JPH022594B2 - - Google Patents

Info

Publication number
JPH022594B2
JPH022594B2 JP24291687A JP24291687A JPH022594B2 JP H022594 B2 JPH022594 B2 JP H022594B2 JP 24291687 A JP24291687 A JP 24291687A JP 24291687 A JP24291687 A JP 24291687A JP H022594 B2 JPH022594 B2 JP H022594B2
Authority
JP
Japan
Prior art keywords
phosphatidylethanolamine
phosphatidylcholine
linoleic acid
fatty acid
bacterial cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24291687A
Other languages
Japanese (ja)
Other versions
JPS6486888A (en
Inventor
Toshihiro Yokochi
Osamu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24291687A priority Critical patent/JPS6486888A/en
Publication of JPS6486888A publication Critical patent/JPS6486888A/en
Publication of JPH022594B2 publication Critical patent/JPH022594B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<技術分野> 本発明はリノール酸を唯一の脂肪酸とするホス
フアチジルコリン及びホスフアチジルエタノール
アミンの担子菌類ペリキユラリア属菌による製造
方法に関するものである。 <従来技術> 担子菌類ペリキユラリア属菌の培養によるリノ
ール酸含量の高い脂質を製造する方法については
既に提案されている。(特許第1111933号) ところで、グリセロ型リン脂質の一種であるホ
スフアチジルコリン()及びホスフアチジルエ
タノールアミン()は、次に示すような構造式
を持つことが知られている。 その構成脂肪酸であるRCOOH及びR′COOHが
いずれもリノール酸であるホスフアチジルコリン
あるいはホスフアチジルエタノールアミンが、微
生物の生産した脂質或は植物の生産した脂質から
単離濃縮された従来技術はない。 <目的> 本発明は、リノール酸を唯一の構成脂肪酸とす
るホスフアチジルコリン及びホスフアチジルエタ
ノールアミンの製造方法を提供することを目的と
する。 <構成> 本発明によれば、ペリキユラリア属菌を炭水化
物を炭素源とし、界面活性剤を加えた培地に培養
して得られた菌体から抽出して得られた脂質よ
り、リノール酸を唯一の構成脂肪酸とするホスフ
アチジルコリン及びホスフアチジルエタノールア
ミンを分離精製することを特徴とするリノール酸
を唯一の構成脂肪酸とするホスフアチジルコリン
及びホスフアチジルエタノールアミンの製造方法
が提供される。 ペリキユラリア属菌を培養する培地の炭素源で
ある炭水化物としては、たとえばグルコース、フ
ラクトース、サツカロース、糖蜜、デン粉、木材
糖化液、セルロースなどが用いられる。炭水化物
は培地1中に20gから150g用いるのが好まし
い。窒素源としては、例えば硝酸アンモニウム、
リン酸アンモニウムなどのような無機窒素源、ま
たは尿素、ペプトン、酵母エキス、コーン・スチ
ーブ・リカーなどの有機窒素源が用いられる。ま
た界面活性剤としては、通常、疎水基として、長
鎖脂肪酸エステルなどを含む、非イオン性界面活
性剤あるいは、アニオン型のイオン性界面活性剤
が用いられる。このようなものとしては、例え
ば、Tween−20やTween−80、コール酸ナトリ
ウムなどが挙げられる。この界面活性剤は培地1
中に0.1gから5g/添加することが好まし
く、界面活性剤の添加により、リノール酸を唯一
の構成脂肪酸とするホスフアチジルコリンあるい
はホスフアチジルエタノールアミンなどの脂質を
含んだ菌体が培地中に高濃度に培養される。無機
塩としては、例えばKH2PO4、K2HPO4、NaCl、
FeSO4・7H2O、MgSO4・7H2O、ZnSO4・7H2O
などが用いられる。その他必要に応じて微量要
素、その他の栄養源を添加する。 菌の培覆は、通常液体培地で、振とう培養、通
気撹はん培養などにより行なわれる。培地のPHは
3.0から6.0がよく、通常3日から10日間位培養を
行う。かくして、培養物中にリノール酸などの不
飽和脂肪酸含量の高いホスフアチジルコリン及び
ホスフアチジルエタノールアミンなどの脂質を含
んだ菌体が生産性高く生産されるので、培養物よ
り菌体を分離し、この菌体中よりリノール酸を唯
一の構成脂肪酸とするホスフアチジルコリン及び
ホスフアチジルエタノールアミンを含む脂質を採
取するのが好適である。培養物よりの菌体の分離
に当たつては、例えば遠心脱水機などにより極め
て容易に分離される。 <抽出方法> リノール酸を唯一の脂肪酸とするホスフアチジ
ルコリン及びホスフアチジルエタノールアミンを
含む脂質の採取は、多段抽出法で行なわれる。す
なわち、本発明においては、ペリキユラリア属菌
菌体を、まず水の存在下でアルコールを用いる第
一段処理工程において抽出処理する。この場合、
処理原料として用いる菌体には、培地から遠心分
離法や濾過法によつて分離された含水率50〜80%
程度の含水菌体ケーキや、その乾燥物を用いるこ
とができるが、経済性の点からは、含水菌体ケー
キを用いるのが有利である。また、この第1抽出
処理工程では、菌体は、水の存在下、アルコール
溶媒中で、機械力を加えて破砕させることが必要
であり、この菌体破砕によつて効率的な抽出処理
が達成される。このような菌体破砕を伴う抽出装
置としては、従来公知の湿式粉砕機、例えば、ボ
ールミル、マサツ円板ミル、ヘンセルミキサー等
を用いることができる。このような粉砕機により
菌体は、圧縮力やマサツ力等の機械力を受け、そ
の一部が破損ないし破砕される。この場合、菌体
を余りにも微細に破砕することは好ましくなく、
濾過性の点からは、その菌体の粒径が実質上変化
しない程度に機械力を加えるのが好ましい。アル
コール溶媒としては、通常、メタノール、エタノ
ール、プロパノール等の低級アルコールが用いら
れるが、人体に対する安全性の点から、エタノー
ルの使用が好ましい。アルコール溶媒の使用割合
は、菌体1重量部(乾燥物基準)に対し、2〜7
重量部、好ましくは3〜6重量部の割合である。
この第1抽出処理工程では、極性脂質を溶出させ
るために、水の存在下で抽出処理を行うことが必
要であり、水の存在量は、アルコール溶媒1重量
に対し、0.2〜0.7重量部、好ましくは0.3〜0.6重
量部である。この第1抽出処理系に対する水の添
加は、水を含む菌体を用いて実施し得る他、アル
コール溶媒に添加することによつて行なうことが
できる。このような抽出処理により、菌体に含ま
れる全極性脂質の90%以上を抽出分離させること
ができ、また中性脂質の一部が抽出される。ま
た、この第1抽出工程では、脂質回収率は、全脂
質回収率に対し、通常、30〜80重量%、好ましく
は40〜70重量%である。 次に、前記で得た第1抽出生成物は第1固液分
離工程で破砕菌体成分と極性脂質を含むアルコー
ル溶媒成分とにそれぞれ分離される。この場合、
固液分離法としては、遠心分離法や、濾過分離法
等の慣用の方法が採用される。脂質分は得られた
極性脂質を含むアルコール溶媒成分から常法に従
つて減圧下で溶媒を蒸留留去することにより得ら
れる。 <分離・濃縮法> 前記多段抽出方法のアルコールを溶媒とした、
第一段目の抽出操作により得られた極性脂質成分
について吸着カラムクロマトグラフイーあるいは
逆相高速液体クロマトグラフイーなどによる分
離・濃縮操作を行うことにより、リノール酸を唯
一の脂肪酸とするホスフアチジルコリン及びホス
フアチジルエタノールアミンが分離、精製され
る。すなわち、50から300メツシユ、好ましくは、
100から200メツシユのケイ酸(シリカゲル)、微
粒多孔質シリカ、シリカゲルH、シリカゲルG、
ケイ酸マグネシウムなどを充填剤としたカラムを
用いて、ヘキサン、シクロヘキサン、四塩化炭
素、ベンゼン、クロロホルム、ジエチルエーテ
ル、酢酸エチル、アセトン、アセトニトリル、メ
タノールなどを溶媒に用いて、その極性に応じて
一種類ないし2から3種類混合した溶媒、例えば
クロロホルムとメタノール9:1、4:1、1:
1、1:4の混合溶媒を順次流下することによ
り、各極性脂質の吸着力の差により分離溶出が可
能になり、リノール酸を唯一の構成脂肪酸とする
ホスフアチジルコリンあるいはホスフアチジルエ
タノールアミンがそれぞれ分離されて含まれる溶
出液を得る。この溶出液より常法により溶媒を減
圧下で蒸留留去することにより、リノール酸を唯
一の構成脂肪酸とするホスフアチジルコリン及び
ホスフアチジルエタノールアミンを高濃度で含む
区分が得られることを見いだした。さらに、それ
らの区分あるいは前記のシリカゲルカラムにてク
ロロホルムによつて中性脂質区分を除いた後にメ
タノールによつて流出される極性脂質区分をシリ
カゲルにオクタデシル基などを共有結合したよう
な逆相高速液体クロマトグラフにてアセトニトリ
ル、メタノール、エタノール、水などの混合溶媒
を移動相とした逆相高速液体クロマトグラフイー
による精製を行うことにより、リノール酸を唯一
の構成脂肪酸とするホスフアチジルコリン及びホ
スフアチジルエタノールアミンがそれぞれほぼ
100%の濃度で分離濃縮されることが認められた。 かくして、本発明によればグルコースなどの炭
水化物を炭素源として界面活性剤を添加した培地
に高密度に培養された菌体より得られた脂質につ
いてカラムクロマトグラフイー、逆相高速液体ク
ロマトグラフイーなどによる分離・濃縮を行うこ
とにより、リノール酸を唯一の構成脂肪酸とする
ホスフアチジルコリン及びホスフアチジルエタノ
ールアミンの製造が可能になる。 <効果> リノール酸(C18:2(cis9、12))は、ほ乳動
物では体内で合成できない必須脂肪酸であり、生
体内でビスホモγ−リノレン酸やアラキドン酸な
どを経て、生体内で重要な生理的役割を果してい
るプロスタグランジンなどへ転換されていく前駆
物質である。また、生体内でのそれらの変換はホ
スフアチジルコリンやホスフアチジルエタノール
アミンなどのリン脂質状態で行われている。リン
脂質は、そのような必須脂肪酸の転換や、血清中
のの脂質量のコントロール、脂溶性ビタミンの消
化吸収、生体膜に結合した酵素の制御に関与して
いるなど生体膜上などで多くの生理的役割をはた
していることが知られており、特にリノール酸を
唯一の構成脂肪酸とするホスフアチジルエタノー
ルアミンが血清脂質像改善効果を持つことなどが
解明されてきた。従つて、リノール酸を唯一の構
成脂肪酸成分とするホスフアチジルコリン及びホ
スフアチジルエタノールアミンは生理活性を持つ
脂質として医薬品などとして利用できるものであ
ることは明かである。 <実施例> 次に本発明を実施例により詳細に説明する。 実施例 1 グルコース90g、KH2PO43.0g、MgSO4
7H2O0.5g、NaCl0.1g、マルトエキス0.2g、イ
ーストエキス0.2g、ペプトン0.1g、FeSO4
7H2O10mg、MnSO4・4H2O1.0mg、CaCl2
2H2O1.0mg、ZnSO4・7H2O1.0mgと窒素源として
NH4NO3を3.0g、界面活性剤としてTween−80
を5.0mlを脱イオン水1000mlに混合して培地を調
整した。 この培地200mlの入つた500mlフラスコに菌をそ
れぞれ接種し、30℃の培養温度で3日間培養を行
つた後、先の培地3.0の入つた4.5の容量の培
養槽に全量移植した。培養槽の培養条件は、培養
温度30℃、通気量0.5から2.0vvmで300から
700rpmでの撹拌として、6日間の培養を行つた。
培養後遠心分離法で菌体を集めた。培養中は、菌
体の増殖量、脂質の生成量及び培地中の炭水化物
の濃度の測定を行うために、所定の時間毎に50ml
ずつの試料の採取を行い、濾過法により菌体と培
地の分離を行つた。分離された菌体はその一部を
含水率の定量のため、精秤し恒温槽中120℃で一
昼夜乾燥し、含水率を求め、残りの菌体について
脂質の抽出を行つた。菌体からの脂質の抽出は、
残りの湿菌体にクロロホルム−メタノール(2:
1V/V)混液を加え、ガラスビーズ存在下にホ
モジナイズすることにより菌体の破砕と脂質の抽
出を同時に行つた。 なお、抽出を完全に行うため、これを5回繰返
し、全抽出液を集めた。上記抽出液をFlochの分
配洗浄法により精製した後、溶媒を減圧留去し、
重量法で全脂質量を測定した。菌体を除いた培地
については高速液体クロマトグラフイー
(HPLC)により炭水化物(グルコース、フラク
トース、サツカロース)の濃度を測定した。 菌株ペリキユラリア属菌フイラメントサ・ソラ
ニIF05879、フイラメントサ・ササキIF08985、
プラテイコラIF06253について培養を行つた結果
について、菌体増殖量(乾燥重量g/)、脂質
生成量(g/)、脂質含量(%)、脂質中のリノ
ール酸含量(%)を表−1にまとめてしめした。
表−1で各菌株ともリノール酸を含む脂質が高く
生産されていることがわかる。 このようにして得られた菌体を遠心脱水機によ
り脱水分離して、含水率50から70%の菌体ブロツ
ク(ケーキ)を得る。この菌体ブロツク(以下湿
菌体と呼ぶ)をステンレス製ボールミルを用いて
菌体の破砕と抽出処理を行つた。ボールミルは内
容積6で、そこに前記の湿菌体1.0から2.0Kgと
エタノール2を溶媒として加えて4時間破砕抽
出処理を行つた。抽出液を濾過した後、得られた
菌体について再度ヘキサン2を溶媒として用い
て前記と同様の抽出処理を4時間行つた。この2
段抽出処理方法にて、前記3菌株についての第一
段のエタノールによる抽出結果を表−1に合わせ
て示した。 このエタノール抽出区分について、ケイ酸
(100から200メツシユ)を充填剤とするカラムク
ロマトグラフイーを行い、リノール酸を唯一の構
成脂肪酸成分とするホスフアチジルコリン及びホ
スフアチジルエタノールアミンの分離濃縮を行つ
た。即ち、前記抽出脂質2gに対して30gのケイ
酸を充填したカラムに脂質を吸着させた後、中性
脂質分をクロロホルムで、糖脂質区分をアセトン
で流出させた後、クロロホルムとメタノールの
9:1、4:1、1:1、1:4の混合液を順次
流した。その結果、クロロホルムとメタノール
4:1の区分にホスフアチジルエタノールアミン
が、また1:4の区分にホスフアチジルコリンが
93.5%以上の濃度で濃縮されていることがリン脂
質組成分析用の高速液体クロマトグラフイーによ
る分析の結果認められた。このようにして得られ
たホスフアチジルコリン及びホスフアチジルエタ
ノールアミンについて逆相高速液体クロマトグラ
フイーによる組成分析の結果、リノール酸を唯一
の構成脂肪酸とする成分はそれぞれ67.5%から
92.2%と極めて高い値であつた。また加水分解の
後にメチルエステル化を行い、その脂肪酸組成を
比べた結果、リノール酸の含量は76から92%と極
めて高い値が得られており、リノール酸を唯一の
構成脂肪酸とするホスフアチジルコリン及びホス
フアチジルエタノールアミンが高い含量で含まれ
ていることが認められた。更にこの二つの区分に
ついて分取用の逆相高速液体クロマトグラフイー
による精製を行い、リノール酸を唯一の構成脂肪
酸とするホスフアチジルコリン及びホスフアチジ
ルエタノールアミンの単離を行つた。使用したカ
ラムはシリカゲルの表面にオクタデシル基を共有
結合させた充填剤を用いた内径16.7mm、長さ250
mmの分取用の逆相高速液体クロマトグラフのカラ
ムで、移動相はアセトニトリルとメタノールの
1:1の混合溶液を使用し、ポンプの流速を毎分
15mlとしておこなつた。前記のシリカゲルクロマ
トグラフイーにより分離された成分10mgから50mg
をこの逆相高速液体クロマトグラフイーにて分離
させることによりホスフアチジルコリン及びホス
フアチジルエタノールアミンはそれぞれリノール
酸を唯一の構成脂肪酸とする区分とその他の成分
とに分離され、リノール酸だけの区分を分取する
ことにより、表−2に示すようにリノール酸を唯
一の構成脂肪酸とするホスフアチジルコリン及び
ホスフアチジルエタノールアミンがほぼ100%の
濃度で得られることが認められた。 実施例 2 実施例1と同様に培養を行つて得られた湿菌体
をボールミルによる抽出操作を行い、エタノール
抽出区分を得た。このエタノール抽出区分2gに
対して30gのケイ酸を充填したカラムに脂質を吸
着させ、中性脂質分をクロロホルムで流出させた
後、メタノールにて糖脂質及びホスフアチジルコ
リン及びホスフアチジルエタノールアミンなどの
含まれる極性脂質区分を流出させた。この極性脂
質区分について逆相高速液体クロマトグラフイー
によつてリノール酸を唯一の脂肪酸とするホスフ
アチジルコリン及びホスフアチジルエタノールア
ミンの精製を行つた。即ち、シリカゲルの表面に
オクタデシル基を共有結合させた充填剤の内径
6.4mm、長さ250mmの分取用の逆相高速液体クロマ
トグラフカラムで、移動層として5.0%の水を加
えたメタノールを用いて、流速を毎分6.0mlとし
た条件で極性脂質区分10から20mgの分離を行つ
た。これにより、極性脂質区分の各種成分はそれ
ぞれの成分ごとに、またその構成脂肪酸組成ごと
に分離して流出してくるので、それらの中心成分
であるリノール酸を唯一の構成脂肪酸とするホス
フアチジルコリン及びホスフアチジルエタノール
アミンの区分を分取した。その結果、表−3に示
す様にそれぞれの区分からリノール酸を唯一の構
成脂肪酸とするホスフアチジルコリン及びホスフ
アチジルエタノールアミンがほぼ100%の濃度で
得られることが認められた。
<Technical Field> The present invention relates to a method for producing phosphatidylcholine and phosphatidylethanolamine using linoleic acid as the only fatty acid using a basidiomycete belonging to the genus Pericularia. <Prior art> A method for producing a lipid with a high linoleic acid content by culturing a basidiomycete, a bacterium belonging to the genus Pericularia, has already been proposed. (Patent No. 1111933) By the way, phosphatidylcholine () and phosphatidylethanolamine (), which are types of glycerophospholipids, are known to have the following structural formulas. The conventional technology in which phosphatidylcholine or phosphatidylethanolamine, whose constituent fatty acids RCOOH and R'COOH are both linoleic acids, is isolated and concentrated from lipids produced by microorganisms or lipids produced by plants is do not have. <Purpose> An object of the present invention is to provide a method for producing phosphatidylcholine and phosphatidylethanolamine in which linoleic acid is the only constituent fatty acid. <Structure> According to the present invention, linoleic acid is extracted from lipids obtained by culturing Pericularia bacteria in a medium containing carbohydrates as a carbon source and a surfactant. Provided is a method for producing phosphatidylcholine and phosphatidylethanolamine having linoleic acid as the only constituent fatty acid, which comprises separating and purifying phosphatidylcholine and phosphatidylethanolamine as constituent fatty acids. Examples of carbohydrates that are carbon sources for the culture medium for culturing Pericillaria include glucose, fructose, succalose, molasses, starch, wood saccharification liquor, and cellulose. Preferably, 20 to 150 g of carbohydrates are used in medium 1. Examples of nitrogen sources include ammonium nitrate,
Inorganic nitrogen sources such as ammonium phosphate, etc., or organic nitrogen sources such as urea, peptone, yeast extract, corn stave liquor, etc. are used. As the surfactant, a nonionic surfactant or an anionic ionic surfactant containing a long chain fatty acid ester as a hydrophobic group is usually used. Examples of such substances include Tween-20, Tween-80, and sodium cholate. This surfactant is medium 1
It is preferable to add 0.1 to 5 g of surfactant to the medium, and by adding a surfactant, bacterial cells containing lipids such as phosphatidylcholine or phosphatidylethanolamine, which have linoleic acid as the only constituent fatty acid, can be added to the medium. cultured at high concentrations. Examples of inorganic salts include KH 2 PO 4 , K 2 HPO 4 , NaCl,
FeSO47H2O , MgSO47H2O , ZnSO47H2O
etc. are used. Add trace elements and other nutritional sources as necessary. Culture of bacteria is usually carried out in a liquid medium by shaking culture, aerated agitation culture, or the like. The pH of the medium is
A value of 3.0 to 6.0 is good, and culture is usually carried out for about 3 to 10 days. In this way, bacterial cells containing lipids such as phosphatidylcholine and phosphatidylethanolamine with a high content of unsaturated fatty acids such as linoleic acid are produced in the culture with high productivity, so that the bacterial cells can be isolated from the culture. However, it is preferable to collect lipids containing phosphatidylcholine and phosphatidylethanolamine whose only constituent fatty acid is linoleic acid from this bacterial cell. Bacterial cells can be separated very easily from a culture using, for example, a centrifugal dehydrator. <Extraction method> Collection of lipids containing phosphatidylcholine and phosphatidylethanolamine with linoleic acid as the only fatty acid is performed by a multistage extraction method. That is, in the present invention, Pericularia microbial cells are first extracted in the first step using alcohol in the presence of water. in this case,
The bacterial cells used as processing raw materials have a moisture content of 50 to 80%, separated from the culture medium by centrifugation or filtration.
Although it is possible to use a water-containing cell cake or a dried product thereof, from an economic point of view, it is advantageous to use a water-containing cell cake. In addition, in this first extraction treatment step, it is necessary to crush the bacterial cells by applying mechanical force in the presence of water and in an alcohol solvent, and by crushing the bacterial cells, efficient extraction treatment can be achieved. achieved. As such an extraction device that involves crushing the bacterial cells, a conventionally known wet grinder such as a ball mill, a Masatsu disk mill, a Hensel mixer, etc. can be used. With such a crusher, the bacterial cells are subjected to mechanical forces such as compressive force and crushing force, and some of the bacterial cells are damaged or crushed. In this case, it is not preferable to crush the bacterial cells too finely.
From the viewpoint of filterability, it is preferable to apply mechanical force to such an extent that the particle size of the bacterial cells does not substantially change. As the alcohol solvent, lower alcohols such as methanol, ethanol, and propanol are usually used, but from the viewpoint of safety for the human body, it is preferable to use ethanol. The ratio of alcohol solvent used is 2 to 7 parts by weight of bacterial cells (dry basis).
The proportion is 3 to 6 parts by weight, preferably 3 to 6 parts by weight.
In this first extraction process, in order to elute polar lipids, it is necessary to perform the extraction process in the presence of water, and the amount of water present is 0.2 to 0.7 parts by weight per 1 weight of alcohol solvent. Preferably it is 0.3 to 0.6 parts by weight. Addition of water to this first extraction treatment system can be carried out using microbial cells containing water, or can be carried out by adding it to an alcohol solvent. Through such an extraction process, more than 90% of all polar lipids contained in the bacterial cells can be extracted and separated, and a portion of neutral lipids can also be extracted. In addition, in this first extraction step, the lipid recovery rate is usually 30 to 80% by weight, preferably 40 to 70% by weight, based on the total lipid recovery rate. Next, the first extraction product obtained above is separated into a crushed bacterial cell component and an alcohol solvent component containing polar lipids in a first solid-liquid separation step. in this case,
As the solid-liquid separation method, a conventional method such as a centrifugal separation method or a filtration separation method is employed. The lipid component can be obtained by distilling off the solvent under reduced pressure from the alcohol solvent component containing the obtained polar lipid in accordance with a conventional method. <Separation/concentration method> Using the alcohol of the multistage extraction method as a solvent,
By separating and concentrating the polar lipid components obtained in the first stage of extraction using adsorption column chromatography or reversed-phase high performance liquid chromatography, phosphatidyl with linoleic acid as the only fatty acid is extracted. Choline and phosphatidylethanolamine are separated and purified. i.e. 50 to 300 meshes, preferably
100 to 200 mesh silicic acid (silica gel), fine porous silica, silica gel H, silica gel G,
Using a column packed with magnesium silicate, etc., solvents such as hexane, cyclohexane, carbon tetrachloride, benzene, chloroform, diethyl ether, ethyl acetate, acetone, acetonitrile, methanol, etc. Solvents of different kinds or a mixture of two or three kinds, such as chloroform and methanol 9:1, 4:1, 1:
By sequentially flowing a mixed solvent of 1 and 1:4, separation and elution is possible due to the difference in the adsorption power of each polar lipid. are separated to obtain an eluate containing them. It was discovered that by distilling off the solvent from this eluate under reduced pressure using a conventional method, a fraction containing high concentrations of phosphatidylcholine and phosphatidylethanolamine, with linoleic acid as the only constituent fatty acid, was obtained. Ta. Furthermore, these fractions or the polar lipid fractions, which are removed with chloroform in the silica gel column and then flowed out with methanol, are treated with a reversed-phase high-speed liquid such as a silica gel with an octadecyl group or the like covalently bonded to it. Phosphatidylcholine and phosphatidylcholine whose only constituent fatty acid is linoleic acid are purified by reverse-phase high-performance liquid chromatography using a mixed solvent such as acetonitrile, methanol, ethanol, and water as a mobile phase. diethanolamine each approximately
Separation and concentration was confirmed at 100% concentration. Thus, according to the present invention, lipids obtained from bacterial cells cultured at high density in a medium containing carbohydrates such as glucose as a carbon source and a surfactant can be subjected to column chromatography, reversed phase high performance liquid chromatography, etc. By performing separation and concentration using linoleic acid, it becomes possible to produce phosphatidylcholine and phosphatidylethanolamine with linoleic acid as the only constituent fatty acid. <Effects> Linoleic acid (C18:2 (cis9, 12)) is an essential fatty acid that cannot be synthesized in the body of mammals. It is a precursor substance that is converted into prostaglandins, etc., which play an important role. In addition, their conversion in vivo occurs in the form of phospholipids such as phosphatidylcholine and phosphatidylethanolamine. Phospholipids play many roles on biological membranes, including the conversion of essential fatty acids, control of lipid levels in serum, digestion and absorption of fat-soluble vitamins, and regulation of enzymes bound to biological membranes. It is known that it plays a physiological role, and in particular, it has been elucidated that phosphatidylethanolamine, whose only constituent fatty acid is linoleic acid, has the effect of improving serum lipid profile. Therefore, it is clear that phosphatidylcholine and phosphatidylethanolamine, which have linoleic acid as the only constituent fatty acid component, can be used as physiologically active lipids as pharmaceuticals. <Examples> Next, the present invention will be explained in detail with reference to Examples. Example 1 Glucose 90g, KH 2 PO 4 3.0g, MgSO 4 .
7H 2 O 0.5g, NaCl 0.1g, malt extract 0.2g, yeast extract 0.2g, peptone 0.1g, FeSO 4 .
7H2O10mg , MnSO44H2O1.0mg , CaCl2
2H 2 O 1.0mg, ZnSO 4・7H 2 O 1.0mg and as a nitrogen source
3.0g of NH4NO3 , Tween-80 as surfactant
A culture medium was prepared by mixing 5.0 ml of the solution with 1000 ml of deionized water. Bacteria were inoculated into 500 ml flasks containing 200 ml of this medium, and after culturing at a culture temperature of 30° C. for 3 days, the entire amount was transferred to a 4.5-volume culture tank containing 3.0 medium. The culture conditions for the culture tank are a culture temperature of 30℃, an aeration rate of 0.5 to 2.0vvm, and a temperature of 300 to 300.
Cultivation was carried out for 6 days with stirring at 700 rpm.
After culturing, the bacterial cells were collected by centrifugation. During culturing, 50 ml was added at predetermined intervals to measure the amount of bacterial growth, the amount of lipid production, and the concentration of carbohydrates in the medium.
Samples were collected and the bacterial cells and culture medium were separated using a filtration method. A portion of the isolated bacterial cells was accurately weighed and dried overnight at 120°C in a constant temperature bath to determine the moisture content, and lipids were extracted from the remaining bacterial cells. Extraction of lipids from bacterial cells is
Chloroform-methanol (2:
1V/V) mixture was added and homogenized in the presence of glass beads to simultaneously disrupt the bacterial cells and extract the lipids. In order to perform the extraction completely, this was repeated five times and all the extracts were collected. After the above extract was purified by Floch's partition washing method, the solvent was distilled off under reduced pressure,
Total lipid content was measured gravimetrically. The concentration of carbohydrates (glucose, fructose, sutucarose) in the medium from which the bacterial cells were removed was measured by high performance liquid chromatography (HPLC). Strains Pericyularia sp. Filamentosa solani IF05879, Filamentosa sasaki IF08985,
Regarding the results of culturing Plateicola IF06253, the amount of bacterial cell growth (dry weight g/), lipid production amount (g/), lipid content (%), and linoleic acid content in lipid (%) are summarized in Table 1. I did it.
Table 1 shows that each strain produces a high amount of lipids containing linoleic acid. The cells thus obtained are dehydrated and separated using a centrifugal dehydrator to obtain a cell block (cake) with a moisture content of 50 to 70%. This bacterial cell block (hereinafter referred to as wet bacterial cells) was subjected to crushing and extraction using a stainless steel ball mill. The ball mill had an internal volume of 6, and 1.0 to 2.0 kg of the above-mentioned wet bacterial cells and 2 ml of ethanol were added as a solvent, and a crushing and extraction process was performed for 4 hours. After filtering the extract, the obtained bacterial cells were subjected to the same extraction treatment as above for 4 hours using hexane 2 as a solvent again. This 2
Table 1 shows the results of the first-stage ethanol extraction for the three bacterial strains described above using the stage-extraction method. For this ethanol extraction section, column chromatography was performed using silicic acid (100 to 200 mesh) as a packing material to separate and concentrate phosphatidylcholine and phosphatidylethanolamine, which have linoleic acid as the only constituent fatty acid component. I went. That is, after adsorbing lipids on a column packed with 30 g of silicic acid per 2 g of the extracted lipids, neutral lipids were eluted with chloroform and glycolipids with acetone. Mixtures of 1:1, 4:1, 1:1, and 1:4 were sequentially flowed. As a result, phosphatidylethanolamine was found in the 4:1 ratio of chloroform and methanol, and phosphatidylcholine was found in the 1:4 ratio.
Analysis using high-performance liquid chromatography for phospholipid composition analysis confirmed that it was concentrated at a concentration of 93.5% or more. As a result of compositional analysis of the thus obtained phosphatidylcholine and phosphatidylethanolamine by reversed-phase high performance liquid chromatography, the composition of linoleic acid as the only constituent fatty acid ranged from 67.5% to 67.5%, respectively.
This was an extremely high value of 92.2%. In addition, after hydrolysis, methyl esterification was performed and the fatty acid composition was compared, and the linoleic acid content was found to be extremely high, ranging from 76 to 92%. A high content of choline and phosphatidylethanolamine was observed. Furthermore, these two fractions were purified by preparative reverse-phase high-performance liquid chromatography, and phosphatidylcholine and phosphatidylethanolamine, which have linoleic acid as the only constituent fatty acid, were isolated. The column used was a silica gel column with an inner diameter of 16.7 mm and a length of 250 mm, using a packing material with octadecyl groups covalently bonded to the surface.
This is a reversed-phase high-performance liquid chromatography column for preparative separation of mm, using a 1:1 mixed solution of acetonitrile and methanol as the mobile phase, and the flow rate of the pump is set to 1/min.
I used 15ml. 10 mg to 50 mg of components separated by silica gel chromatography as described above
By separating them using this reverse phase high performance liquid chromatography, phosphatidylcholine and phosphatidylethanolamine are separated into a category in which linoleic acid is the only constituent fatty acid and other components, and linoleic acid alone is separated. By separating the fractions, it was found that phosphatidylcholine and phosphatidylethanolamine with linoleic acid as the only constituent fatty acid were obtained at a concentration of approximately 100%, as shown in Table 2. Example 2 Wet bacterial cells obtained by culturing in the same manner as in Example 1 were subjected to an extraction operation using a ball mill to obtain ethanol-extracted sections. Lipids were adsorbed on a column packed with 30 g of silicic acid per 2 g of this ethanol extraction section, and after the neutral lipids were eluted with chloroform, glycolipids, phosphatidylcholine, and phosphatidylethanolamine were mixed with methanol. Polar lipid compartments containing such as were effluxed out. For this polar lipid fraction, phosphatidylcholine and phosphatidylethanolamine with linoleic acid as the only fatty acid were purified by reverse-phase high-performance liquid chromatography. In other words, the inner diameter of the filler with octadecyl groups covalently bonded to the surface of silica gel.
A 6.4 mm, 250 mm long preparative reverse-phase high-performance liquid chromatography column was used for polar lipid class 10 at a flow rate of 6.0 ml/min using methanol with 5.0% water as the mobile phase. Separation of 20 mg was performed. As a result, the various components of the polar lipid category are separated and flowed out by each component and by their constituent fatty acid composition. The choline and phosphatidylethanolamine fractions were separated. As a result, as shown in Table 3, it was found that phosphatidylcholine and phosphatidylethanolamine with linoleic acid as the only constituent fatty acid were obtained at approximately 100% concentration from each category.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ペリキユラリア属菌を炭水化物を炭素源と
し、界面活性剤を加えた培地に培養して得られた
菌体から抽出して得られた脂質より、リノール酸
を唯一の構成脂肪酸とするホスフアチジルコリン
及びホスフアチジルエタノールアミンを分離精製
することを特徴とするリノール酸を唯一の構成脂
肪酸とするホスフアチジルコリン及びホスフアチ
ジルエタノールアミンの製造方法。
1 Phosphatidylcholine with linoleic acid as the only constituent fatty acid is extracted from lipids obtained by culturing Pericularia bacteria in a medium containing carbohydrates as a carbon source and a surfactant. A method for producing phosphatidylcholine and phosphatidylethanolamine having linoleic acid as the only constituent fatty acid, the method comprising separating and purifying phosphatidylethanolamine.
JP24291687A 1987-09-28 1987-09-28 Production of phosphatidyl choline and phosphatidyl ethanolamine containing only linolic acid as fatty acid component Granted JPS6486888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24291687A JPS6486888A (en) 1987-09-28 1987-09-28 Production of phosphatidyl choline and phosphatidyl ethanolamine containing only linolic acid as fatty acid component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24291687A JPS6486888A (en) 1987-09-28 1987-09-28 Production of phosphatidyl choline and phosphatidyl ethanolamine containing only linolic acid as fatty acid component

Publications (2)

Publication Number Publication Date
JPS6486888A JPS6486888A (en) 1989-03-31
JPH022594B2 true JPH022594B2 (en) 1990-01-18

Family

ID=17096119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24291687A Granted JPS6486888A (en) 1987-09-28 1987-09-28 Production of phosphatidyl choline and phosphatidyl ethanolamine containing only linolic acid as fatty acid component

Country Status (1)

Country Link
JP (1) JPS6486888A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619666B2 (en) * 2004-03-03 2011-01-26 株式会社 西崎創薬研究所 Pharmaceutical composition

Also Published As

Publication number Publication date
JPS6486888A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
EP0246324B1 (en) Method for obtaining lipids from fungus bodies
Kates et al. Lipids of Serratia marcescens
US5246842A (en) Production of eicosapentaenoic acid from filamentous fungi utilizing lactose as a primary carbon source
Card et al. Phospholipids from Bacillus stearothermophilus
JPH0365948B2 (en)
CN113004134B (en) Method for separating and purifying vitamin K2 in fermentation liquor by using palm oil extract
WO2023162873A1 (en) Lactic acid bacterium for synthesizing plasmalogen, plasmalogen-containing composition, and plasmalogen production method
JPH022594B2 (en)
US20030186401A1 (en) Method of recovering pinitol or chiro-inositol in high yield from soy fractions
JPH062068B2 (en) Method for producing ω6 unsaturated phospholipids containing unsaturated fatty acid
JPS639835B2 (en)
JPS6244917B2 (en)
JP2021136959A (en) Method for Producing Oxylipin from Nannochloropsis Algae
JPS6345200B2 (en)
JPH01160988A (en) Production of docosahexaenoyl diacyl glycerol
DE102010008353B4 (en) Archaea and lipid compositions obtained therefrom
SU1128955A1 (en) Strain astasia longa a-60,producer of biologically active complex of lipids and method of obtaining the same
JP2010041991A (en) Method for producing mannosyl erythritol lipid
US4871666A (en) Process for preparing a lipid composition having upon saponification a high gama-linolenic acid content
JPH02249492A (en) Production of ubiquinone 9
RU2019187C1 (en) Method of phosphatidylcholine preparing
KR20040105422A (en) Process for preparing dha and epa from lingulodinium polyedrum, marine flagellum alga
EP0547484A1 (en) Process for producing antibiotic R106-I
JPS639837B2 (en)
JPH01132371A (en) Novel microorganism and production of lipid component of high content of gamma-linolenic acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term