JPH02259481A - Chirality shift reagent - Google Patents

Chirality shift reagent

Info

Publication number
JPH02259481A
JPH02259481A JP1080946A JP8094689A JPH02259481A JP H02259481 A JPH02259481 A JP H02259481A JP 1080946 A JP1080946 A JP 1080946A JP 8094689 A JP8094689 A JP 8094689A JP H02259481 A JPH02259481 A JP H02259481A
Authority
JP
Japan
Prior art keywords
group
optical
strap
chain alkyl
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1080946A
Other languages
Japanese (ja)
Inventor
Shohei Inoue
祥平 井上
Takuzo Aida
卓三 相田
Hideo Kubo
英夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP1080946A priority Critical patent/JPH02259481A/en
Publication of JPH02259481A publication Critical patent/JPH02259481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To simply and correctly determine the structure or optical purity of an optical antipode such as amino acid or the like by adding an optical antipode to a metal porphyrin complex. CONSTITUTION:An optical antipode is added to a metal porphyrin complex represented by the formula (wherein R1-R10 is H and a chain alkyl group such as methyl group, a branched alkyl group such as iso-propyl group, an unsaturat ed hydrocarbon group such as vinyl group or a benzil group which may contain a substituting group etc., and which is a group consisting of a monohydric group selected from hydrocarbon groups having 20 carbons or less or an acetic acid group etc., strap X is a chain alkyl group such as octamethylene group, nonamethylene group etc., a chain alkyl group containing phenylene group which may contain a substituting group, ester or the like, and which is a chain group selected from hydrocarbon groups having 30 carbons or less, and the porphyrin is such that is not reversed by the strap X.). The formula is preferable to be 2,12-bis(hexamethyleneaminocarbonylethyl)-7,17-dihexyl-3-8,-13,18- tetramethylporphyrin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 分子不斉を存するポルフィリンを、光学分割して得られ
る光学活性体の金属錯体は、キラルシフト試薬あるいは
光学分割剤として有用である。
Detailed Description of the Invention [Industrial Application Field] An optically active metal complex obtained by optically resolving a porphyrin having molecular asymmetry is useful as a chiral shift reagent or an optical resolving agent.

また生理活性物質として有用な不斉物質や光学活性ポリ
マーなどの不斉合成、不斉重合の触媒としても利用が考
えられる。
It can also be used as a catalyst for asymmetric synthesis and asymmetric polymerization of asymmetric substances and optically active polymers useful as physiologically active substances.

〔従来の技術〕[Conventional technology]

H)nckeyによって1979年に導入されたシフト
試薬は、外部磁場の大きさを強めることをしないでNM
R吸収パターンを広げる方法を与える。すなわち、適当
な官能基をもつ試料にシフト試薬を加えると等価でない
プロトンの化学シフト間の差は大幅に拡大する。キラル
シフト試薬は光学対掌体と錯体をつくるときジアステレ
オマーができ、したがって、それぞれが異なる化学シフ
トを示すため、対掌体混合物の割合すなわち光学純度を
決めるのに利用できる。
H) The shift reagent introduced in 1979 by N.K.K.
Provides a method to broaden the R absorption pattern. That is, when a shift reagent is added to a sample with the appropriate functional group, the difference between the chemical shifts of non-equivalent protons is greatly expanded. When a chiral shift reagent forms a complex with an optical enantiomer, it forms diastereomers, each of which exhibits a different chemical shift, which can be used to determine the proportions, or optical purity, of a mixture of enantiomers.

現在、便用されているシフト試薬は、キラルな有機配位
子に配位結合した希±(ランタニド)類系列のイオンで
あり、−船釣なものとしてトリス(d、d−ジカンファ
リルメタナート)ユウロピウム(以下Eu (dew)
 sと略記〉、トリス (3−()リフロロメチルヒド
ロキシメチレン)−d−カンファレート〕ユウロピウム
(■)(以下Eu(tfc)sと略記)  トリス〔3
−(ヘプタフロロプロピルヒドロキシメチレン)−d−
カンフプレートコプラセオジム(以下、Pr(hfcL
と略記)などが知られている。
The shift reagents currently in use are rare (lanthanide) series ions bound to chiral organic ligands; Eu (dew)
s〉, Tris (3-()lifluoromethylhydroxymethylene)-d-camphorate] europium (■) (hereinafter abbreviated as Eu(tfc)s) Tris [3
-(heptafluoropropylhydroxymethylene)-d-
Campfplate copraseodymium (hereinafter referred to as Pr(hfcL)
(abbreviated as ) are known.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

これらEu (dcm) s、Eu(tfc)*および
Pr(hfc)*などのキラルシフト試薬は、光学活性
物質として有用な化合物の多いカルボン酸(特にアミノ
酸)類、フェノール類などのキラルシフト試薬としては
使用できない欠点があるばかりでなく、キラルシフトx
薬自体に不斉選択性が存在するため、その使用方法に制
限がある。
These chiral shift reagents such as Eu(dcm)s, Eu(tfc)* and Pr(hfc)* are used as chiral shift reagents for carboxylic acids (especially amino acids) and phenols, which have many compounds useful as optically active substances. Not only does it have the disadvantage of not being able to do it, but it also has chiral shift x
Because the drug itself has asymmetric selectivity, there are restrictions on how it can be used.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、次の一般式(1)で表わされる式中、R
1〜R+oは水素および炭素数20以下の炭化水素基か
ら選ばれた1価の基、又はカルボン酸誘導体からなる基
、Xは炭素数30以下の炭化水素から選ばれた鎖状の基
であり、ストランプXがポルフィリン面の表裏を反転し
ないストラップポルフィリンが分子不斉を存する事を見
い出し、これを光学分割した光学活性体のポルフィリン
の金属錯体が、種々の化合物のキラルシフト試薬として
有用であることを見い出した。
The present inventors have discovered that in the formula represented by the following general formula (1), R
1 to R+o are monovalent groups selected from hydrogen and hydrocarbon groups having 20 or less carbon atoms, or groups consisting of carboxylic acid derivatives, and X is a chain group selected from hydrocarbons having 30 or less carbon atoms. We discovered that strap porphyrins, in which strump I found it.

すなわち本発明は、ポリフィリン金属錯体に、光学対掌
体を添加することにより、通常の化合物では共鳴吸収が
存在しない負の化学シフトに光学対掌体の共鳴吸収をシ
フトさせることができ、かつ添加する光学対本体の量に
かかわらず正確に対掌体混合物の光学純度を決定できる
ものである。
That is, the present invention can shift the resonance absorption of the optical antipode to a negative chemical shift where no resonance absorption exists in ordinary compounds by adding the optical antipode to the porphyrin metal complex, and The optical purity of a mixture of enantiomers can be accurately determined regardless of the amount of the optical pair being present.

使用後のポルフィリン金属錯体は回収したのち、再使用
することができる。
The used porphyrin metal complex can be recovered and reused.

一般式(1)で、R,”R+oは、水素およびメチル基
、エチル基、n−プロピル基、n−ブチル基、11−ヘ
ンチル基などの鎖状アルキル基、1so−プロピル基、
1so−ブチル基、5eC−ブチル基、Lerk−ブチ
ル基などの分枝状アルキル基、ビニル基、アリル基など
の不飽和炭化水素基、置換基を存してもよいフェニル基
、置換基を有してもよいベンジル基などで炭素数20以
下好ましくは合成の容易さ、溶解性の点で炭素数10以
下の炭化水素基から選ばれた1価の基、酢酸基、プロピ
オン酸基、酪酸基などのエステル又はアミドであるカル
ボン酸誘導体からなる基である。
In the general formula (1), R, "R + o are hydrogen and a chain alkyl group such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, a 11-hentyl group, a 1so-propyl group,
Branched alkyl groups such as 1so-butyl group, 5eC-butyl group, and Lerk-butyl group; unsaturated hydrocarbon groups such as vinyl group and allyl group; phenyl group that may have a substituent; A monovalent group selected from hydrocarbon groups having 20 or less carbon atoms, preferably 10 or less carbon atoms, such as a benzyl group, which may have 20 or less carbon atoms, an acetate group, a propionate group, a butyrate group, etc. It is a group consisting of a carboxylic acid derivative which is an ester or amide such as.

ストランプXは、オククメチレン基、ノナメチレン基、
デカメチレン基などの鎖状アルキル基、置換基を存して
もよいフェニレン基を有する鎖状アルキル基、エステル
、エーテル、アミド、イミノ、チオエーテル結合のいず
れかを有する鎖状アルキル基などで炭素数30以下の炭
化水素基から選ばれた鎖状の基であり、ストラップXが
ポルフィリン面の表裏を反転しないポルフィリンである
Strump X is an occumethylene group, a nonamethylene group,
A chain alkyl group such as a decamethylene group, a chain alkyl group having a phenylene group which may have a substituent, a chain alkyl group having an ester, ether, amide, imino, or thioether bond, etc., with a carbon number of 30 It is a chain group selected from the following hydrocarbon groups, and is a porphyrin in which the strap X does not turn over the porphyrin surface.

具体例としては2.12−ビス(ヘキサメチレンアミノ
カルボニルエチル) −7,17−ジヘキシルー3.8
゜13、18−テトラメチルポルフィリンが特に好まし
い。
Specific examples include 2.12-bis(hexamethyleneaminocarbonylethyl)-7,17-dihexyl3.8
Particularly preferred is 13,18-tetramethylporphyrin.

これら不斉分子を有するポルフィリンを光学分割する方
法は特に限定されない。ジアステオレマーあるいはジア
ステレオメリックな塩を溶解度などの物性の差異により
分割する方法、不斉晶出(物理的な方法)により分割す
る方法、酵素または生体そのものを用いる不斉分割法(
生物学的な方法)やクロマトグラフィーを用いる方法が
ある。
The method for optically resolving porphyrins having these asymmetric molecules is not particularly limited. Methods of dividing diastereomers or diastereomeric salts based on differences in physical properties such as solubility, methods of dividing by asymmetric crystallization (physical method), methods of dividing diastereomers or diastereomeric salts by asymmetric crystallization (physical method), asymmetric resolution method using enzymes or living organisms themselves (
There are methods using biological methods) and chromatography.

この中でクロマトグラフィーを用いる方法が最も好まし
い。
Among these, the method using chromatography is the most preferred.

クロマトグラフィーには、ペーパークロマトグラフィー
、ガスクロマトグラフィーおよび高速液体クロマトグラ
フィーがある。特に最近の高速液体クロマトグラフィー
の技1ネ1は、ハード、ソフトともに非常に高性能化さ
れており、高速液体クロマトグラフィーによる直接光学
分割は、非常に簡便な方法であり、特に好ましい。
Chromatography includes paper chromatography, gas chromatography and high performance liquid chromatography. In particular, recent techniques of high-performance liquid chromatography have become extremely sophisticated in both hardware and software, and direct optical resolution by high-performance liquid chromatography is a very simple method and is particularly preferred.

クロマトグラフィーによる直接光学分割では相システム
に不斉環境を導入しなければならないが、この方法とし
ては、光学活性な添加剤を加えた溶jilt液を用いる
方法と光学活性な固定相を用いる方法がある。後者の方
が、分取を目的とする場合には、溶出液からの添加剤の
除去などの処理が不要であり有利である。固定相として
は、セルローストリス(3,5−ジメチルフェニルカル
バメート)(ダイセル−製)などが用いられる。
Direct optical resolution by chromatography requires the introduction of an asymmetric environment into the phase system, and there are two methods for this: one using a solution containing optically active additives and the other using an optically active stationary phase. be. The latter method is more advantageous when the purpose is preparative separation, since no treatment such as removal of additives from the eluate is required. As the stationary phase, cellulose tris (3,5-dimethylphenylcarbamate) (manufactured by Daicel) or the like is used.

このようにして光学分割されたポルフィリンの金属錯体
は有機金属化合物などのポルフィリンを反応させて得ら
れるもので、下記の構造で示されハロゲン基である。(
Mが、マグネシウム、亜鉛の場合Xはない)。
The metal complex of porphyrin optically resolved in this manner is obtained by reacting porphyrin such as an organometallic compound, and has the structure shown below and is a halogen group. (
If M is magnesium or zinc, there is no X).

例えば、2.12−ビス(ヘキサメチレンアミノカルボ
ニルエチル) −7,17−ジヘキシルー3.8.13
.18−テトラメチルボルフイナートアルミニウムハイ
ドロキサイドなどが用いられる。
For example, 2,12-bis(hexamethyleneaminocarbonylethyl)-7,17-dihexyl3.8.13
.. 18-tetramethylborufinate aluminum hydroxide and the like are used.

[発明の効果〕 本発明のキラルシフト試薬を用いることにより、カルボ
ン酸(特にアミノ酸)類、フェノール類、アルコール類
、アミン類などの光学対車体の構造若しくは光学純度を
簡単且つ正確に決定でき、かつ、回収して再使用できる
[Effects of the Invention] By using the chiral shift reagent of the present invention, it is possible to easily and accurately determine the optical structure or optical purity of carboxylic acids (especially amino acids), phenols, alcohols, amines, etc., and , can be collected and reused.

(実施例) 参考例1 ここでMはアルミニウム、ガリウム、鉄、コバルト、マ
ンガン、ロジウム、マグネシウム、亜鉛、などの金属原
子、Xは水酸基、アルキル基、アルコキシ基、カルボキ
シレート基、フェノキシ基、上記式で表わされる2、1
2−ビス(ヘキサメチレンアミノカルボニルエチル) 
−7,17−ジヘキシルー3゜8、13.18−テトラ
メチルポルフィリン(以下、ストラップポルフィリンと
省略)の光学分割は、キラル固定相としてセルロースト
リス(3,5−ジメチルフェニルカルバメート)をシリ
カゲルに吸着し、カラムに充填したものを用い、高速液
体クロマトグラフィーによって行った。溶離液としてヘ
キサン−イソプロピルアルコール−クロロホルム(体積
で80対10対10)を用いて分取し、異なった保持時
間を持つ2成分を得た。これらの2成分は円偏光二色性
スペクトルから光学異性体であることを確認した。
(Example) Reference Example 1 Here, M is a metal atom such as aluminum, gallium, iron, cobalt, manganese, rhodium, magnesium, zinc, etc., and X is a hydroxyl group, an alkyl group, an alkoxy group, a carboxylate group, a phenoxy group, or 2, 1 expressed by the formula
2-bis(hexamethyleneaminocarbonylethyl)
Optical resolution of -7,17-dihexyl-3°8,13.18-tetramethylporphyrin (hereinafter abbreviated as strapporphyrin) was performed using cellulose tris (3,5-dimethylphenylcarbamate) adsorbed on silica gel as a chiral stationary phase. This was carried out by high-performance liquid chromatography using a column packed in a column. Fractionation was performed using hexane-isopropyl alcohol-chloroform (80:10:10 by volume) as an eluent to obtain two components with different retention times. It was confirmed from the circular dichroism spectrum that these two components were optical isomers.

実施例1 参考例1で得られた保持時間が小さい方の光学活性なス
トラップポルフィリン20■を窒素置換されたナス型フ
ラスコにとったのち、窒素雰囲気下塩化メチレン2J、
トリメチルアルミニウム0.02  を加え、室温で1
時間反応させた0反応終了後、メタノール0.1イ、水
5.L/!を加え、分液したのち、塩化メチレン層を減
圧下で乾固してアルミニウムポルフィリン錯体を得た。
Example 1 After putting 20 μ of the optically active strap porphyrin with the shorter retention time obtained in Reference Example 1 into a nitrogen-substituted eggplant-shaped flask, 2 J of methylene chloride,
Add 0.02 ml of trimethylaluminum and 1 ml at room temperature.
After 0.1 hours of reaction, 0.1 hours of methanol and 5.0 hours of water. L/! was added and separated, and the methylene chloride layer was dried under reduced pressure to obtain an aluminum porphyrin complex.

測定サンプルの1)L−α−メトキシプロピオン酸(ラ
セミ体) 0.01  にこの錯体20■のイソプロピ
ルアルコール溶液3 を室温で添加したのち、減圧下で
溶媒のイソプロピルアルコールを除去した。溶媒除去後
、重水素化クロロホルム(CDC13)−重水素化ジメ
チルスルホキシドCDMSO−d&)混合溶媒(体積で
9対1)0.5  に溶解したのち、溶液をNMR測定
用サンプル管にとり’ H−11MR(270旧1z、
22℃)を測定した。
After adding 3 ml of an isopropyl alcohol solution containing 20 ml of this complex to 0.01 ml of the measurement sample 1) L-α-methoxypropionic acid (racemic form) at room temperature, the isopropyl alcohol solvent was removed under reduced pressure. After removing the solvent, it was dissolved in 0.5% deuterated chloroform (CDC13)-deuterated dimethyl sulfoxide CDMSO-d&) mixed solvent (9:1 by volume), and the solution was placed in a sample tube for NMR measurement. (270 old 1z,
22°C) was measured.

添加前のDL−α−メトキシプロピオン酸(C14゜+
8+ C11(OCIlz)COOIi)のCDCI *中の
共鳴吸収は(a)炭(bl  (C+ 素ニツくプロトンがδ1.48ppm(:!vA)  
 (b)炭素につくプロトンが63.95ppm(四重
線)  (C)炭素につくプロトンが63.47ppm
(−重線)であった(第1図)、添加後の錯体(ジアス
テレオマー)中のDし−α−メトキシプロピオン酸に相
当する共鳴吸収は、<a>炭素につくプロトンでδ−1
,99pp麟と−2,01ppm(各二重線)  (b
)炭素につくプロトンで−0,401)$111 と−
〇、91pp閤(各四重線)(C)炭素につくプロトン
で0.95pp鋼と0.94ppm各−重線にシフトし
た。その2種類に分裂した共鳴吸収の積分比は、1.0
であることから、DL−α−メトキシプロピオン酸の光
学純度は0%と計算された。第2図に、この錯体の’H
−NMRスペクトルのチャートを示す。
DL-α-methoxypropionic acid (C14°+
8+ C11(OCIlz)COOIi) in CDCI
(b) Protons attached to carbon are 63.95 ppm (quartet line) (C) Protons attached to carbon are 63.47 ppm
(- double line) (Figure 1), the resonance absorption corresponding to D-α-methoxypropionic acid in the complex (diastereomer) after addition is due to the proton attached to the <a> carbon. 1
,99pprin and -2,01ppm (each double line) (b
) Proton attached to carbon -0,401) $111 and -
〇, 91 ppm (each quartet) (C) Protons attached to carbon shifted to 0.95 ppm steel and 0.94 ppm each doublet. The integral ratio of the resonance absorption divided into two types is 1.0
Therefore, the optical purity of DL-α-methoxypropionic acid was calculated to be 0%. Figure 2 shows the 'H' of this complex.
- Shows a chart of NMR spectra.

実施例2 カルボン酸としてDL−α−メトキシプロピオン酸(ラ
セミ体)に代えて光学活性なし一α、メトキシプロピオ
ン酸を用いたほかは、実施例1と同様にサンプルを調製
し、’II−NMRを測定した。
Example 2 A sample was prepared in the same manner as in Example 1, except that DL-α-methoxypropionic acid (racemic form) was replaced with 1α-methoxypropionic acid, which has no optical activity, as the carboxylic acid. was measured.

添加後・の錯体中のし一α−メトキシプロピオン酸(C
II3CH(OCHりC00−)に相当する共鳴吸収は
、(a)lal fcl  (bl 炭素につくプロトンが−2,01ppm(二重線)、(
b)炭素につくプロトンがδ−0,40pp+s(四重
線)(C)炭素に付くプロトンが60.95ppm(−
重線)に観測された。ラセミ体の場合の各共鳴吸収の一
方のみに帰属されることから、L−α−メトキシプロピ
オン酸の光学純度は100%と計算された。
After addition of mono-α-methoxypropionic acid (C
The resonance absorption corresponding to II3CH (OCH C00-) is (a) lal fcl (bl proton attached to carbon is -2,01 ppm (double line), (
b) Proton attached to carbon is δ-0,40pp+s (quartet) (C) Proton attached to carbon is 60.95ppm (-
(double line) was observed. The optical purity of L-α-methoxypropionic acid was calculated to be 100% since it was attributed to only one of each resonance absorption in the case of a racemate.

実施例3 カルボン酸としてOL−α−メトキシプロピオン酸(ラ
セミ体)に代えて、L対D fJ<重量で4:1(L体
の光学純度が60%〕のα−メトキシプロピオン酸を用
いたほかは、実施例1と同様にサンプルを調整し、’I
I−NMRを測定した。
Example 3 Instead of OL-α-methoxypropionic acid (racemic form) as the carboxylic acid, α-methoxypropionic acid with L to D fJ <4:1 by weight (optical purity of L form: 60%) was used. Otherwise, the sample was prepared in the same manner as in Example 1, and 'I
I-NMR was measured.

添加後の錯体中のα−メトキシプロピオン酸(CHt(
:If(OCII3)COO−)に相当する共鳴吸収は
、(a)lal (bl  fc) 炭素につくプロトンがδ−1,99ppmと−2,01
ppm(各二重線)  (b)炭素につくプロトンがδ
−0,40ppm と−0,91ppm(各四重線) 
 (C)炭素につくブトンが60.95ppm と0.
94pp111(各−重線)に観測された。その2種類
に分裂した共鳴吸収の化学シフト値は、ラセミ体の場合
と等しく、それぞれの積分比は、4.0であった。さら
に、積分強度が大きい方の共鳴吸収の化学シフト値はL
−αメトキシプロピオン酸の場合と等しいことから、α
−メトキシプロピオン酸の光学純度はL体60%と計算
された。
α-methoxypropionic acid (CHt(
: If(OCII3)COO-), the resonance absorption corresponding to
ppm (each doublet) (b) The proton attached to carbon is δ
-0,40ppm and -0,91ppm (each quartet)
(C) Butons attached to carbon are 60.95 ppm and 0.
It was observed at 94pp111 (each double line). The chemical shift values of the resonance absorption split into two types were the same as in the case of the racemate, and the respective integral ratios were 4.0. Furthermore, the chemical shift value of the resonance absorption with larger integrated intensity is L
−α Since it is equal to the case of methoxypropionic acid, α
-The optical purity of methoxypropionic acid was calculated to be 60% of the L form.

実施例4 実施例1でNMRを測定したあとのサンプルを分液ロー
トに移し、塩化メチレン5.mt、0.5N水酸化ナト
リウム5 を加え、漫とうした0分液したのち、塩化メ
チレン層を水sJで洗浄し、塩化メチレン層を減圧下で
乾固してアルミニウムポルフィリン錯体を回収した。
Example 4 The sample subjected to NMR measurement in Example 1 was transferred to a separating funnel, and 5.5% of methylene chloride was added. mt, 0.5N sodium hydroxide 5 was added and the mixture was stirred for 0 minutes, then the methylene chloride layer was washed with water sJ, and the methylene chloride layer was dried under reduced pressure to recover the aluminum porphyrin complex.

回収した錯体と、カルボン酸としてDL−α−メトキシ
プロピオン酸(ラセミ体)に代えて、光学活性なし一α
、メトキシプロピオン酸を用いたほかは、実施例1と同
様にサンプルを調整して’II−IJMRを測定した。
The recovered complex and DL-α-methoxypropionic acid (racemic form) as the carboxylic acid were replaced with non-optically active monoα.
A sample was prepared in the same manner as in Example 1, except that methoxypropionic acid was used, and 'II-IJMR was measured.

添加後の錯体中のL−α−メトキシプロピオン酸に相当
する・共鳴吸収は実施例2の場合と全く同じであること
からし一α−メトキシプロピオン酸の光学純度は100
%と計算された。
Since the resonance absorption corresponding to L-α-methoxypropionic acid in the complex after addition is exactly the same as in Example 2, the optical purity of L-α-methoxypropionic acid is 100.
It was calculated as %.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で使用したOL−のメトキシプロピオ
ン酸のNMRチャートを示す。 第2図は上記OL−α−メトキシプロピオン酸にアルミ
ニウムポルフィリン錯体を添加したもののNMRチャー
トであり、同図下部に矢印により示した図は各部分の拡
大図である。 第1図及び第2図のNMRスペクトルに付された(a)
   (b)   (c)の記号は以下の意味を示す。 (a):DL−α−メトキシプロピオン酸の(a)炭素
につくプロトンの共鳴吸収。 (b) :同物質の(b)炭素につくプロトンの共鳴吸
収。 (C) :同物質の(c)炭素につくプロトンの共鳴吸
収。
FIG. 1 shows an NMR chart of OL-methoxypropionic acid used in Example 1. FIG. 2 is an NMR chart of the OL-α-methoxypropionic acid to which an aluminum porphyrin complex is added, and the figures indicated by arrows at the bottom of the figure are enlarged views of each part. (a) attached to the NMR spectra in Figures 1 and 2
(b) The symbols in (c) have the following meanings. (a): Resonance absorption of protons attached to the (a) carbon of DL-α-methoxypropionic acid. (b): Resonant absorption of protons attached to (b) carbon of the same substance. (C): Resonant absorption of protons attached to (c) carbon of the same substance.

Claims (1)

【特許請求の範囲】  下記一般式(1)においてストラップXがポルフィリ
ン面を反転しないストラップポルフィリンを光学分割す
ることにより得られる光学活性体の金属錯体からなるキ
ラルシフト試薬。 ▲数式、化学式、表等があります▼・・・・(1)
[Scope of Claims] A chiral shift reagent comprising a metal complex of an optically active substance obtained by optically resolving a strap porphyrin in which the strap X does not invert the porphyrin plane in the following general formula (1). ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・(1)
JP1080946A 1989-03-31 1989-03-31 Chirality shift reagent Pending JPH02259481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1080946A JPH02259481A (en) 1989-03-31 1989-03-31 Chirality shift reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1080946A JPH02259481A (en) 1989-03-31 1989-03-31 Chirality shift reagent

Publications (1)

Publication Number Publication Date
JPH02259481A true JPH02259481A (en) 1990-10-22

Family

ID=13732663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1080946A Pending JPH02259481A (en) 1989-03-31 1989-03-31 Chirality shift reagent

Country Status (1)

Country Link
JP (1) JPH02259481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014934A1 (en) * 1993-11-26 1995-06-01 Daicel Chemical Industries, Ltd. Nmr chiral shift reagent comprising sugar derivative

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014934A1 (en) * 1993-11-26 1995-06-01 Daicel Chemical Industries, Ltd. Nmr chiral shift reagent comprising sugar derivative
US5736411A (en) * 1993-11-26 1998-04-07 Daicel Chemical Industries, Ltd. Chiral shift reagent for NMR comprising saccharide derivative

Similar Documents

Publication Publication Date Title
Sugasaki et al. Efficient chirality transcription utilizing a cerium (IV) double decker porphyrin: A prototype for development of a molecular memory system
Timko et al. Host-guest complexation. 10. Designed chiral recognition in solution between carboxyl-containing macrocyclic polyethers and an. alpha.-amino acid
Thompson et al. Synthesis, configuration, and chemical shift correlations of chiral 1, 3, 2-oxazaphospholidin-2-ones derived from l-serine
JPH02259481A (en) Chirality shift reagent
JPH0430376B2 (en)
JPH01301156A (en) Chiral shift reagent
Dang et al. Homolytic reactions of ligated boranes. Part 18. The scope of enantioselective hydrogen-atom abstraction by chiral amine–boryl radicals for kinetic resolution under conditions of polarity reversal catalysis
RU2480460C2 (en) Method of separating mixture of optical isomers of pinocembrin, particularly pinocembrin racemate
Lake et al. Sulfonamide Ligands from Chiral Aziridines− Application to the Titanium‐Mediated Addition of Diethylzinc to Benzaldehyde
Resch et al. Use of osmate (VI) ester trans-N, N, N′, N′-tetramethyl-1, 2-cyclohexanediamine complexes for determination of glycol stereochemistry
Kusumi et al. Determination of the absolute configuration of biologically active compounds by the modified Mosher’s method
JPH02237939A (en) Optical resolution of compound having carboxylic acid group
Xu et al. Synthesis of New Chiral [2‐(1‐Hydroxyalkyl) pyrrolidino] methyl‐ferrocenes and Application to the Catalytic Asymmetric Addition of Diethylzinc to Arylaldehydes
JP3432880B2 (en) Preparation of optically active azaspiro compounds
JPH03106852A (en) Method for directly resolving alpha-aminoketones
Shi et al. Enantiodifferentiating photoisomerization of (Z)-cyclooctene sensitized by chiral C2-symmetric phosphoramide
JPH05208927A (en) Production of 1-phenyl-1,3-propanediol compounds having high optical purity
JP5692812B2 (en) Ligand for asymmetric synthesis catalyst and method for producing α-alkenyl cyclic compound using the same
JPS60136522A (en) Separating agent
JPH0135A (en) Inclusion compounds of cholic acid or its ester derivatives
CN114160206A (en) Catalyst for catalytic synthesis of optically active indole compound, application and synthesis method thereof, and optically active indole compound
JP4054322B2 (en) Process for producing optically active tertiary propargyl alcohol derivative
Bus et al. Determination of the optical purity and absolute configuration at the 2‐position of enzymatically prepared 2‐substituted prostaglandins
JPH0796503B2 (en) Method for optical resolution of α-substituted acetic acid esters
JPH115753A (en) Agent for optical resolution and optical resolution using the same