JPH02259309A - Fine powder fuel burner - Google Patents

Fine powder fuel burner

Info

Publication number
JPH02259309A
JPH02259309A JP7643089A JP7643089A JPH02259309A JP H02259309 A JPH02259309 A JP H02259309A JP 7643089 A JP7643089 A JP 7643089A JP 7643089 A JP7643089 A JP 7643089A JP H02259309 A JPH02259309 A JP H02259309A
Authority
JP
Japan
Prior art keywords
pipe
fuel
tube
pulverized fuel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7643089A
Other languages
Japanese (ja)
Other versions
JP2693211B2 (en
Inventor
Kazuo Koyata
小谷田 一男
Tetsuo Ono
哲夫 小野
Hisashi Imai
寿 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP7643089A priority Critical patent/JP2693211B2/en
Publication of JPH02259309A publication Critical patent/JPH02259309A/en
Application granted granted Critical
Publication of JP2693211B2 publication Critical patent/JP2693211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a stable combustion and to save auxiliary fuel by a method wherein a flow of fine powder fuel is struck against a distributing plate within a vortex pipe, its direction is changed toward a crossing direction to form a swirl and to collect fuel around a circumference of the pipe and the fuel is supplied to some distributing pipes concentrically installed in multi-layered form. CONSTITUTION:A flow of fine powder fuels supplied by a fuel supply pipe 6 strikes against a distributing disk 4 within an inner pipe 2 of a vortex pipe 1, its direction is changed toward a crossing direction and the flow is blown from an opening 5 of a tangential direction of a circumferential surface into an outer pipe 3 so as to make a swirl. With such an arrangement, the powder fuels are collected at a circumference under a centrifugal force so as to form a region of fuel condensation and another region of lean fuel. The fuel is discharged out of each of the pipes 9 to 11 of the distributing pipe 8 for every regions. Then, an amount of air flowing into a central pipe 9 is made variable by a flow rate variable valve 7. With such an arrangement, it is possible to provide a stable combustion and to save auxiliary fuel oil.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はバーナに間する。更に詳述すると、本発明は微
粉炭や微粉コークス等の微粉燃料を燃料とするバーナに
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a burner. More specifically, the present invention relates to a burner that uses pulverized fuel such as pulverized coal or pulverized coke as fuel.

(従来の技術) 従来の微粉燃料バーナとしては、第7図に示すように、
微粉燃料を一次空気(全燃焼用空気量の約20〜30%
)で搬送して炉内へ吹込み、その周囲から二次空気を供
給して燃焼させるものが一般的である。このバーナ10
1は、高温の炉内の放射熱や池のバーナの干渉で火炎を
安定させ完全燃焼させるもので、中心に助燃用の油ノズ
ル102を備えているものが多い。
(Prior art) As shown in Fig. 7, a conventional pulverized fuel burner is
Pulverized fuel is used as primary air (approximately 20 to 30% of the total amount of combustion air)
), the fuel is blown into the furnace, and secondary air is supplied from around it for combustion. This burner 10
Type 1 uses radiant heat in the high-temperature furnace and interference from a pond burner to stabilize the flame and achieve complete combustion, and many are equipped with an oil nozzle 102 for auxiliary combustion in the center.

(発明が解決しようとする課U) しかしながら、従来のバーナは、石炭粉砕機(ミル)か
らの微粉燃料をそのまま直接バーナに供給して燃焼させ
ることから、微粉燃料の搬送と逆火の防止のためには一
次空気にある程度の流速(例えば15〜301/s)を
必要とする。このため、燃焼量を大幅に下げ低負荷とす
るときには、搬送に必要な最少限の搬送空気量を維持し
たまま燃料の量だけを絞らざるを得す、微粉燃料流の濃
度(一般に搬送用空気量と微粉燃料量の比A/Cで表さ
れる)が薄くなって燃焼を不安定なものとしている(第
6図参照)、シたがって、微粉燃料だけを使用する場合
には大幅なターンダウンの実施が不可能であり、それを
実現するには助燃油を必要としている0例えば、火力発
電所等においては、微粉燃料だけを使用する場合、現状
では120〜50%の範囲変化が可能であるが、深夜に
おける電力量の需要が少ないことから20〜30%程度
の負荷に変更することが求められ、助燃油を必要として
いる。したがって、燃焼量を絞る場合、燃料コストが上
がるという不利がある。このような微粉燃料バーナの現
状から、石油火力なみの最低負荷運用並びに低負荷時に
おける助燃油の低減を目的として低負荷対応微粉燃料専
用バーナの開発が要望されている。
(Problem U to be solved by the invention) However, in conventional burners, the pulverized fuel from the coal crusher (mill) is directly supplied to the burner and burned, so it is difficult to transport the pulverized fuel and prevent backfire. For this purpose, a certain flow rate (for example, 15 to 301/s) of primary air is required. For this reason, when the combustion amount is significantly reduced to reduce the load, it is necessary to reduce the amount of fuel while maintaining the minimum amount of air required for conveyance. (represented by the ratio A/C of the amount of pulverized fuel and the amount of pulverized fuel) becomes thinner, making combustion unstable (see Figure 6). Therefore, when only pulverized fuel is used, a large turn It is impossible to carry out a reduction, and auxiliary fuel is required to achieve this.For example, in a thermal power plant, etc., if only pulverized fuel is used, it is currently possible to change the range by 120 to 50%. However, since the demand for electric power is low late at night, it is required to change the load to about 20 to 30%, and auxiliary fuel is required. Therefore, when reducing the amount of combustion, there is a disadvantage that fuel cost increases. Due to the current state of pulverized fuel burners, there is a demand for the development of a burner dedicated to pulverized fuel that can handle low loads, with the aim of operating at a minimum load comparable to that of oil-fired power plants and reducing the amount of auxiliary fuel used during low-load operations.

本発明は、石油火力なみに最低負荷を低減しても安定燃
焼が確保できかつ助燃油の節減ができる微粉燃料バーナ
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pulverized fuel burner that can ensure stable combustion even when the minimum load is reduced to the same level as oil-fired power, and can save on auxiliary fuel.

(課題を解決するための手段) かかる目的を達成するなめ、本発明の微粉燃料バーナは
、微粉燃料の流れと直交する分配円板を内周面に形成し
かつ各分配円板の上流側の周面を接線方向に開口した内
管とその周囲を囲繞する外管とから成るボルテックス管
と、同心状に2本以上の管を配置し、少なくとも最も外
側の管の入口を径方向に開口すると共に中央の管の入口
を軸方向に開口して成る分配管と、この分配管の中央の
管の入口に対し接近離反移動し中央の管に流入する空気
の量を調整する流量可変弁とを有し、前記ボルテックス
管の出口を分配管に接続すると共に該ボルテックス管を
分配管内に出入り可能にして外側の管の流入口の開口面
積を可変にするようにしている。
(Means for Solving the Problems) In order to achieve the above object, the pulverized fuel burner of the present invention has distribution disks formed on the inner circumferential surface perpendicular to the flow of pulverized fuel, and a pulverized fuel burner on the upstream side of each distribution disk. A vortex tube consisting of an inner tube whose peripheral surface is opened in the tangential direction and an outer tube surrounding the vortex tube, and two or more tubes are arranged concentrically, and at least the entrance of the outermost tube is opened in the radial direction. A distribution pipe having an inlet of the central pipe opened in the axial direction, and a variable flow valve that moves toward and away from the inlet of the central pipe of the distribution pipe to adjust the amount of air flowing into the central pipe. The outlet of the vortex tube is connected to the distribution tube, and the vortex tube can be moved in and out of the distribution tube, so that the opening area of the inlet of the outer tube can be varied.

また、本発明は、前記ボルテックス管の外管と内管とを
分離し、管軸方向に移動可能に嵌合すると共に前記内側
管を微粉燃料供給管側に固定し、前記外管の管軸方向移
動によって分配管の外側の管の流入口の開口面積と前記
内管の周面の開口の面積を可変としている。
The present invention also provides an outer tube and an inner tube of the vortex tube, which are separated and fitted together so as to be movable in the axial direction of the tube, and the inner tube is fixed to the pulverized fuel supply tube side, and the outer tube has a tube axis. The opening area of the inlet of the outer pipe of the distribution pipe and the opening area of the peripheral surface of the inner pipe are made variable by the directional movement.

(作用) したがって、燃料供給管からボルテックス管内に導入さ
れた微粉燃料流は、各分配円板に衝突して直交方向に方
向を転換して周面の開口がら外管内に接線方向に吹き出
され、旋回流を形成する。
(Operation) Therefore, the pulverized fuel flow introduced into the vortex pipe from the fuel supply pipe collides with each distribution disk, changes its direction in the orthogonal direction, and is blown out in the tangential direction into the outer pipe through the opening in the circumferential surface, Forms a swirling flow.

この微粉燃料の旋回流は、その中に含まれる微粉燃料を
遠心力によって周辺に集める。このため、ボルテックス
管がら噴射される微粉燃料流は、全体としてはA/C比
が変わらないが、微粉燃料を濃縮した領域即ちA/C比
が低い領域と全体としてのA/C比よりも高いA/C比
の領域とを形成する。この微粉燃料が濃縮された領域と
、空気を主体とする領域とは分配管において分離され別
々に噴射される。
This swirling flow of pulverized fuel collects the pulverized fuel contained therein around it by centrifugal force. Therefore, the A/C ratio of the pulverized fuel flow injected from the vortex tube does not change as a whole, but the A/C ratio as a whole is higher than the area where the pulverized fuel is concentrated, that is, the area where the A/C ratio is low. A region with a high A/C ratio is formed. The region in which the pulverized fuel is concentrated and the region mainly composed of air are separated in a distribution pipe and injected separately.

そこで、最低限の搬送用空気を維持しつつ微粉燃料だけ
を少なくしてターンダウンする場合、流量可変弁を移動
させて分配管の中央の管に流入する空気量を増大させる
ことによって、第2の管から噴射される微粉燃料流の濃
度を一定に保つ、このとき、微粉燃料流全体が少なくな
っているのでボルテックス管を分配管内に挿入して一番
外側の管の流入口の面積を小さくし、第2の管に流入す
る微粉燃料流の噴射力が低下するのを防ぐ。
Therefore, when performing turndown by reducing only the pulverized fuel while maintaining the minimum amount of conveying air, the second The concentration of the pulverized fuel flow injected from the pipe is kept constant.At this time, since the total pulverized fuel flow is decreasing, a vortex pipe is inserted into the distribution pipe to reduce the area of the inlet of the outermost pipe. This prevents the injection force of the pulverized fuel flow flowing into the second pipe from decreasing.

(実施例) 以下、本考案の構成を図面に示す実施例に基づいて詳細
に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

第1図に本発明の微粉燃料バーナの基本構造を概略図で
示す、このバーナは、微粉燃料の流れと直交する分配円
板4.4を内周面に形成しかつ各分配円板4.4の上流
側の周面に接線方向の開口5.5を設けた内管2とその
周囲を囲繞する外管3とから成るボルテックス管1と、
同心状に2本以上の管9.10.−11を配置して成る
分配管8と、この分配管8の中央の菅9の入口13に対
し接近離反移動する流量可変弁7とから構成され、ボル
テックス管の出口1bを分配管8内に出入り可能に接続
すると共に入口la側を微粉燃料供給管6に接続し、固
定的な微粉燃料供給管6と分配管8との間でボルテック
ス管1を移動可能にしている。
FIG. 1 schematically shows the basic structure of the pulverized fuel burner of the present invention. This burner has distribution disks 4.4 formed on the inner peripheral surface perpendicular to the flow of pulverized fuel, and each distribution disk 4.4. a vortex tube 1 consisting of an inner tube 2 having a tangential opening 5.5 on the upstream circumferential surface of the vortex tube 4; and an outer tube 3 surrounding the inner tube 2;
Two or more concentric tubes9.10. -11, and a variable flow rate valve 7 that moves toward and away from the inlet 13 of the pipe 9 in the center of the distribution pipe 8, and the outlet 1b of the vortex pipe is connected to the inside of the distribution pipe 8. The vortex tube 1 is connected so that it can go in and out, and the inlet la side is connected to the pulverized fuel supply pipe 6, so that the vortex tube 1 can be moved between the fixed pulverized fuel supply pipe 6 and the distribution pipe 8.

前記気流分配円板4,4は、管軸方向に流れる微粉燃料
流をそれと直交する径方向に向きを変えさせかつ分流す
るためのものである0本実施例では、1枚のリング状円
板と1枚の円板とを組合せており、その面積の差(投影
面積の差)Sが等しくなるように設けている。したがっ
て、微粉燃料流は各分配円板4.4の衝突面積に応じて
流れを変え、はぼ同じ量の流れに分配される。尚、この
ボルテックス管1の入口1aは微粉燃料供給管6に軸方
向移動O在に嵌合され、破砕機等から微粉燃料を一次空
気によって搬送するように設けられている。
The air flow distribution disks 4, 4 are for changing the direction and dividing the pulverized fuel flow flowing in the direction of the tube axis in the radial direction perpendicular to the direction. In this embodiment, one ring-shaped disk is used. and one disk, and are arranged so that the difference in area (difference in projected area) S is equal. The pulverized fuel flow is therefore distributed in approximately the same amount of flow, depending on the impingement area of each distribution disk 4.4. The inlet 1a of the vortex tube 1 is fitted into the pulverized fuel supply pipe 6 so as to be movable in the axial direction, and is provided so that the pulverized fuel is conveyed from the crusher or the like by primary air.

ボルテックス管1は適宜アクチュエータあるいは手動に
よって軸方向に移動可能に設けられており、分配管s内
に出入り可能に設けられている。
The vortex tube 1 is provided so as to be movable in the axial direction by an appropriate actuator or manually, and is provided so as to be able to move in and out of the distribution pipe s.

このボルテックス管1の分配管8への挿入量をコントロ
ールすることによって、■口1bに嵌合されている分配
管8の最も外側の管11の入口11aの面積を可変とし
、即ち流入する@粉燃料流の量を変更可能としている。
By controlling the insertion amount of this vortex tube 1 into the distribution pipe 8, the area of the inlet 11a of the outermost pipe 11 of the distribution pipe 8 fitted to the opening 1b can be varied, that is, the inflowing @ powder The amount of fuel flow can be changed.

このボルテックス管1の挿入量は搬送空気量の変化に対
応させてアクチュエータ22あるいは手動によって制御
される。
The amount of insertion of the vortex tube 1 is controlled by an actuator 22 or manually in response to changes in the amount of conveyed air.

また、ボルテックス管1内には分配管8の中央の管9に
流入する空気量を制御する流量可変弁7が設けられてい
る。この流量可変弁7は、ボルテックス管1の分配円板
4,4を貫通して軸方向移動可能に設けられ、分配管8
の中央の管9の入口9aに接近しあるいは入口9aから
離れることによって中央の管9の入口9a近傍の流路抵
抗を変化させ、中央の管9に流入する空気の量を調整す
るものである。この流量可変弁7は外部に設けられてい
るアクチュエータ21あるいは手動によって移動可能に
設けられている。この流量可変弁7は供給微粉燃料流の
濃度に応じてその位置が制御される。
Further, a variable flow valve 7 is provided in the vortex pipe 1 to control the amount of air flowing into the central pipe 9 of the distribution pipe 8. The variable flow rate valve 7 is provided so as to be able to move in the axial direction by penetrating the distribution disks 4, 4 of the vortex pipe 1.
By approaching or moving away from the inlet 9a of the central tube 9, the flow resistance near the inlet 9a of the central tube 9 is changed, and the amount of air flowing into the central tube 9 is adjusted. . The variable flow rate valve 7 is provided so as to be movable by an actuator 21 provided externally or manually. The position of this variable flow rate valve 7 is controlled according to the concentration of the supplied pulverized fuel flow.

分配管8は、同心状に2本以上の管9,10゜11を配
置して成り、ボルテックス管1の出口1bから噴射され
る旋回流を分配してそのままの濃度を維持しつつ火炉内
に噴射させるためのもので、本実施例の場合3重管から
成る。この分配管8はバーナノズルを構成することもあ
るが、その先端に別個にバーナノズルを設けても良い。
The distribution pipe 8 consists of two or more pipes 9, 10° 11 arranged concentrically, and distributes the swirling flow injected from the outlet 1b of the vortex pipe 1 into the furnace while maintaining the same concentration. This is for injecting water, and in this embodiment, it is made up of triple pipes. This distribution pipe 8 may constitute a burner nozzle, but a separate burner nozzle may be provided at its tip.

分配管8の第2の管10の上流側には流路断面縮小部(
スロート)12が設けられ、微粉燃料の旋回流を更に増
速させて微細粒子と粗粒子との分級効果を高めるように
したものである。この流路断面縮小部12の出口側には
分配管8の第2の管10の入口10aが径方向に開口さ
れ、入口側には第3の管11の入口11aが径方向に開
口されている。第2、第3の管10.11の入口部10
a、llaには接線方向に流れを案内して旋回流を付勢
するガイド板10b、llbが円周方向に多数投けられ
ている。この実施例の場合、ターンダウン時には第2の
管11から濃縮された微粉燃料流が噴射される。
On the upstream side of the second pipe 10 of the distribution pipe 8, there is a reduced flow section (
A throat) 12 is provided to further speed up the swirling flow of the pulverized fuel and enhance the effect of classifying fine particles and coarse particles. The inlet 10a of the second pipe 10 of the distribution pipe 8 is opened in the radial direction on the outlet side of the flow path cross-section reduced part 12, and the inlet 11a of the third pipe 11 is opened in the radial direction on the inlet side. There is. Inlet portion 10 of second and third pipes 10.11
A and lla are provided with a large number of guide plates 10b and 10b disposed in the circumferential direction for guiding the flow in the tangential direction and urging the swirling flow. In this embodiment, a concentrated pulverized fuel stream is injected from the second tube 11 during turndown.

第3図に池の実施例を示す、この実施例は分配管8と同
数の管13,14.15を同心状に配置して成る反転管
16を分配管8と平行に配置し、分配管8で分けられた
微粉燃料流の噴射位置を、内側のものを外側に、外側の
ものを内側に反転して噴射させるようにしたものである
0例えば本実施例の場合、分配管8の第3の管11と反
転管16の中央の管13、分配管8の中央のIF9と反
転管16の第3の管15、また第2の管10.14同士
をそれぞれ容管に対し接線方向に開口する連通管17.
18.19で連結している。この場合、中央の管にパイ
ロットバーナとしてオイルガン20を設置することが可
能となる。また、火炎の外II!IJから一次燃焼用空
気が噴射されるため濃淡燃焼を起こしてNOxを低減さ
せ得る。
FIG. 3 shows an embodiment of the pond. In this embodiment, an inversion pipe 16 consisting of the same number of pipes 13, 14, and 15 arranged concentrically as the distribution pipe 8 is arranged parallel to the distribution pipe 8. The injection positions of the pulverized fuel flow divided by 8 are reversed so that the inner part is injected outward and the outer part is injected inward. 3 pipe 11 and the central pipe 13 of the reversing pipe 16, the central IF9 of the distribution pipe 8 and the third pipe 15 of the reversing pipe 16, and the second pipes 10 and 14, respectively, in the tangential direction to the container pipe. Opening communication pipe 17.
It is connected at 18.19. In this case, it becomes possible to install the oil gun 20 as a pilot burner in the central pipe. Also, outside of the flames II! Since primary combustion air is injected from the IJ, concentrated combustion can occur and NOx can be reduced.

第4図に他の実施例を示す。この実施例は、ボルテック
ス管1を内側の管2と外側の管3とに分離し、内管2を
微粉燃料供給管6側に固定する−方、外管3を軸方向に
移動可能にすることによって、分配管8の第3の管11
と内管2の開口55を同時に塞いでターンダウン時でも
燃料流の旋回力と噴射力とを落とさないように設けたも
のである。
FIG. 4 shows another embodiment. In this embodiment, the vortex tube 1 is separated into an inner tube 2 and an outer tube 3, and the inner tube 2 is fixed to the pulverized fuel supply tube 6 side, while the outer tube 3 is made movable in the axial direction. By this, the third pipe 11 of the distribution pipe 8
and the opening 55 of the inner tube 2 at the same time so that the swirling force of the fuel flow and the injection force are not reduced even during turndown.

以上のように構成したので、本発明のバーナは次のよう
に燃焼量を変更し安定燃焼させ得る。
With the above structure, the burner of the present invention can change the combustion amount as follows and achieve stable combustion.

まず、第5図に本発明のバーナを応用した燃焼システム
の一例を示す、この燃焼システムは、燃料である石炭を
燃焼可能な粒径までミルで破砕し、燃焼用空気の30%
程度の一次空気を搬送用空気としてバーナ側へ搬送し燃
焼させるものである。
First, Fig. 5 shows an example of a combustion system to which the burner of the present invention is applied. This combustion system uses a mill to crush coal, which is the fuel, to a combustible particle size, and makes up 30% of the combustion air.
This type of primary air is used as transport air to be transported to the burner side and burned.

この微粉燃料流の供給系6の途中に設置されている微粉
炭濃度測定装置23からの測定結果に基づいてアクチュ
エータ21を駆動し流量可変弁7を移動させ、微粉燃料
濃度を一定に維持する。このときボルテックス管1の分
配管8内への挿入量、即ち第3の管11の流入口11a
の開口面積は燃焼用空気の量との関係から決定され、分
配管8からの噴射力を一定に保つようにコントロールさ
れる。ここで濃度測定装置23としては、例えば流れ方
向の2点での粒子による負荷圧力損失が混合比に比例す
ることから流量を求める差圧式ニューマライン粉粒体流
量計、あるいは相関式粉粒体流量計やマイクロ波粉粒体
流量計を利用したものが使用可能である。
Based on the measurement result from the pulverized coal concentration measuring device 23 installed in the middle of the pulverized fuel flow supply system 6, the actuator 21 is driven to move the variable flow valve 7 to maintain the pulverized fuel concentration constant. At this time, the insertion amount of the vortex pipe 1 into the distribution pipe 8, that is, the inflow port 11a of the third pipe 11
The opening area of is determined from the relationship with the amount of combustion air, and is controlled so as to keep the injection force from the distribution pipe 8 constant. Here, the concentration measuring device 23 may be, for example, a differential pressure type Newmarine powder/granular material flowmeter that determines the flow rate because the load pressure loss due to particles at two points in the flow direction is proportional to the mixing ratio, or a correlation type powder/granular material flow meter. A meter or a microwave powder flow meter can be used.

この燃焼システムにおいて、搬送用空気と燃料との比が
比例的に変更可能な範囲での燃焼量変更(約120〜5
0駕負荷)には、ボルテックス管1の分配管8内への挿
入量を搬送空気の供給量の変動に対応させて変えること
により、第3の管11の流入口11aの開口断面積を変
更して微粉燃料流の噴射力を一定に保つことによっての
み対応する。
In this combustion system, the combustion amount can be changed within a range where the ratio of conveying air to fuel can be changed proportionally (approximately 120 to 5
(0), the opening cross-sectional area of the inlet 11a of the third pipe 11 is changed by changing the insertion amount of the vortex pipe 1 into the distribution pipe 8 in accordance with the fluctuation of the supply amount of conveying air. This can only be achieved by keeping the injection force of the pulverized fuel stream constant.

例えば、80%に燃焼量をターンダウンするときは10
0%負荷時の第3の管11の開1コ面積の80%となる
ようにボルテックス管1を分配管8の中に挿入する。
For example, to turn down the combustion amount to 80%,
The vortex tube 1 is inserted into the distribution tube 8 so that the open area of the third tube 11 is 80% of the open area of the third tube 11 at 0% load.

また、A/C比が急激に高まる負荷範囲まで変更する場
合には、上述の第3の管11の流入口の開口面積の調整
と同時に微粉燃料の濃度及び粒径を濃度センサ2eで測
定しこの値に基づいて流量可変弁7が分配管8の中央の
管9の入口9aを塞ぐ量を制御することによって、濃度
を一定に維持するようにしている。即ち、燃料濃度が薄
くなると(A/C比が高くなる)、これを濃度センサ2
3で検出して流量可変弁7のアクチュエータ21を駆動
させて分配管8から離し、中央の管9に流入する搬送用
空気量を増やす、これによって分配管8の第2の管10
から噴射される微粉燃料流の濃度を高め安定燃焼域の値
に維持する。尚、第4図の実施例の場合、分配管8内へ
ボルテックス管1の外管3を挿入することによって分配
管8の第3の管11の流入口11aを絞るのと同時にボ
ルテックス管1の内管2の開口面積も絞り、ターンダウ
ンによって微粉燃料流が減少するなめに弱まるボルテッ
クス管1内の旋回流の旋回力を維持させる。
In addition, when changing the load range to a range where the A/C ratio increases rapidly, the concentration and particle size of the pulverized fuel are measured with the concentration sensor 2e at the same time as adjusting the opening area of the inlet of the third pipe 11. Based on this value, the variable flow rate valve 7 controls the amount by which the inlet 9a of the central pipe 9 of the distribution pipe 8 is closed, thereby maintaining the concentration constant. That is, when the fuel concentration becomes thinner (the A/C ratio becomes higher), this is detected by the concentration sensor 2.
3 and drives the actuator 21 of the variable flow rate valve 7 to move it away from the distribution pipe 8 to increase the amount of conveying air flowing into the central pipe 9.
The concentration of the pulverized fuel flow injected from the pulverized fuel stream is increased to maintain it at a value in the stable combustion range. In the case of the embodiment shown in FIG. 4, by inserting the outer tube 3 of the vortex tube 1 into the distribution tube 8, the inlet 11a of the third tube 11 of the distribution tube 8 is narrowed and at the same time, the vortex tube 1 is The opening area of the inner tube 2 is also narrowed down to maintain the swirling force of the swirling flow in the vortex tube 1, which weakens as the pulverized fuel flow decreases due to turndown.

(発明の効果) 以上の説明より明らかなように、本発明のバーナは、ボ
ルテックス管内に微粉燃料流を導入して旋回させ、その
旋回力によって微粉燃料が濃縮された領域と搬送用空気
を主体とする領域とに分ける一方、分配管の中央に流入
する空気量を調整することによって濃度を一定にコント
ロールして分配噴射するようにしたので、微粉燃料流全
体のAZC比が高くとも、安定燃焼させるに十分な低い
A/C比まで微粉燃料を濃縮した噴流を形成し、燃焼を
安定させる。即ち、石油火力並の20〜30%のターン
ダウンが可能となり、広い負荷範囲で燃焼量を変更でき
る。しかも助燃油を必要としない。
(Effects of the Invention) As is clear from the above description, the burner of the present invention introduces and swirls a pulverized fuel flow into a vortex pipe, and the swirling force mainly creates a region where pulverized fuel is concentrated and conveying air. By adjusting the amount of air flowing into the center of the distribution pipe, the concentration is controlled to be constant and distributed injection is performed, so even if the AZC ratio of the entire pulverized fuel flow is high, stable combustion can be achieved. This creates a jet stream that concentrates the pulverized fuel to a low enough A/C ratio to stabilize combustion. That is, it is possible to achieve a turndown of 20 to 30%, which is comparable to oil-fired power generation, and the combustion amount can be changed over a wide load range. Moreover, it does not require auxiliary fuel oil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の微粉燃料バーナの基本構造の概略を示
す中央縦断面図、第2図は第1図のn−■線断面図、第
3図は他の実施例を示す中央縦断面図、第4図(A)及
び(B)は更に他の実施例を示す図で、(A)は中央縦
断面図、(B)はIV−IV線断面図、第5図は本発明
の微粉燃料バーナを応用した燃焼システムの一例を示す
概略図である。第6図はバーナ入口の空気と微粉燃料量
の比と安定燃焼範囲の関係を示すグラフである。第7図
は従来の微粉燃料バーナの概略構造を示す説叫図である
。 ■・・・ボルテックス管、 1a・・・入口、 1b・・・出口、 2・・・内管、 3・・・外管、 4・・・分配円板、 5・・・開口、 6・・・微粉燃料供給管、7・・・可変弁、8・・・分
配管、 9・・・中央の管、 9a・・・入口、10・・・第2
の管、10a・・・入口、11・・・第3の管、11a
・・・入口。 特許出願人  財団法人 電力中央研究断金   井 
   寿 代 理 人
FIG. 1 is a central vertical cross-sectional view showing an outline of the basic structure of the pulverized fuel burner of the present invention, FIG. 2 is a cross-sectional view taken along the line n-■ in FIG. 1, and FIG. 3 is a central vertical cross-sectional view showing another embodiment. 4(A) and (B) are diagrams showing still other embodiments, in which (A) is a central longitudinal sectional view, (B) is a sectional view taken along the line IV-IV, and FIG. 5 is a diagram showing another embodiment of the present invention. 1 is a schematic diagram showing an example of a combustion system to which a pulverized fuel burner is applied. FIG. 6 is a graph showing the relationship between the ratio of the amount of air at the burner inlet to the amount of pulverized fuel and the stable combustion range. FIG. 7 is an explanatory diagram showing the schematic structure of a conventional pulverized fuel burner. ■...Vortex tube, 1a...Inlet, 1b...Outlet, 2...Inner tube, 3...Outer tube, 4...Distribution disk, 5...Opening, 6... -Powdered fuel supply pipe, 7...Variable valve, 8...Distribution pipe, 9...Central pipe, 9a...Inlet, 10...Second
pipe, 10a...inlet, 11...third pipe, 11a
···entrance. Patent applicant: Chuo Electric Power Research Institute Dankini Foundation
Kotobuki agent

Claims (2)

【特許請求の範囲】[Claims] (1)微粉燃料の流れと直交する分配円板を内周面に形
成しかつ各分配円板の上流側の周面を接線方向に開口し
た内管とその周囲を囲繞する外管とから成るボルテック
ス管と、同心状に2本以上の管を配置し、少なくとも最
も外側の管の入口を径方向に開口すると共に中央の管の
入口を軸方向に開口して成る分配管と、この分配管の中
央の管の入口に対し接近離反移動し中央の管に流入する
空気の量を調整する流量可変弁とを有し、前記ボルテッ
クス管の出口を分配管に接続すると共に該ボルテックス
管を分配管内に出入り可能として外側の管の流入口の開
口面積を可変にしたことを特徴とする微粉燃料バーナ。
(1) Consisting of an inner tube with a distribution disk formed on its inner circumferential surface that is perpendicular to the flow of pulverized fuel and an opening tangentially on the upstream circumferential surface of each distribution disk, and an outer tube surrounding the inner tube. A vortex pipe, a distribution pipe consisting of two or more pipes arranged concentrically, at least the entrance of the outermost pipe being opened in the radial direction, and the entrance of the central pipe being opened in the axial direction, and this distribution pipe. a variable flow rate valve that moves toward and away from the inlet of the central pipe to adjust the amount of air flowing into the central pipe; the outlet of the vortex pipe is connected to the distribution pipe, and the vortex pipe is connected to the distribution pipe. A pulverized fuel burner characterized in that the opening area of the inlet of the outer pipe is made variable so that the inlet can go in and out of the pulverized fuel burner.
(2)前記ボルテックス管の外管と内管とを分離し、管
軸方向に移動可能に嵌合すると共に前記内側管を微粉燃
料供給管側に固定し、前記外管の管軸方向移動によって
分配管の外側の管の流入口の開口面積と前記内管の周面
の開口の面積を可変としたことを特徴とする請求項1記
載の微粉燃料バーナ。
(2) Separate the outer tube and inner tube of the vortex tube, fit them together so that they can move in the tube axis direction, and fix the inner tube to the pulverized fuel supply tube side, and by moving the outer tube in the tube axis direction. The pulverized fuel burner according to claim 1, wherein the opening area of the inlet of the outer pipe of the distribution pipe and the opening area of the peripheral surface of the inner pipe are variable.
JP7643089A 1989-03-30 1989-03-30 Pulverized fuel burner Expired - Lifetime JP2693211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7643089A JP2693211B2 (en) 1989-03-30 1989-03-30 Pulverized fuel burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7643089A JP2693211B2 (en) 1989-03-30 1989-03-30 Pulverized fuel burner

Publications (2)

Publication Number Publication Date
JPH02259309A true JPH02259309A (en) 1990-10-22
JP2693211B2 JP2693211B2 (en) 1997-12-24

Family

ID=13604946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7643089A Expired - Lifetime JP2693211B2 (en) 1989-03-30 1989-03-30 Pulverized fuel burner

Country Status (1)

Country Link
JP (1) JP2693211B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130098278A1 (en) * 2010-04-27 2013-04-25 Yantai Longyuan Power Technology Co., Ltd Pulverized coal burner and pulverized coal boiler having it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721057B1 (en) * 2015-06-18 2017-03-29 한국생산기술연구원 Burner swirl intensity control apparatus and method for controlling the intensity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130098278A1 (en) * 2010-04-27 2013-04-25 Yantai Longyuan Power Technology Co., Ltd Pulverized coal burner and pulverized coal boiler having it
US8950345B2 (en) * 2010-04-27 2015-02-10 Yantai Longyuan Power Technology Co., Ltd. Pulverized coal burner and pulverized coal boiler having it

Also Published As

Publication number Publication date
JP2693211B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
EP0343767B1 (en) Burner for the combustion of pulverised fuel
US5231937A (en) Pulverized coal burner, pulverized coal boiler and method of burning pulverized coal
EP0711952B1 (en) Pulverized coal burner
US4479442A (en) Venturi burner nozzle for pulverized coal
AU709979B2 (en) Combustion burner and combustion device provided with same
CA1224089A (en) Process and a means for burning solid fuels, preferably coal, turf or the like, in pulverised form
KR100755879B1 (en) Overfiring air port, over air port, after air port method for manufacturing air port, boiler, boiler facility, method for operating boiler facility and method for improving boiler facility
KR101421744B1 (en) Pulverized coal-fired boiler and pulverized coal combustion method
EP0452608B1 (en) Improved burner for thermic generators
CN1065922A (en) The pulverizing jet of rotary kiln
CA1205684A (en) Burner register assembly
JP5386230B2 (en) Fuel burner and swirl combustion boiler
KR20140003558A (en) Solid fuel burner and combustion device using same
JPH0515924B2 (en)
US7549382B2 (en) On-line coal flow control mechanism for vertical spindle mills
CN208804669U (en) A kind of low nitrogen turbulent burner and burner of wind powder peripheral orientation polarization
TW201447185A (en) Oxy-solid fuel burner
JPH09170714A (en) Fine coal powder burning burner
JPH02259309A (en) Fine powder fuel burner
JPH0225083B2 (en)
JP2693210B2 (en) Pulverized fuel burner
CN108413388A (en) A kind of low nitrogen turbulent burner of wind powder peripheral orientation polarization
JP2954628B2 (en) Pulverized coal burner
JP2001355832A (en) Air port structure
BG65334B1 (en) Burner and method for the combustion of particulate fuel