JPH02259538A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH02259538A
JPH02259538A JP8239289A JP8239289A JPH02259538A JP H02259538 A JPH02259538 A JP H02259538A JP 8239289 A JP8239289 A JP 8239289A JP 8239289 A JP8239289 A JP 8239289A JP H02259538 A JPH02259538 A JP H02259538A
Authority
JP
Japan
Prior art keywords
stress
winding
core
magnetic permeability
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8239289A
Other languages
Japanese (ja)
Inventor
Yasuo Okazaki
靖雄 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8239289A priority Critical patent/JPH02259538A/en
Publication of JPH02259538A publication Critical patent/JPH02259538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To easily detect stress over a wide range with small-sized constitution by providing an iron core made of a two-directional electromagnetic steel plate and detection winding for measuring the magnetic permeability/antimagnetic force variation of the iron core corresponding to stress which is applied in the thickness direction of the iron core. CONSTITUTION:The two-directional electromagnetic steel plate is cut into a ring-shaped core and a magnetic circuit is composed of one or >=2 ring cores 1 and provided with primary winding 2 and secondary winding 3 to form a pressure element. A pressure receiving plate 5 which has a leg part 4 is provided on the surface of the core 1. A load P is placed on the pressure receiving plate 5, a DC power source 6 is connected to the winding 2, and a flux meter 7 is connected to the winding 3 to measure initial magnetic permeability and antimagnetic force. Those magnetic characteristics vary with the surface pressure of the core 1 based upon the load P and a linear relation is recognized in a certain range of the surface pressure. Thus, the magnetic permeability or antimagnetic force is measured to easily measure additional stress. The magnetic permeability is accurately measured in a low stress range and the antimagnetic force measurement is preferable in a high stress range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、荷重測定や応力測定を行うための圧力センサ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure sensor for measuring load and stress.

〔従来の技術〕[Conventional technology]

従来、応力又は荷重測定には、次のようなセンサが用い
られていた。
Conventionally, the following sensors have been used to measure stress or load.

■ ストレインゲージ式圧力センサ これは、物体に応力が加わると歪が生じ、その電気抵抗
が変化することを利用したものである。
■ Strain gauge pressure sensor This utilizes the fact that when stress is applied to an object, strain occurs and its electrical resistance changes.

ロードセルは、その一種である。A load cell is one such type.

■ ダイアフラム式圧力センサ ダイアフラムは、周辺部を固定した薄い円板で、円板の
一方の面と他方の面の圧力の差に比例して円板が弾性変
形し、その変形の大きさから圧力を検出するものである
■ Diaphragm pressure sensor A diaphragm is a thin disk whose peripheral part is fixed.The disk deforms elastically in proportion to the difference in pressure between one side and the other side of the disk. This is to detect.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前記ストレインゲージ式圧力センサにお、い
ては、ストレインゲージを貼付するセンサの大きさが必
要であり、圧力型センサでも厚みは太き(なるという問
題があった。
However, in the strain gauge type pressure sensor, the size of the sensor to which the strain gauge is attached is required, and even the pressure type sensor has the problem of being thick.

また、ダイヤフラム式圧力センサは、円板の弾性変形を
利用しているため、測定できる圧力変化の範囲が狭く、
また大形になるという問題があった。
Additionally, since diaphragm pressure sensors utilize the elastic deformation of a disc, the range of pressure changes that can be measured is narrow.
There was also the problem of large size.

そこで本発明は、小型で簡便に大きな応力域まで測定で
きる圧力センサを提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a pressure sensor that is small and can easily measure up to a large stress range.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の圧力センサは、以上の目的を達成するため、二
方向性電磁鋼板よりなる鉄心と、該鉄心の厚み方向に加
わる応力の大きさに応じた該鉄心の透磁率又は抗磁力の
変動を測定する検出°巻線とを備えたことを特徴とする
In order to achieve the above object, the pressure sensor of the present invention includes an iron core made of a bidirectional electrical steel sheet, and changes in magnetic permeability or coercive force of the iron core depending on the magnitude of stress applied in the thickness direction of the iron core. It is characterized by comprising a detection winding for measurement.

〔作用〕[Effect]

方向性電磁鋼板においては、磁化容易軸に張力を付与さ
せると、磁区が細分化され、鉄損、特に渦電流損のうち
異常渦電流損が低下することが知られている。この異常
渦電流損は、磁壁の移動に基づく渦電流損であり、磁区
理論や磁区観察が発展した最近に至ってその解析が行わ
れてきたものである。
In grain-oriented electrical steel sheets, it is known that when tension is applied to the axis of easy magnetization, the magnetic domains are subdivided and iron loss, particularly abnormal eddy current loss among eddy current losses, is reduced. This abnormal eddy current loss is an eddy current loss based on the movement of domain walls, and its analysis has been conducted only recently when magnetic domain theory and magnetic domain observation were developed.

そこで本発明においては、二方向性電磁鋼板を一枚又は
二枚以上で磁気回路を構成するコアとし、荷重を受ける
非磁性の基板を介して−、二次巻線を施す。磁気回路は
精度上、閉磁路が望ましい。
Therefore, in the present invention, one or more bidirectional electromagnetic steel sheets are used as a core constituting a magnetic circuit, and a secondary winding is provided via a nonmagnetic substrate that receives a load. For accuracy, it is desirable that the magnetic circuit be a closed magnetic circuit.

測定は巻線上からでも可能である。Measurements can also be made from above the winding.

二方向性電磁鋼板のコアに荷重を受けると、板厚方向に
圧縮力が働き、この力は板面方向の直交する二つの磁化
容易軸に対して張力効果を生じさせる。この張力は、二
方向性電磁鋼板の厚み方向に沿う磁区を板面に平行に、
かつ細分化するように作用するため、コアの磁気特性、
特に初期透磁率μmがコア面圧に応じて変化する。この
変化率は、第3図に示すように、面圧のある範囲内では
、線形の関係が認められる。同様の理由により、抗磁力
Hゆ も第4図に示すように変化する。
When a load is applied to the core of a bidirectional electrical steel sheet, a compressive force acts in the thickness direction of the sheet, and this force produces a tension effect on two axes of easy magnetization that are orthogonal to each other in the sheet surface direction. This tension causes the magnetic domain along the thickness direction of the bidirectional electrical steel sheet to become parallel to the sheet surface.
And because it acts to subdivide, the magnetic properties of the core,
In particular, the initial magnetic permeability μm changes depending on the core surface pressure. As shown in FIG. 3, this rate of change has a linear relationship within a certain range of surface pressure. For the same reason, the coercive force H also changes as shown in Figure 4.

したがって、透磁率又は抗磁力を測定することにより、
付加応力を簡便に測定することができる。
Therefore, by measuring magnetic permeability or coercive force,
Added stress can be easily measured.

いずれを用いても応力は測定可能であるが、低応力の範
囲は透磁率が精度良く測定でき、高応力域では抗磁力測
定の方が望ましい。
Stress can be measured using either method, but magnetic permeability can be measured with high accuracy in a low stress range, and coercive force measurement is preferable in a high stress range.

一方向性電磁鋼板のコアに同様の試験を行ったが、磁気
特性の変化はほとんどなく、第3図、第4図に見られる
圧力範囲で変化はなかった。これは、一方向性電磁鋼板
は、磁化容易軸であるく100>方向が、板面と45°
の角度で交差しているため、張力効果は期待できず、磁
区の板面に平行に揃えられないためと考えられる。
A similar test was conducted on the core of a grain-oriented electrical steel sheet, but there was almost no change in the magnetic properties, and there was no change in the pressure range shown in FIGS. 3 and 4. This is because the unidirectional electrical steel sheet has an axis of easy magnetization, and the 100> direction is 45° with respect to the sheet surface.
Because they intersect at an angle of

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically explained based on Examples.

CO,048重量%、 Si3.40重量%、 !Jn
Q、14゛重量%。
CO, 048% by weight, Si3.40% by weight, ! Jn
Q. 14% by weight.

酸可溶性AI0.023重量%、全NO,0035重量
%、残部Fe及び不可避的不純物からなる厚み1.65
mmの熱延板を、1070℃で2分間焼鈍し、熱間圧延
方向と同一方向に圧下率65%で冷間圧延した。次いで
、この圧延方向に交差する方向に圧下率60%で冷間圧
延し、0.23m1の最終板厚に仕上げた。この冷延板
を、湿水素雰囲気中810℃で90秒間脱炭焼鈍した。
Acid-soluble AI 0.023% by weight, total NO, 0035% by weight, balance Fe and inevitable impurities, thickness 1.65%
A hot-rolled sheet of mm was annealed at 1070° C. for 2 minutes and cold-rolled in the same direction as the hot-rolling direction at a rolling reduction of 65%. Next, it was cold rolled in a direction crossing this rolling direction at a reduction rate of 60%, and finished to a final plate thickness of 0.23 m1. This cold-rolled sheet was decarburized and annealed at 810° C. for 90 seconds in a wet hydrogen atmosphere.

脱炭焼鈍後、マグネシア系焼鈍分離剤を鋼板表面に塗布
し、H2100%の雰囲気中で1200℃×20時間の
仕上げ焼鈍を行い、二次再結晶させた。これにより、(
100)<001>方位粒をもつ二方向性電磁鋼板が得
られた。そして、この二方向性電磁鋼板を850℃で1
時間焼鈍した。その結果を第1表に示す。
After decarburization annealing, a magnesia-based annealing separator was applied to the surface of the steel sheet, and finish annealing was performed at 1200° C. for 20 hours in an atmosphere of 100% H2 to perform secondary recrystallization. This results in (
100) A bidirectional electrical steel sheet with <001> oriented grains was obtained. Then, this bidirectional electrical steel sheet was heated to 850°C for 1
Time annealed. The results are shown in Table 1.

第  1  表 □i 第1表から明らかなように、二次再結晶焼鈍後の電磁鋼
板は、磁束密度B = (800A/ mの磁束密度)
がL方向及びC方向共に1.91T(テスラ)と高い値
を示しているが、低磁場になるほどL方向の磁束密度が
低下する。これに対し、二次再結晶焼鈍後に更に850
℃の焼鈍を施したものにあっては、低磁場においてもし
方向及びC方向双方共にほぼ同様な値を示し、しかも高
磁場の磁束密度B、 に比較して減少割合も小さい。
Table 1 □i As is clear from Table 1, the magnetic steel sheet after secondary recrystallization annealing has a magnetic flux density B = (magnetic flux density of 800 A/m)
shows a high value of 1.91 T (Tesla) in both the L direction and the C direction, but the magnetic flux density in the L direction decreases as the magnetic field decreases. On the other hand, after secondary recrystallization annealing, an additional 850
In the case of those annealed at 0.degree. C., both the magnetic flux density B and the C direction exhibit almost the same values in a low magnetic field, and the rate of decrease is smaller than that of the magnetic flux density B in a high magnetic field.

このようにして製造された一方向性電磁鋼板からリング
状コアを切り出し、第1図及び第2図に示すようにその
リングコア1に巻線2,3を施し圧力素子とした。リン
グコア1は1枚及び5枚積層の2種類のコアにした。こ
のコア面に脚部4゜4を有する受圧板5,5を設け、受
圧板5に荷重Pを掛け、−次巻線2に直流電源6を接続
し、二次巻線3に磁束計7を接続して初期透磁率μl 
と抗磁力Hcを測定した。なお、荷重は、直接巻線上か
ら掛かる場合も測定できる。
A ring-shaped core was cut out from the unidirectional electromagnetic steel sheet produced in this way, and as shown in FIGS. 1 and 2, windings 2 and 3 were applied to the ring core 1 to form a pressure element. The ring core 1 was made of two types: one core and a five-layer stack. Pressure receiving plates 5, 5 having legs 4° 4 are provided on this core surface, a load P is applied to the pressure receiving plates 5, a DC power source 6 is connected to the secondary winding 2, and a magnetometer 7 is connected to the secondary winding 3. Connect the initial permeability μl
and coercive force Hc were measured. Note that the load can also be measured when it is applied directly onto the winding.

初期透磁率μ、はμ+ = Bム/H+で導かれ°るが
、ここではH+ = 8 A / mのときの磁束密度
BをBiとして求めた。
The initial magnetic permeability μ is derived from μ+ = B/H+, but here, the magnetic flux density B when H+ = 8 A/m was determined as Bi.

また、抗磁力HcltB=0で求まるが、H,=80A
/mの場合の値として求めた。
In addition, the coercive force HcltB=0, but H,=80A
/m.

なお、二方向性電磁鋼板の1枚コアでも充分に荷重を測
定することができた。
It should be noted that the load could be sufficiently measured even with a single core made of bidirectional electrical steel sheet.

第3図に面圧と初期透磁率μm との関係、第4図に面
圧と抗磁力H0との関係を示す。応力が0.1kgf/
cIIf以上でμ2.H6のいずれも、線形関係を示し
、はぼ10 kgf/ cJ (1000kgf/ m
’)程度まテノ応力ヲ測定できた。
FIG. 3 shows the relationship between surface pressure and initial magnetic permeability μm, and FIG. 4 shows the relationship between surface pressure and coercive force H0. Stress is 0.1kgf/
μ2. Both of H6 show a linear relationship, approximately 10 kgf/cJ (1000 kgf/m
') We were able to measure the stress to a certain degree.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、二方向性電
磁鋼板に応力が加えられたときに生じる透磁率又は抗磁
力の変化を電気的に測定して力を検出することとしてい
る。二方向性電磁鋼板のコアに荷重を受けると、板厚方
向に圧縮力が働き、この力は板面方向の直交する二つの
磁化容易軸に対して張力効果を生じさせる。この張力は
、二方向性電磁鋼板の厚み方向に沿う磁区を細分化する
ように作用するため、透磁率及び抗磁力がコア面圧に応
じて変化する。この現象を利用することにより、小型で
測定範囲の広い応力又は圧力検出を行うことができる。
As described above, in the present invention, force is detected by electrically measuring changes in magnetic permeability or coercive force that occur when stress is applied to a bidirectional electrical steel sheet. When a load is applied to the core of a bidirectional electrical steel sheet, a compressive force acts in the thickness direction of the sheet, and this force produces a tension effect on two axes of easy magnetization that are orthogonal to each other in the sheet surface direction. Since this tension acts to subdivide the magnetic domains along the thickness direction of the bidirectional electrical steel sheet, the magnetic permeability and coercive force change depending on the core surface pressure. By utilizing this phenomenon, it is possible to detect stress or pressure with a small size and a wide measurement range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略図、第2図はその斜
視図、第3図は二方向性電磁鋼板に掛かる応力と透磁率
との関係を示すグラフ、第4図は二方向性電磁鋼板に掛
かる応力と抗磁力との関係を示すグラフである。 1:リングコア 2ニ一次巻線 3:二次巻線 4:脚部 5:受圧板 6;直流電源 7:磁束計 特許出願人   新日本製鐵 株式會社代 理 人  
  小 堀   益 (ほか・2名)第1図 第3図 第2図 第4図 応力(kgf/cm’)
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a perspective view thereof, Fig. 3 is a graph showing the relationship between stress applied to a bidirectional electrical steel sheet and magnetic permeability, and Fig. 4 is a bidirectional 2 is a graph showing the relationship between stress applied to a magnetic steel sheet and coercive force. 1: Ring core 2 Primary winding 3: Secondary winding 4: Legs 5: Pressure receiving plate 6; DC power source 7: Magnetic flux meter Patent applicant Nippon Steel Corporation Representative Agent
Masu Kobori (and 2 others) Figure 1 Figure 3 Figure 2 Figure 4 Stress (kgf/cm')

Claims (1)

【特許請求の範囲】[Claims] 1、二方向性電磁鋼板よりなる鉄心と、該鉄心の厚み方
向に加わる応力の大きさに応じた該鉄心の透磁率又は抗
磁力の変動を測定する検出巻線とを備えたことを特徴と
する圧力センサ。
1. It is characterized by comprising an iron core made of a bidirectional electromagnetic steel sheet, and a detection winding that measures variations in magnetic permeability or coercive force of the iron core in accordance with the magnitude of stress applied in the thickness direction of the iron core. pressure sensor.
JP8239289A 1989-03-31 1989-03-31 Pressure sensor Pending JPH02259538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8239289A JPH02259538A (en) 1989-03-31 1989-03-31 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8239289A JPH02259538A (en) 1989-03-31 1989-03-31 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH02259538A true JPH02259538A (en) 1990-10-22

Family

ID=13773311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8239289A Pending JPH02259538A (en) 1989-03-31 1989-03-31 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH02259538A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349624A (en) * 2005-06-20 2006-12-28 Nec Tokin Corp Load sensor and manufacturing method
JP2007033296A (en) * 2005-07-28 2007-02-08 Nec Tokin Corp Load sensor, usage thereof, and production method thereof
JP2015102507A (en) * 2013-11-27 2015-06-04 パナソニックIpマネジメント株式会社 Force sensor, force detection device using the same and force detection method
WO2015182117A1 (en) * 2014-05-27 2015-12-03 パナソニックIpマネジメント株式会社 Force sensor and force detection device in which same is used
JP5866517B1 (en) * 2015-05-26 2016-02-17 パナソニックIpマネジメント株式会社 Force sensor and force detection device using the same
JP5866518B1 (en) * 2015-05-26 2016-02-17 パナソニックIpマネジメント株式会社 Force sensor and force detection device
US9784627B2 (en) 2013-11-27 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Load sensor, load detector including load sensor, and method for detecting load

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349624A (en) * 2005-06-20 2006-12-28 Nec Tokin Corp Load sensor and manufacturing method
JP2007033296A (en) * 2005-07-28 2007-02-08 Nec Tokin Corp Load sensor, usage thereof, and production method thereof
JP2015102507A (en) * 2013-11-27 2015-06-04 パナソニックIpマネジメント株式会社 Force sensor, force detection device using the same and force detection method
US9784627B2 (en) 2013-11-27 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Load sensor, load detector including load sensor, and method for detecting load
WO2015182117A1 (en) * 2014-05-27 2015-12-03 パナソニックIpマネジメント株式会社 Force sensor and force detection device in which same is used
JP2015224938A (en) * 2014-05-27 2015-12-14 パナソニックIpマネジメント株式会社 Force sensor and force detector using the same
JP5866517B1 (en) * 2015-05-26 2016-02-17 パナソニックIpマネジメント株式会社 Force sensor and force detection device using the same
JP5866518B1 (en) * 2015-05-26 2016-02-17 パナソニックIpマネジメント株式会社 Force sensor and force detection device
JP2016219724A (en) * 2015-05-26 2016-12-22 パナソニックIpマネジメント株式会社 Force sensor and force detection device
JP2016218007A (en) * 2015-05-26 2016-12-22 パナソニックIpマネジメント株式会社 Force sensor and force detector using the same

Similar Documents

Publication Publication Date Title
US4891992A (en) Torque detecting apparatus
JP5527203B2 (en) Single plate magnetic tester and method for measuring magnetic properties of electrical steel sheet using the same
JP4512079B2 (en) Apparatus and method for measuring magnetic properties and mechanical strength of thin steel sheet
Karthaus et al. Effect of mechanical stress on different iron loss components up to high frequencies and magnetic flux densities
KR20200103090A (en) Directional electrical steel sheet and manufacturing method of winding core and core of transformer using the same
US4762008A (en) Torque detecting apparatus
US5565773A (en) Arrangement of excitation and detection heads for detecting the magnetic properties of an object
Takajo et al. Loss and noise analysis of transformer ComprisingGrooved grain-oriented silicon steel
Hug et al. Effect of internal stresses on the magnetic properties of non-oriented Fe–3wt.% Si and (Fe, Co)–2wt.% V alloys
JPH02259538A (en) Pressure sensor
Bogdanov et al. Study of electrical steel magnetic properties for fast cycling magnets of SIS100 and SIS300 rings
JPH08269562A (en) Grain-oriented silicon steel sheet reduced in magnetostriction and its production
Klimczyk Novel techniques for characterisation and control of magnetostriction in GOSS
Holt et al. The AC magnetostriction of 3.25-percent grain-oriented silicon-iron under combined longitudinal and normal compressive stress
Iordache et al. Effect of mechanical strains on the magnetic properties of electrical steels
Zurek et al. Rotational power losses and vector loci under controlled high flux density and magnetic field in electrical steel sheets
Shcherbakov et al. Magnetic properties of silicon electrical steels and its application in fast cycling superconducting magnets at low temperatures
Soinski The anisotrophy of coercive force in cold-rolled goss-texture electrical sheets
JP2956007B2 (en) Magnetic head and detection method using the same
JP2941534B2 (en) Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly
Mohri et al. Effective domain and grain observation methods and iron losses in coated Si-Fe
JP2905561B2 (en) Non-contact torque sensor
JPH0812178B2 (en) Magnetic flaw detector
Salach Stresses Influence On Magnetic Characteristics Of Amorphous Ring Cores For Current Transducers
Ara et al. Inverse magnetostrictive sensitivity of martensitic stainless steel AISI-410 and its application to pressure measurements