの集束光を
透過又は回折する一面に一方向性レンズ作用を持った回
折格子が形成され他面に略直線状回折格子が形成された
両面グレーティング素子を配設し、この両面グレーティ
ング素子を透過又は回折した光を受光する2つの3分割
受光素子を同一平面内に配設した。
Further, the invention according to claim 2 records information by irradiating the light emitted from the laser light source onto the optical information recording medium, and guides the reflected light from the optical information recording medium to the signal detection optical system. In an optical pickup device that controls the position of an optical information recording medium, a condenser lens for converging reflected light from the optical information recording medium is provided on the optical path of the signal detection optical system, and the condensed light from the condensing lens is A double-sided grating element is provided, in which a diffraction grating with a unidirectional lens effect is formed on one surface that is transmitted or diffracted, and a substantially linear diffraction grating is formed on the other surface, and the light transmitted or diffracted through this double-sided grating element is Two three-part light-receiving elements for receiving light were arranged in the same plane.

作用 従って、請求項1記載の発明により、光情報記録媒体か
らの反射光は信号検出光学系内の集光レンズにより集光
され、両面グレーティング素子の両面に形成された略直
線状回折格子により透過又は回折されほぼ同一方向に2
つのビームに分けられた状態となり、これら2つのビー
ムは3分割受光素子にそれぞれ別個に照射されることに
なり、これによりフォーカスエラー信号等を検出するこ
とができる。
Therefore, according to the invention described in claim 1, the reflected light from the optical information recording medium is focused by the condensing lens in the signal detection optical system, and is transmitted by the substantially linear diffraction grating formed on both sides of the double-sided grating element. or diffracted in almost the same direction 2
The light receiving element is divided into two beams, and these two beams are separately irradiated onto the three-split light receiving element, thereby making it possible to detect a focus error signal or the like.

また、請求項2記載の発明により、光情報記録媒体から
の反射光は信号検出光学系内の集光レンズにより集光さ
れ、両面グレーティング素子の一方向性レンズ作用を持
った回折格子及び略直線状回折格子により透過又は回折
されほぼ同一方向に2つのビームに分けられた状態とな
り、これら2つのビームは3分割受光素子にそれぞれ別
個に照射されることになり、これによりフォーカスエラ
ー信号等を検出することができる。
Further, according to the invention as set forth in claim 2, the reflected light from the optical information recording medium is condensed by the condensing lens in the signal detection optical system, and the diffraction grating with the unidirectional lens action of the double-sided grating element and the substantially linear It is transmitted or diffracted by the shaped diffraction grating and is divided into two beams in almost the same direction, and these two beams are separately irradiated onto the three-split photodetector, thereby detecting focus error signals, etc. can do.

実施例 請求項1記載の発明の一実施例を第1図及び第2図に基
づいて説明する。なお、ここでは光ピックアップ装置の
全体構成についての説明は省略し、本発明に係る信号検
出光学系についてのみ述べる。
Embodiment An embodiment of the invention set forth in claim 1 will be described based on FIGS. 1 and 2. FIG. Note that the description of the overall configuration of the optical pickup device will be omitted here, and only the signal detection optical system according to the present invention will be described.

光情報記録媒体としての図示しない光ディスクにより反
射され信号検出光学系25に導かれた反射光の光路上に
は、集光レンズ26が配設され、この集光レンズ26を
透過した光の光路上には両面グレーティング素子27が
配設されており、この両面グレーティング素子27を透
過又は回折した光の光路上には同一平面内の基板28上
に位置して、3分割受光素子29.30が2個配置され
ている。
A condensing lens 26 is disposed on the optical path of the reflected light reflected by an optical disk (not shown) as an optical information recording medium and guided to the signal detection optical system 25, and the optical path of the light transmitted through the condensing lens 26 is A double-sided grating element 27 is disposed on the substrate 28 in the same plane on the optical path of the light transmitted or diffracted through the double-sided grating element 27. are arranged.

前記両面グレーティング素子27は、透明な基板からな
りその表裏両面には略直線状回折格子31.32が形成
されており、格子方向は両面とも紙面に垂直であり、回
折効率を上げるためブラッグ角度θbだけ傾けて配置さ
れている。この場合、前記表面の略直線状回折格子31
の格子ピッチは、ブラッグ角度偏光特性等により決定さ
れる。また、前記裏面の略直線状回折格子32の格子ピ
ッチは、前記表面の略直線状回折格子31の格子ピッチ
と同一にするか、又は、分離された光(透過、回折)の
間隔によって前記表面の略直線状回折格子31の格子ピ
ッチかられずかにずらして形成する。そして、これら表
裏面の略直線状回折格子31.32とはそれぞれ全面に
渡って両面共に、等しいピッチとするか、又は、回折光
にの非点収差等により異なるピッチに形成する。
The double-sided grating element 27 is made of a transparent substrate, and substantially linear diffraction gratings 31 and 32 are formed on both the front and back surfaces, and the grating direction is perpendicular to the plane of the paper on both surfaces, and the Bragg angle θb is set to increase the diffraction efficiency. It is placed at an angle. In this case, the substantially linear diffraction grating 31 on the surface
The grating pitch of is determined by Bragg angle polarization characteristics and the like. Further, the grating pitch of the substantially linear diffraction grating 32 on the back surface may be the same as the grating pitch of the substantially linear diffraction grating 31 on the front surface, or the pitch of the substantially linear diffraction grating 32 on the surface may be determined by the interval of separated light (transmission, diffraction). It is formed slightly shifted from the grating pitch of the substantially linear diffraction grating 31. The substantially linear diffraction gratings 31 and 32 on the front and back surfaces are formed at the same pitch over the entire surface, or at different pitches due to astigmatism in the diffracted light.

このような構成において、光ディスクからの反射光は、
集光レンズ26により集光され、両面グレーティング素
子27の表面の略直線状回折格子31に入射し、透過光
Tと回折光にとの2つの光に分離される。これら2つに
分離された透過光Tと回折光にとは、裏面の略直線状回
折格子32を透過、回折した後、それぞれ別々に3分割
受光素子29.30に照射される。この時、回折光にの
方が透過光Tよりも光路が長くなるため、その回折光に
の集光点Pが受光面の手前側に位置し、透過光Tの集光
点Qが受光面の後方側に位置する。
In such a configuration, the reflected light from the optical disk is
The light is condensed by the condenser lens 26, enters the substantially linear diffraction grating 31 on the surface of the double-sided grating element 27, and is separated into two lights: a transmitted light T and a diffracted light. These two separated transmitted light T and diffracted light are transmitted and diffracted through the substantially linear diffraction grating 32 on the back surface, and then separately irradiated onto the three-split light receiving element 29,30. At this time, the optical path of the diffracted light is longer than that of the transmitted light T, so the focal point P of the diffracted light is located in front of the light receiving surface, and the focal point Q of the transmitted light T is located on the light receiving surface. located at the rear of the

なお、これら集光点P、Qの段差の量は、両面グレーテ
ィング素子27の基板の傾きobと厚さtとにより決め
ることができる。また、この時、各々の光束は非点収差
を持ち、回折光にと透過光′1′との紙面垂直方向の集
光点はそれぞれ図のようにPo、Qoどなる。
Incidentally, the amount of the step difference between these focal points P and Q can be determined by the inclination ob and the thickness t of the substrate of the double-sided grating element 27. Further, at this time, each light beam has astigmatism, and the focal points of the diffracted light and the transmitted light '1' in the direction perpendicular to the plane of the paper are Po and Qo, respectively, as shown in the figure.

そこで、これら3分割受光素子29.30の働きを第2
図(a)(b)(c)に基づいて述べる。回折光Kが受
光される側の3分割受光素子29の受光面をa、b、c
とし、透過光Tが受光される側の3分割受光素子30の
受光面をd、e、fとする。
Therefore, the function of these three-split light receiving elements 29 and 30 is
This will be described based on figures (a), (b), and (c). The light-receiving surfaces of the three-part light-receiving element 29 on the side where the diffracted light K is received are a, b, and c.
The light-receiving surfaces of the three-part light-receiving element 30 on the side where the transmitted light T is received are d, e, and f.

今、光ディスクにフォーカスずれがなく合焦点にある時
には、第2図(b)に示すように、それぞれの3分割受
光素子29.30面上における光スポットの横方向のス
ポット径は等しくなり、この時のフォーカスエラー信号
FEの値を、FE=((a+c)−b]−((d十f)
−eelの式から求めると、 FE=○となりその信号FEは検出されない。
Now, when the optical disc is in focus with no defocus, the lateral spot diameters of the light spots on the 3-split light receiving element 29 and 30 surfaces are equal, as shown in Fig. 2(b). The value of the focus error signal FE at
When calculated from the equation -eel, FE=○, and the signal FE is not detected.

しかし、光ディスクにフォーカスずれが生じ、第2図(
a)(c)に示すように、スポット径が大小となり異な
ってくると、 (1)式によりFE>Ol又は、FE<
Oとなり、フォーカスエラー信号が検出され、その結果
、光ディスクのフォーカス制御が行われることになる。
However, the optical disc became out of focus, as shown in Figure 2 (
As shown in a) and (c), when the spot diameter becomes larger or smaller, FE>Ol or FE<
O, a focus error signal is detected, and as a result, focus control of the optical disc is performed.

このようにして、2つの3分割受光素子29゜30を用
いるヱとによりフォーカス制御を行うことができ、また
、両面グレーティング素子27をブラッグ角度Obに配
置したことによりol−02であるため、両方の等しい
量の光は非点収差を持ち、FE=Oの時の集光点は非点
収差のない時よりも大きくなり、これにより、3分割受
光素子29.30の設置、調整を行いやすくなる。この
場合、3分割受光素子29.30はそれぞれ単独のもの
とするか、又は、両方同一基板」二に設けるようにし、
移動、回転を行うことにより設置、調整を行うことがで
きる。
In this way, focus control can be performed by using the two three-part light receiving elements 29 and 30, and since the double-sided grating element 27 is placed at the Bragg angle Ob, both Equal amounts of light have astigmatism, and the focal point when FE=O is larger than when there is no astigmatism, making it easier to install and adjust the three-split light receiving element 29.30. Become. In this case, the 3-split light receiving elements 29 and 30 may each be independent, or both may be provided on the same substrate.
Installation and adjustment can be performed by moving and rotating.

また、上述したフォーカスエラー信号FEの他に、トラ
ックエラー信号TEは、 TE=a−c(又は、d−f)・= (2)により検出
することができ、 さらに、光情報記録媒体に光ディスクを用いず、図示し
ない光磁気ディスクを用いるような場合には、光磁気信
号MOは、 MO=(a十す十c) −(d+e+f)−= (3)
により検出することができる。
In addition to the focus error signal FE described above, the track error signal TE can be detected by TE=a-c (or d-f). In the case where a magneto-optical disk (not shown) is used instead of using a magneto-optical disk, the magneto-optical signal MO is as follows: MO=(a ten su ten c) −(d+e+f)−= (3)
It can be detected by

次に、請求項2記載の発明の一実施例を第3図及び第4
図に基づいて説明する。これは、両面グレーティング素
子27の表裏面のいずれか一方の面に一方向性レンズ作
用を持たせた場合について述べるものである。
Next, an embodiment of the invention according to claim 2 is shown in FIGS. 3 and 4.
This will be explained based on the diagram. This describes a case where one of the front and back surfaces of the double-sided grating element 27 is provided with a unidirectional lens effect.

すなわち、両面グレーティング素子27は、面に一方向
性レンズ作用を持たせた回折格子3]が形成され、これ
と反対側の面に略直線状回折格子32が形成されている
That is, in the double-sided grating element 27, a diffraction grating 3] having a unidirectional lens effect is formed on one surface, and a substantially linear diffraction grating 32 is formed on the opposite surface.

そこで、今、一方の面に形成される回折格子31に一方
向性レンズ作用を持たせた理由について説明する。第3
図に示すように、回折格子31の一方向性レンズ作用に
より回折光にの紙面垂直方向の集光点Po をPを挟ん
で対称の位置に移動させる。この時、第4図(a )(
b )(c )に示すように、2つの3分割受光素子2
9.30に受光される光スポットのスポット径は、FE
=Oの時に共に円形で等しく、FE>01FE<Oの時
に互いに直交する方向に細長く変形する。前述した第2
図(a)(b)(c)のような状態のままで変形させた
時よりも、受光量の差分をはっきり見極めることができ
、これにより信号の検出感度を上げることができる。
Therefore, the reason why the diffraction grating 31 formed on one surface is given a unidirectional lens effect will now be explained. Third
As shown in the figure, the unidirectional lens action of the diffraction grating 31 moves the focal point Po of the diffracted light in the direction perpendicular to the plane of the paper to a symmetrical position with P in between. At this time, Fig. 4(a) (
b) As shown in (c), two three-part light receiving elements 2
The spot diameter of the light spot received at 9.30 is FE
When =O, they are both circular and equal, and when FE>01FE<O, they deform into elongated shapes in directions perpendicular to each other. The second mentioned above
It is possible to discern the difference in the amount of received light more clearly than when the device is deformed in the state shown in FIGS. (a), (b), and (c), thereby increasing the signal detection sensitivity.

なお、請求項1記載及び請求項2記載の発明において、
両面グレーティング素子27を通過することにより生じ
た回折光には、波長によってその位置が移動するが、第
2図(a )(b )(C)及び第4図(a)(b)(
c)に示すように、3分割受光素子29,30の分割線
の方向をその回折光にの移動方向と一致させることによ
り、その移動の影響をなくすことができる。
In addition, in the invention described in claim 1 and claim 2,
The position of the diffracted light generated by passing through the double-sided grating element 27 moves depending on the wavelength;
As shown in c), by making the direction of the dividing line of the three-split light receiving elements 29 and 30 coincide with the moving direction of the diffracted light, the influence of the movement can be eliminated.

発明の効果 請求項1記載の発明では、光情報記録媒体からの反射光
を両面に略直線状回折格子の形成された両面グレーティ
ング素子に通過させ、その透過又は回折した光をほぼ同
一方向に導き、それぞれ別個の3分割受光素子に受光さ
せることにより、フォーカスエラー信号、トラックエラ
ー信号、光磁気信号を検出することができ、これにより
、光学系全体のスペースを大幅に省略して信号検出を行
うことができるものである。
Effects of the Invention In the invention described in claim 1, reflected light from an optical information recording medium is passed through a double-sided grating element having substantially linear diffraction gratings formed on both sides, and the transmitted or diffracted light is guided in substantially the same direction. , it is possible to detect a focus error signal, a track error signal, and a magneto-optical signal by receiving the light with separate three-split light receiving elements, which allows signal detection to be performed while significantly reducing the space required for the entire optical system. It is something that can be done.

また、請求項2記載の発明では、両面グレーティング素
子の一方の面の回折格子に一方向性レンズ作用を持たせ
ることにより、請求項1記載の発明に比べ信号検出の感
度を一段と上げることができるものである。
Furthermore, in the invention set forth in claim 2, by providing a unidirectional lens effect to the diffraction grating on one side of the double-sided grating element, the sensitivity of signal detection can be further increased compared to the invention set forth in claim 1. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は請求項1記載の発明の一実施例を示す側面図、
第2図(a)(b)(C)はその3分割受光素子により
フォーカスエラー信号を検出する原理を示す説明図、第
3図は請求項2記載の発明の一実施例を示す側面図、第
4図(a )(b )(c )はそのフォーカスエラー
信号を検出する原理を示す説明図、第5図は第一の従来
例を示す光路図、第6図はそのマイクロプリズムディテ
クタの側面図、第7図(a)は第二の従来例を示す光路
図、第7図(b)(C)はその受光素子の正面図である
。 1・・・レーザ光源、5・・・光情報記録媒体、14・
レーザ光源、19・・・光情報記録媒体、25・・信号
検出光学系、26・・集光レンズ、27 ・両面グレー
ティング、29.30・・・3分割受光素子、31・・
・略直線状回折格子(回折格子)、32・・略直線状回
折格子
FIG. 1 is a side view showing an embodiment of the invention as claimed in claim 1;
FIGS. 2(a), (b), and (C) are explanatory diagrams showing the principle of detecting a focus error signal by the three-split light receiving element, and FIG. 3 is a side view showing an embodiment of the invention as claimed in claim 2. Figures 4 (a), (b) and (c) are explanatory diagrams showing the principle of detecting the focus error signal, Figure 5 is an optical path diagram showing the first conventional example, and Figure 6 is a side view of the micro prism detector. 7A is an optical path diagram showing a second conventional example, and FIGS. 7B and 7C are front views of the light receiving element. 1... Laser light source, 5... Optical information recording medium, 14.
Laser light source, 19... Optical information recording medium, 25... Signal detection optical system, 26... Condensing lens, 27 ・Double-sided grating, 29. 30... 3-split light receiving element, 31...
・Substantially linear diffraction grating (diffraction grating), 32...Substantially linear diffraction grating

Claims (1)

【特許請求の範囲】 1、レーザ光源から出射された光を光情報記録媒体に照
射し情報の記録を行うと共に、その光情報記録媒体から
の反射光を信号検出光学系に導き前記光情報記録媒体の
位置制御を行う光ピックアップ装置において、前記信号
検出光学系の光路上に前記光情報記録媒体からの反射光
を集束する集光レンズを設け、この集光レンズからの集
束光を透過又は回折する両面に略直線状回折格子の形成
された両面グレーティング素子を配設し、この両面グレ
ーティング素子を透過又は回折した光を受光する2つの
3分割受光素子を同一平面内に配設したことを特徴とす
る光ピックアップ装置。 2、レーザ光源から出射された光を光情報記録媒体に照
射し情報の記録を行うと共に、その光情報記録媒体から
の反射光を信号検出光学系に導き前記光情報記録媒体の
位置制御を行う光ピックアップ装置において、前記信号
検出光学系の光路上に前記光情報記録媒体からの反射光
を集束する集光レンズを設け、この集光レンズからの集
束光を透過又は回折する、一面に一方向性レンズ作用を
持った回折格子が形成され、他面に略直線状回折格子が
形成された両面グレーティング素子を配設し、この両面
グレーティング素子を透過又は回折した光を受光する2
つの3分割受光素子を同一平面内に配設したことを特徴
とする光ピックアップ装置。
[Claims] 1. Recording information by irradiating light emitted from a laser light source onto an optical information recording medium, and guiding the reflected light from the optical information recording medium to a signal detection optical system for said optical information recording. In an optical pickup device that controls the position of a medium, a condenser lens that converges reflected light from the optical information recording medium is provided on the optical path of the signal detection optical system, and the condensed light from the condenser lens is transmitted or diffracted. A double-sided grating element having substantially linear diffraction gratings formed on both sides of the grating is disposed, and two three-part light-receiving elements for receiving light transmitted or diffracted through the double-sided grating element are disposed in the same plane. Optical pickup device. 2. Recording information by irradiating light emitted from a laser light source onto an optical information recording medium, and guiding the reflected light from the optical information recording medium to a signal detection optical system to control the position of the optical information recording medium. In the optical pickup device, a condenser lens is provided on the optical path of the signal detection optical system to converge the reflected light from the optical information recording medium, and the condenser lens transmits or diffracts the converged light from the condenser lens. A double-sided grating element in which a diffraction grating with a linear lens action is formed and a substantially linear diffraction grating is formed on the other side is disposed, and light transmitted or diffracted through this double-sided grating element is received.
An optical pickup device characterized in that two three-part light receiving elements are arranged in the same plane.
JP1079126A 1988-12-23 1989-03-30 Optical pickup device Expired - Fee Related JP2690550B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1079126A JP2690550B2 (en) 1989-03-30 1989-03-30 Optical pickup device
US07/454,366 US5015835A (en) 1988-12-23 1989-12-21 Optical information reading and writing device with diffraction means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1079126A JP2690550B2 (en) 1989-03-30 1989-03-30 Optical pickup device

Publications (2)

Publication Number Publication Date
JPH02260132A true JPH02260132A (en) 1990-10-22
JP2690550B2 JP2690550B2 (en) 1997-12-10

Family

ID=13681247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1079126A Expired - Fee Related JP2690550B2 (en) 1988-12-23 1989-03-30 Optical pickup device

Country Status (1)

Country Link
JP (1) JP2690550B2 (en)

Also Published As

Publication number Publication date
JP2690550B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
JPS5856236A (en) Optical track position detector
JPH07129980A (en) Optical pickup
JP2975395B2 (en) Optical pickup device
JP2002109778A (en) Optical pickup device
US7064900B2 (en) Optical pickup device and optical disk device and optical device and composite optical element
JP2877044B2 (en) Optical head device
JP2656136B2 (en) Optical pickup device
JPS59231736A (en) Focus and tracking error detector
JP3300536B2 (en) Displacement measuring device and optical pickup
JP3044667B2 (en) Optical reader
JP3415938B2 (en) Displacement measuring device and optical pickup
JP3303250B2 (en) Displacement measuring device and optical pickup
JP2761180B2 (en) Micro displacement measuring device and optical pickup device
JPH02260132A (en) Optical pickup device
JP2886353B2 (en) Optical information recording / reproducing device
JPH07105059B2 (en) Optical pickup device
JP2716793B2 (en) Optical pickup device using dual grating
JPH0684223A (en) Optical pickup
JP2734685B2 (en) Photodetector adjustment method and focus error detection device
JPS5984352A (en) Device for detecting focal error
JPH0721866B2 (en) Optical head device
JP2693569B2 (en) Optical information recording / reproducing device
JP2698176B2 (en) Defocus detection method
JP2744448B2 (en) Optical information recording / reproducing device
JPH1049884A (en) Optical pickup device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees