JPH0225925B2 - - Google Patents

Info

Publication number
JPH0225925B2
JPH0225925B2 JP12309781A JP12309781A JPH0225925B2 JP H0225925 B2 JPH0225925 B2 JP H0225925B2 JP 12309781 A JP12309781 A JP 12309781A JP 12309781 A JP12309781 A JP 12309781A JP H0225925 B2 JPH0225925 B2 JP H0225925B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
polymerization
monomer
chloride polymer
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12309781A
Other languages
Japanese (ja)
Other versions
JPS5825310A (en
Inventor
Katsuo Mitani
Takashi Maehara
Kikuo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP12309781A priority Critical patent/JPS5825310A/en
Publication of JPS5825310A publication Critical patent/JPS5825310A/en
Publication of JPH0225925B2 publication Critical patent/JPH0225925B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塩化ビニル重合体の製造方法、特に嵩
比重の大きい塩化ビニル重合体を得る方法に関す
るものである。 塩化ビニルモノマーの気相重合方法に関しては
古くから多くの報告がなされていて、固体支持体
を使用することなしに実施すると、一般的な性質
が不良な塩化ビニル重合体しか得られないことが
よく知られている。従つて、固体支持体の開発に
多くの試みがなされている。例えば特公昭46−
30290号、特開昭47−596号には固体支持体として
塩化ビニル重合体、石綿、シリカ、パーライト等
の存在下に塩化ビニルモノマーを気相重合する方
法が示されていて、該固体支持体として塩化ビニ
ル重合体を使用すると有利であることが述べられ
ている。しかしながら、予め重合し乾燥した塩化
ビニル重合体を固体支持体として使用すること
は、極めて非効率的であり、また固体支持体とし
て使用される塩化ビニル重合体に気相重合時の熱
履歴と乾燥の熱履歴が加わることになり、塩化ビ
ニル重合体の特性を損うことになる。従つてこれ
らの方法は必ずしも満足出来る技術とは言えな
い。 本発明者等は、嵩比重の大きい塩化ビニル重合
体を塩化ビニルモノマーの気相重合法によつて得
る研究を行なつて来たが、塩化ビニル重合体の嵩
比重を増加させることは、従来公知の方法では極
めて困難であることが明らかになつた。塩化ビニ
ルモノマーの気相重合によつて塩化ビニル重合体
を得る方法は例えば米国特許第3622553号、米国
特許第3625932号に塊状重合法で重合した低収率
の塩化ビニル重合体を固体支持体として使用する
優れた気相連続重合方法が述べられている。該塊
状重合で塩化ビニル重合体のシードを重合して得
る時に5重量%以下であれば、アルコール、脂肪
族炭化水素、芳香族炭化水素等を添加してもよい
ことが報告されている。しかしながらこれらの方
法は優れた方法であるが工業的に実施する場合、
得られる重合体の嵩比重が十分に大きくならず嵩
比重をいかにして大きくするかが大きな技術課題
となることが判つた。 本発明者等は気相重合法の利点を失うことなく
嵩比重の大きい塩化ビニル重合体を得るべく、鋭
意研究を重ねた結果、前記塩化ビニル重合体のシ
ードを得る際の重合系の組成に得られる塩化ビニ
ル重合体の嵩比重が大きな影響をうける知見を得
て、更に研究を重ねて本発明を完成させるに至つ
た。 本発明は塩化ビニル重合体を溶解しない有機溶
媒中に該有機溶媒に対する塩化ビニルモノマー又
は塩化ビニルモノマーを主体とするビニル系単量
体混合物の容量比が5/95乃至90/10となる範囲で塩化 ビニルモノマー又は塩化ビニルモノマーを主体と
するビニル系単量体混合物を添加し、触媒の存在
下に重合し、塩化ビニル重合体のシードを得て、
次いで該塩化ビニル重合体のシードの存在下に飽
和蒸気圧より低い圧力で塩化ビニルモノマー又は
塩化ビニルモノマーを主体とするビニル系単量体
混合物を連続的に供給しながら重合を行なうこと
を特徴とする塩化ビニル重合体の製造方法を提供
するものである。 本発明は気相重合法の利点を失うことなく得ら
れる。塩化ビニル重合体の嵩比重が増大する特徴
を有するだけでなく、塩化ビニル重合体のシード
の重合に際して重合の制御が極めて容易である利
点を有している。 本発明において使用出来る塩化ビニルモノマー
と混合して使用するものは塩化ビニルモノマーと
共重合しうるビニル系単量体である。該共重合し
得るビニル系単量体としては特に限定されず公知
のビニル系単量体が使用出来るが代表的なものを
挙げれば例えばエチレン、プロピレン等のオレフ
イン化合物;酢酸ビニル、プロピオン酸ビニル等
のビニルエステル類;アクリル酸及びα−アクリ
ル酸等の不飽和モノカルボン酸及びそのアルキル
エステル類、アミド類即ちアクリル酸、メタアク
リル酸、アクリル酸エチル、メタアクリル酸メチ
ル、アクリル酸アミド、メタアクリル酸アミド;
アクリロニトリル等の不飽和ニトリル類;マレイ
ン酸、フマール酸等の不飽和ジカルボン酸類、そ
のアルキルエステル類、及びその無水物;ビニル
メチルエーテル、ビニルエチルエーテル等のビニ
ルアルキルエーテル類;その他種々の公知の共重
合性単量体が挙げられる。 本発明において使用する有機溶媒は、塩化ビニ
ル重合体を溶解しない有機溶媒であればよい。こ
のような有機溶媒は一般的にエチレングリコール
を除き本発明において使用する有機溶媒は、塩化
ビニル重合体を溶解いない有機溶媒であれば特に
限定されず使用出来る。特に一般には該塩化ビニ
ル重合体を溶解しない有機溶媒で且つ塩化ビニル
重合体を膨潤する能力が小さい有機溶媒ほど好適
である。このような有機溶媒は一般的に次の尺度
を用いて定義することができる。 x=(Vs/RT)(δs−δp2 −(1) 但し、xはFlory−Huggins相互作用定数で高
分子−溶媒間で固有の値である(ジヤーナル オ
ブ ケミカル フイジツクス、9巻440頁、660頁
(1941)、10巻、51頁(1942))。またVsは溶媒の
モル溶積、Rは気体定数、及びTは絶対温度であ
る。更にδsとδpは各々溶媒と高分子化合物の溶解
パラメーターであり、Hildebrand−Scatchardの
溶液理論で導かれる(J.H.Hildebrand、“The
Solubility of Nonelectrolytes.”3rd ed.,
Reinhold Publishing Corporation、New、
York、1979;G.Scatchard、ケミカルレビユー、
8巻、321頁(1931))。しかしながら上記高分子
化合物の溶解パラメーターを実験的に求めること
は非常に困難であるので、一般にはHoyによつて
提案された下記計算式を用いて計算すればよい。
(K.L.Hoy、ジヤーナル オブ ペイント テク
ノロジー 42巻、76頁(1970))。 δp=δΣFi/M −(2) 但しρは密度、Mは分子量で高分子化合物では
繰返し単位の値である。またFiは分子を構成する
原子又は原子団、結合型など構成グループについ
てのモル牽引力である。本発明に於ける有機溶媒
及び塩化ビニル重合体の溶解パラメーターはポリ
マーハンドブツク(John Wiley&Sons、New
York、1975)にもとづいて使用し、上記に記載
のないものについては前記(2)式から算出して使用
した。例えば(2)式から計算した塩化ビニル重合体
の溶解パラメーターは9.54(Cal/mole)1/2であつ
た。 塩化ビニル共重合体の溶解パラメーターは、共
重合体の密度と共重合体モノマー組成比を求める
ことにより(2)式を用いて容易に計算あることがで
きるので必要に応じて前記(2)式から算出すればよ
い。 (1)式のxの値が大きくなればなるほど有機溶媒
に塩化ビニル重合体の溶解性がなくなる。即ち、
貧溶媒性が大きくなる。本発明者等は有機溶媒の
xの値と本発明の製造方法で得られる塩化ビニル
重合体の嵩比重について系統的に調べた結果、x
の値が0.3以上、好ましくは0.4以上になると実質
的に塩化ビニル重合体が有機溶媒に溶解しないよ
うになり、このような有機溶媒を用いると嵩比重
の大きい塩化ビニル重合体が得られることを見い
出した。 従つて本発明に用いる有機溶媒は塩化ビニル重
合体を溶解しないか、もしくは膨潤能力が極めて
小さい有機溶媒であるのが好ましく、例えば、前
記(1)式のxの値が0.3以上、好ましくは0.4以上で
あることが望ましい。但し上記xの値が0.3以上
であつてもエチレングリコールは塩化ビニル重合
体の膨潤能力が著しく大きく本発明の有機溶媒と
して使用しない方がよい。本発明で特に好適に使
用される有機溶媒の代表的なものを例示すれば、
例えばメチルアルコール、エチルアルコール、イ
ソプロピルアルコール等のアルコール類;ブタ
ン、ペンタン、ヘプタン等の脂肪族炭化水素類、
シクロペンタン、シクロヘキサン、メチルシクロ
ペンタン等の脂環式炭化水素類;ジエチルエーテ
ル、メチルエチルエーテル等のエーテル類、等が
例示される。また、前記(1)式に於けるxが0.3以
上好ましくは0.4以上になるものであれば2種以
上の有機溶媒を混合した混合溶媒も用いることも
できる。 本発明において、塩化ビニル重合体のシードを
重合する場合の有機溶媒(ORSOL)に対する塩
化ビニルモノマー(VCM)又は塩化ビニルモノ
マーを主体とするビニル系単量体混合物
(VCMIX)の容量比即ち(VCM又は
VCMIX)/ORSOLは5/95乃至90/10、好ましくは 20/80乃至80/20である。上記(VCM又は VCMIX)/ORSOLが90/10より大きくなると、得 られる塩化ビニル重合体の嵩比重が著しく低下す
るだけでなく、重合時に発生する熱除去が困難に
なり、しばしば粒子状の塩化ビニル重合体が得ら
れなくなるので好ましくない。また前記(VCM
又はVCMIX)/ORSOLの値が5/95より小さくな ると嵩比重が著しく低下するだけでなく重合速度
が遅くなり多量の触媒の添加が必要になるので好
ましくない。塩化ビニルモノマーの供給方法は、
塩化ビニルモノマーに対する有機溶媒の容量比が
5/95乃至90/10になるように液状の塩化ビニルモノマ ーを仕込んでもよく、あるいは気相の塩化ビニル
モノマーを供給して有機溶媒に溶解させる方法を
採用すればよい。従つて、本発明における塩化ビ
ニル重合体の製造方法は次の方法が好ましく採用
できる。 (1) 有機溶媒に対して塩化ビニルモノマーの添加
量が多い場合には、触媒の存在下で重合し、み
かけ上有機溶媒が無くなつてから気相の塩化ビ
ニルモノマーを飽和蒸気圧より低い圧力で連続
的に供給しながら重合を行なう方法。 (2) 有機溶媒に対して塩化ビニルモノマーの添加
量が少ない場合には、触媒の存在下で一定時間
重合し、次いで気相の塩化ビニルモノマーを飽
和蒸気圧より低い圧力で連続的に供給しながら
重合を行なう方法。 (3) あらかじめ有機溶媒と触媒を仕込んだ後に、
塩化ビニルモノマーを飽和蒸気圧より低い圧力
で連続的に供給しながら重合を行なう方法。 これらの方法を採用することによつてシードと
なる塩化ビニル重合体の重合の制御が非常に容易
となるだけでなく、得られる塩化ビニル重合体の
嵩比重が大きくなる特徴がある。 前記塩化ビニル重合体のシードの存在下に、塩
化ビニルモノマー又は塩化ビニルモノマーを主体
とする塩化ビニル系単量体混合物を重合する方法
は塩化ビニルモノマーが気相状態で即ち塩化ビニ
ルモノマーの飽和蒸気圧より低い圧力下で重合す
る限り、公知の重合技術をそのまま採用すること
が出来る。また本発明において使用した有機溶媒
を塩化ビニル重合体から分離する方法は必ずしも
限定的でなく、塩化ビニル重合体のシードが生成
した後に重合系から分離する方法や気相重合を行
なつた後に塩化ビニル重合体から分離する方法等
が例示される。 本発明において重合温度は特に限定的ではな
く、一般には塩化ビニル重合体のシードを重合す
る場合には−30℃から80℃、好ましくは、0℃か
ら70℃、次いで塩化ビニルモノマーの気相重合即
ち飽和蒸気圧より低い圧力で塩化ビニルモノマー
を連続的に供給しながら重合を行なう場合には40
℃から80℃の重合温度が好適に採用される。また
重合時間は一般に1時間乃至10時間が好適に採用
される。 本発明の気相重合の重合圧力は、重合させよう
とする塩化ビニルモノマーの飽和蒸気圧より低い
圧力でなくてはならない。一般に相対圧力(Pr)
(重合系の塩化ビニルモノマーの圧力/重合温度
における塩化ビニルの飽和圧力)が0.5<Pr<1
の条件を満足すればよい。重合系に有機溶媒が存
在する場合には、有機溶媒の量と重合温度におけ
る蒸気圧から塩化ビニルモノマーの飽和蒸気圧以
下の相対圧力を容易に設定できる。 本発明において使用する触媒としては公知のも
のが使用出来る。例えばラジカル触媒すなわち遊
離ラジカルを発生するような触媒が使用される。
より具体的に例示すれば、有機過酸化物例えばラ
ウロイルパーオキシド、ターシヤリーブチルパー
オキシピバレート、ベンゾイルパーオキシド、イ
ソプロピルジオキシカーボネート、等;アゾ系化
合物例えばアゾビスイソブチロニトリル、α,
α′−アゾビス−4−メトキシ−2,4−ジメチル
バレロニトリル、等が好適に使用し得る。また触
媒の使用量は使用される単量体の0.01乃至5重量
%であることが好ましい。触媒は重合初期に全量
を添加することもできるが、逐次添加する方法も
好適に採用される。 本発明で得られる塩化ビニル重合体は嵩比重が
従来の公知の気相重合で得られる塩化ビニル重合
体に比べると著しく大きくなる。この理由は必ず
しも明確ではないが、塩化ビニル重合体よりなる
シードを製造する際の重合系の有機溶媒の存在量
によるものである。該塩化ビニル重合体よりなる
シードを製造する際の、有機溶媒に対する塩化ビ
ニルモノマー又は塩化ビニルモノマーを主体とす
るビニル系単量体混合物の比が得られる塩化ビニ
ル重合体の嵩比重に重大な影響を与える現象は驚
異的なものと言える。本発明は上記意外な現象の
知見をもとに完成されたもので、本発明が工業的
に寄与する役割は計り知れないものとなる。 本発明を更に具体的に説明するため以下の実施
例及び比較例をあげて説明するが、本発明はこれ
らの実施例に限定されるものではない。 尚、実施例及び比較例で表示された測定値は以
下の測定方法によつた。 (1) 重量平均重合度及び嵩比重 JIS K−6721の方法に準じて求めた。 (2) 粒度分布 塩化ビニル重合体を16メツシユ篩
(1000μm)、42メツシユ篩(350μm)でふるい
分けて、重量を測定した。 実施例 1 撹拌機付ガラス製オートクレーブに第1表に示
す割合のn−ペンタン、塩化ビニルモノマー、及
びジイソプロピルパーオキシジカーボネート(以
下単にIPPと略記する)1.0g、ターシヤリブチル
パーオキシピバレート(以下単にPVと略記する)
0.7gを仕込み、55℃で1時間30分重合してみかけ
上液状のn−ペンタンが無くなつた塩化ビニル重
合体のシードを得た。次いで、6.2Kg/cm2圧力の
気体の塩化ビニルモノマーを連続供給してオート
クレーブ内の圧力を6.2〜6.5Kg/cm2に保ち3時間
重合した。その後塩化ビニル重合体を回収して40
℃で一昼夜減圧乾燥した。得られた塩化ビニル重
合体の特性を第1表に示す。 尚、比較例として本発明以外の条件で重合した
結果を第1表に示す。また比較例1′〜4′は塩化ビ
ニル重合体よりなるシードの重合が終了した後、
残存モノマーをパージし、次いで塩化ビニルモノ
マーを気相で供給しながら重合を行つた。
The present invention relates to a method for producing a vinyl chloride polymer, and particularly to a method for obtaining a vinyl chloride polymer having a large bulk specific gravity. Many reports have been made for a long time regarding gas phase polymerization of vinyl chloride monomers, and when carried out without using a solid support, only vinyl chloride polymers with poor general properties are often obtained. Are known. Therefore, many attempts have been made to develop solid supports. For example, special public service in 1977-
No. 30290 and JP-A-47-596 disclose a method of gas phase polymerization of vinyl chloride monomer in the presence of a vinyl chloride polymer, asbestos, silica, perlite, etc. as a solid support. It has been stated that it is advantageous to use vinyl chloride polymers as However, it is extremely inefficient to use a prepolymerized and dried vinyl chloride polymer as a solid support, and the heat history and drying characteristics of the vinyl chloride polymer used as a solid support during gas phase polymerization This adds to the thermal history of the vinyl chloride polymer, which impairs the properties of the vinyl chloride polymer. Therefore, these methods cannot necessarily be said to be satisfactory techniques. The present inventors have conducted research on obtaining vinyl chloride polymers with high bulk specific gravity by gas phase polymerization of vinyl chloride monomers. It has become clear that known methods are extremely difficult. A method of obtaining a vinyl chloride polymer by gas phase polymerization of vinyl chloride monomers is described, for example, in U.S. Pat. A superior gas-phase continuous polymerization method for use is described. It has been reported that alcohol, aliphatic hydrocarbons, aromatic hydrocarbons, etc. may be added as long as the amount is 5% by weight or less when obtaining vinyl chloride polymer seeds in the bulk polymerization. However, although these methods are excellent, when implemented industrially,
It was found that the bulk specific gravity of the obtained polymer was not sufficiently large, and that how to increase the bulk specific gravity was a major technical problem. In order to obtain a vinyl chloride polymer with a high bulk specific gravity without losing the advantages of the gas phase polymerization method, the inventors of the present invention have conducted extensive research, and as a result, the composition of the polymerization system when obtaining seeds of the vinyl chloride polymer has been determined. They obtained the knowledge that the bulk specific gravity of the resulting vinyl chloride polymer is greatly affected, and after further research, they completed the present invention. In the present invention, a vinyl chloride monomer or a vinyl monomer mixture mainly consisting of a vinyl chloride monomer is added to an organic solvent in which the volume ratio of the vinyl chloride monomer or the vinyl monomer mixture mainly composed of vinyl chloride monomer to the organic solvent is in the range of 5/95 to 90/10. Adding vinyl chloride monomer or a vinyl monomer mixture mainly consisting of vinyl chloride monomer and polymerizing in the presence of a catalyst to obtain seeds of vinyl chloride polymer,
Next, polymerization is carried out in the presence of the vinyl chloride polymer seeds while continuously supplying a vinyl chloride monomer or a vinyl monomer mixture mainly composed of vinyl chloride monomers at a pressure lower than the saturated vapor pressure. The present invention provides a method for producing a vinyl chloride polymer. The present invention is obtained without losing the advantages of gas phase polymerization. It not only has the characteristic of increasing the bulk specific gravity of the vinyl chloride polymer, but also has the advantage that the polymerization can be extremely easily controlled during polymerization of the vinyl chloride polymer seed. The vinyl monomer that can be used in the present invention in combination with the vinyl chloride monomer is a vinyl monomer that can be copolymerized with the vinyl chloride monomer. The copolymerizable vinyl monomer is not particularly limited and any known vinyl monomer can be used, but typical examples include olefin compounds such as ethylene and propylene; vinyl acetate, vinyl propionate, etc. Vinyl esters; unsaturated monocarboxylic acids such as acrylic acid and α-acrylic acid, and their alkyl esters, amides such as acrylic acid, methacrylic acid, ethyl acrylate, methyl methacrylate, acrylic acid amide, and methacrylic acid. Acid amide;
Unsaturated nitrites such as acrylonitrile; unsaturated dicarboxylic acids such as maleic acid and fumaric acid, their alkyl esters, and their anhydrides; vinyl alkyl ethers such as vinyl methyl ether and vinyl ethyl ether; and various other known compounds. Examples include polymerizable monomers. The organic solvent used in the present invention may be any organic solvent as long as it does not dissolve the vinyl chloride polymer. Such organic solvents generally exclude ethylene glycol, and the organic solvent used in the present invention is not particularly limited as long as it does not dissolve the vinyl chloride polymer. In particular, organic solvents that do not dissolve the vinyl chloride polymer and have a smaller ability to swell the vinyl chloride polymer are generally more suitable. Such organic solvents can generally be defined using the following scale: x = (Vs/RT) (δ s − δ p ) 2 −(1) where x is the Flory-Huggins interaction constant, which is a unique value between polymer and solvent (Journal of Chemical Physics, Vol. 9, 440 p. 660 (1941), Vol. 10, p. 51 (1942)). Further, V s is the molar volume of the solvent, R is the gas constant, and T is the absolute temperature. Furthermore, δ s and δ p are the solubility parameters of the solvent and the polymer compound, respectively, and are derived from the Hildebrand-Scatchard solution theory (JHHildebrand, “The
Solubility of Nonelectrolytes.”3rd ed.,
Reinhold Publishing Corporation, New;
York, 1979; G. Scatchard, Chemical Review,
Volume 8, page 321 (1931)). However, since it is very difficult to experimentally determine the solubility parameter of the above-mentioned polymer compound, the calculation may generally be performed using the following calculation formula proposed by Hoy.
(KLHoy, Journal of Paint Technology Vol. 42 , p. 76 (1970)). δ p = δΣFi/M − (2) where ρ is the density, M is the molecular weight, and is the value of the repeating unit in a polymer compound. In addition, Fi is the molar attraction force for constituent groups such as atoms, atomic groups, bond types, etc. that make up the molecule. The solubility parameters of organic solvents and vinyl chloride polymers in the present invention can be found in the Polymer Handbook (John Wiley & Sons, New
York, 1975), and those not mentioned above were calculated and used from the above formula (2). For example, the solubility parameter of the vinyl chloride polymer calculated from equation (2) was 9.54 (Cal/mole) 1/2 . The solubility parameter of a vinyl chloride copolymer can be easily calculated using equation (2) by determining the density of the copolymer and the copolymer monomer composition ratio, so if necessary, use the equation (2) above. It can be calculated from. As the value of x in formula (1) increases, the vinyl chloride polymer becomes less soluble in organic solvents. That is,
Poor solvent property increases. The present inventors systematically investigated the value of x of the organic solvent and the bulk specific gravity of the vinyl chloride polymer obtained by the production method of the present invention, and found that x
When the value of is 0.3 or more, preferably 0.4 or more, the vinyl chloride polymer becomes substantially insoluble in the organic solvent, and when such an organic solvent is used, a vinyl chloride polymer with a large bulk specific gravity can be obtained. I found it. Therefore, the organic solvent used in the present invention is preferably an organic solvent that does not dissolve the vinyl chloride polymer or has an extremely small swelling ability.For example, the value of x in the above formula (1) is 0.3 or more, preferably 0.4. The above is desirable. However, even if the value of x is 0.3 or more, ethylene glycol has a significantly large swelling ability for vinyl chloride polymers and is therefore preferably not used as an organic solvent in the present invention. Typical organic solvents particularly preferably used in the present invention include:
For example, alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; aliphatic hydrocarbons such as butane, pentane, and heptane;
Examples include alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; ethers such as diethyl ether and methyl ethyl ether. Further, a mixed solvent of two or more organic solvents can also be used as long as x in the above formula (1) is 0.3 or more, preferably 0.4 or more. In the present invention, when polymerizing vinyl chloride polymer seeds, the volume ratio of vinyl chloride monomer (VCM) or a vinyl monomer mixture (VCMIX) mainly consisting of vinyl chloride monomer to organic solvent (ORSOL), that is, (VCM or
VCMIX)/ORSOL is 5/95 to 90/10, preferably 20/80 to 80/20. When the above (VCM or VCMIX)/ORSOL is greater than 90/10, not only does the bulk specific gravity of the resulting vinyl chloride polymer decrease significantly, but it also becomes difficult to remove the heat generated during polymerization, which often results in the formation of particulate vinyl chloride. This is not preferred because a polymer cannot be obtained. Also mentioned above (VCM
If the value of VCMIX)/ORSOL is less than 5/95, not only the bulk specific gravity will be markedly lowered but also the polymerization rate will be slow, making it necessary to add a large amount of catalyst, which is not preferable. The method of supplying vinyl chloride monomer is as follows:
Liquid vinyl chloride monomer may be charged so that the volume ratio of organic solvent to vinyl chloride monomer is 5/95 to 90/10, or a method may be adopted in which gas phase vinyl chloride monomer is supplied and dissolved in the organic solvent. do it. Therefore, the following method can be preferably employed as the method for producing the vinyl chloride polymer in the present invention. (1) When the amount of vinyl chloride monomer added is large relative to the organic solvent, polymerization occurs in the presence of a catalyst, and after the organic solvent has apparently disappeared, the vinyl chloride monomer in the gas phase is heated to a pressure lower than the saturated vapor pressure. A method in which polymerization is carried out while continuously supplying. (2) When the amount of vinyl chloride monomer added to the organic solvent is small, polymerize for a certain period of time in the presence of a catalyst, and then continuously supply the vinyl chloride monomer in the gas phase at a pressure lower than the saturated vapor pressure. A method in which polymerization is carried out while (3) After preparing the organic solvent and catalyst in advance,
A method in which polymerization is carried out while continuously supplying vinyl chloride monomer at a pressure lower than the saturated vapor pressure. Adopting these methods not only makes it very easy to control the polymerization of the vinyl chloride polymer used as a seed, but also increases the bulk specific gravity of the resulting vinyl chloride polymer. The method of polymerizing a vinyl chloride monomer or a vinyl chloride monomer mixture mainly consisting of a vinyl chloride monomer in the presence of the vinyl chloride polymer seed is performed in a manner that the vinyl chloride monomer is in a gas phase, that is, a saturated vapor of the vinyl chloride monomer. As long as the polymerization is carried out under a pressure lower than the above pressure, known polymerization techniques can be employed as they are. Furthermore, the method for separating the organic solvent used in the present invention from the vinyl chloride polymer is not necessarily limited. Examples include methods for separating it from vinyl polymers. In the present invention, the polymerization temperature is not particularly limited, and generally -30°C to 80°C when vinyl chloride polymer seeds are polymerized, preferably 0°C to 70°C, followed by gas phase polymerization of vinyl chloride monomer. In other words, when polymerization is carried out while continuously supplying vinyl chloride monomer at a pressure lower than the saturated vapor pressure, 40
Polymerization temperatures from 0.degree. C. to 80.degree. C. are preferably employed. Further, the polymerization time is generally preferably 1 hour to 10 hours. The polymerization pressure in the gas phase polymerization of the present invention must be lower than the saturated vapor pressure of the vinyl chloride monomer to be polymerized. Generally relative pressure (Pr)
(Pressure of vinyl chloride monomer in polymerization system/saturation pressure of vinyl chloride at polymerization temperature) is 0.5<Pr<1
It is sufficient to satisfy the following conditions. When an organic solvent is present in the polymerization system, the relative pressure can be easily set to be less than or equal to the saturated vapor pressure of the vinyl chloride monomer based on the amount of the organic solvent and the vapor pressure at the polymerization temperature. As the catalyst used in the present invention, any known catalyst can be used. For example, radical catalysts, ie catalysts which generate free radicals, are used.
More specific examples include organic peroxides such as lauroyl peroxide, tert-butyl peroxypivalate, benzoyl peroxide, isopropyl dioxycarbonate, etc.; azo compounds such as azobisisobutyronitrile, α,
α'-Azobis-4-methoxy-2,4-dimethylvaleronitrile and the like can be preferably used. The amount of catalyst used is preferably 0.01 to 5% by weight of the monomers used. Although the entire amount of the catalyst can be added at the beginning of the polymerization, a method of successive addition is also suitably employed. The bulk specific gravity of the vinyl chloride polymer obtained by the present invention is significantly larger than that of the vinyl chloride polymer obtained by conventional known gas phase polymerization. The reason for this is not necessarily clear, but it is due to the amount of organic solvent present in the polymerization system when producing seeds made of vinyl chloride polymer. When producing seeds made of vinyl chloride polymer, the ratio of vinyl chloride monomer or vinyl monomer mixture mainly consisting of vinyl chloride monomer to organic solvent has a significant influence on the bulk specific gravity of the vinyl chloride polymer obtained. The phenomenon that gives this can be said to be astonishing. The present invention was completed based on the knowledge of the above-mentioned unexpected phenomenon, and the industrial contribution of the present invention will be immeasurable. EXAMPLES In order to explain the present invention more specifically, the following Examples and Comparative Examples will be given and explained, but the present invention is not limited to these Examples. The measured values shown in Examples and Comparative Examples were based on the following measuring method. (1) Weight average degree of polymerization and bulk specific gravity Determined according to the method of JIS K-6721. (2) Particle size distribution The vinyl chloride polymer was sieved through a 16-mesh sieve (1000 μm) and a 42-mesh sieve (350 μm), and its weight was measured. Example 1 In a glass autoclave equipped with a stirrer, n-pentane, vinyl chloride monomer, 1.0 g of diisopropyl peroxydicarbonate (hereinafter simply abbreviated as IPP), and tertiary butyl peroxy pivalate ( (hereinafter simply abbreviated as PV)
0.7 g was charged and polymerized at 55° C. for 1 hour and 30 minutes to obtain vinyl chloride polymer seeds in which apparently liquid n-pentane had disappeared. Next, a gaseous vinyl chloride monomer was continuously supplied at a pressure of 6.2 Kg/cm 2 to maintain the pressure inside the autoclave at 6.2 to 6.5 Kg/cm 2 for polymerization for 3 hours. After that, the vinyl chloride polymer was recovered and 40
It was dried under reduced pressure at ℃ overnight. Table 1 shows the properties of the vinyl chloride polymer obtained. As a comparative example, Table 1 shows the results of polymerization under conditions other than those of the present invention. In addition, in Comparative Examples 1' to 4', after the polymerization of the seeds made of vinyl chloride polymer was completed,
The remaining monomer was purged, and then the polymerization was carried out while supplying the vinyl chloride monomer in the gas phase.

【表】 実施例 2 撹拌機付きガラス製オートクレーブに第2表に
示す割合の有機溶媒とジイソプロピルパーオキシ
ジカーボネート1.0g及びターシヤリブチルパーオ
キシビバレート0.7gを仕込んでからオートクレー
ブを55℃に昇温した。次いで6.2Kg/cm2圧力の気
体の塩化ビニルモノマーを連続的に圧入してオー
トクレーブの圧力を6.2〜6.4Kg/cm2に保ち第2表
に示す如く一時間重合した。重合時間約1.5時間
でみかけ上液状の有機溶媒は無くなる、重合後塩
化ビニル重合体を回収して40℃で一昼夜減圧乾燥
した。得られた塩化ビニル重合体の特体を第2表
に示す。 尚、比較例として本発明以外の有機溶媒を用い
て重合した結果を第2表に示す。
[Table] Example 2 A glass autoclave equipped with a stirrer was charged with an organic solvent in the proportions shown in Table 2, 1.0 g of diisopropyl peroxydicarbonate, and 0.7 g of tertiary butyl peroxyvivalate, and then the autoclave was heated to 55°C. It was warm. Then, gaseous vinyl chloride monomer was continuously introduced at a pressure of 6.2 kg/cm 2 to maintain the autoclave pressure at 6.2 to 6.4 kg/cm 2 and polymerization was carried out for one hour as shown in Table 2. After about 1.5 hours of polymerization, the apparently liquid organic solvent disappeared. After the polymerization, the vinyl chloride polymer was recovered and dried under reduced pressure at 40°C all day and night. Table 2 shows the characteristics of the vinyl chloride polymer obtained. As a comparative example, Table 2 shows the results of polymerization using organic solvents other than those of the present invention.

【表】【table】

【表】 尚第2表の重合条件では重合が開始するまでに
有機溶媒に溶解した塩化ビニルモノマーは有機溶
媒:塩化ビニルモノマー=30:70乃至60:40(容
量比)である。 実施例 3 撹拌機付ガラス製オートクレーブにn−ペンタ
ン100ml、ジイソプロピルパーオキシカーボネー
ト10ミリモル、及びターシヤリブチルパーオキシ
ビバレート10ミリモルを仕込んでからオートクレ
ーブを50℃に昇温した。次いで6.2Kg/cm2圧力の
気体の塩化ビニルモノマーを連続的に圧入してオ
ートクレーブの圧力を6.2〜6.5Kg/cm2に保ち2時
間重合した(ガス流量計で調べた重合が開始する
までの塩化ビニルモノマーの溶解量は110mlであ
つた)。次いでオートクレーブを撹拌しながらn
−ペンタンを回収した。その後オートクレーブを
60℃に昇温して7.0Kg/cm2圧力の気体の塩化ビニ
ルモノマーを連続的に圧入して3時間重合した。
重合後塩化ビニル重合体を回収して40℃で一昼夜
減圧乾燥した。得られた塩化ビニル重合体の重量
は320gであり重量平均重合度は730であつた。嵩
比重は0.65g/c.c.、40メツシユ篩通過量は85重量
%であつた。 実施例 4 撹拌機付ガラス製オートクレーブにn−ペンタ
ン50ml、トリエチルホウ素0.5g及び過酸化水素
0.2gを仕込み、0℃に冷却してから塩化ビニルモ
ノマー50mlを仕込み、0℃で3時間撹拌重合し
た。次いでオートクレーブを55℃に昇温してジイ
ソプロピルパーオキシジカーボネート0.8gをター
シヤリブチルパーオキピバレート0.5gを仕込んで
から6.2Kg/cm2圧力の気体の塩化ビニルモノマー
を連続的に圧入してオートクレーブの圧力を6.2
〜6.5Kg/cm2に保ちながら4時間重合した。55℃
に昇温して30分後みかけ上液状のn−ペンタンが
無くなつた。かくして得られた塩化ビニル重合体
を40℃で一昼夜減圧乾燥した。得られた塩化ビニ
ル重合体の重量は270gであり、重量平均重合度
は850であつた。また嵩比重は0.67g/c.c.であり、
40メツシユ篩通過量は80重量%であつた。 実施例 5 撹拌機付きガラス製オートクレーブにn−ペン
タン50mlと塩化ビニルモノマー50ml及びジイソプ
ロピルパーオキシカーボネート0.5gとターシヤリ
ブチルパーオキシピバレート0.5gを仕込んでから
55℃に昇温して2時間撹拌重合して、塩化ビニル
重合体のシードを得た。次いで6.2Kg/cm2圧力の
気体の塩化ビニルモノマーを連続的に圧力してオ
ートクレーブを6.2〜6.4Kg/cm2に保ちながら、ジ
イソプロピルパーオキシカーボネート0.5gとター
シヤリブチルパーオキシピバレート0.5gを溶解し
たn−ペンタン溶液20c.c.を1時間に5c.c.の割合で
オートクレーブに逐次添加して重合を4時間行な
つた。重合後塩化ビニル重合体を回収して40℃で
一昼夜減圧乾燥した。得られた塩化ビニル重合体
の重量は330gであり、嵩比重は0.69g/c.c.であつ
た。 実施例 6 撹拌機付きガラス製オートクレーブにn−ペン
タン50ml、酢酸ビニルモノマー10g、塩化ビニル
モノマー50ml、及びジイソプロピルパーオキシカ
ーボネート1.0gとターシヤリブチルパーオキシピ
バレート1.0gを仕込んでから、55℃に昇温して2
時間撹拌重合した。みかけ上液状のn−ペンタン
は無くなる。次いで6.5Kg/cm2圧力の気体の塩化
ビニルモノマーを連続供給してオートクレーブの
圧力を6.5〜6.8Kg/cm2に保ち3時間撹拌重合し
た。その後、塩化ビニル重合体を回収して40℃で
一昼夜減圧乾燥した。得られた塩化ビニル重合体
の収量は210g、嵩比重は0.57g/c.c.、及び酢酸ビ
ニル含量は4重量%であつた。 実施例 7 撹拌機付きガラス製オートクレーブにn−ペン
タン50ml、塩化ビニルモノマーで50ml、及びアゾ
ビスイソブチロニトリル0.7gとターシヤリブチル
パーオキシピバレート1.0gを仕込み、65℃に昇温
してから1時間30分撹拌重合して液状n−ペンタ
ンが無くなつた塩化ビニル重合体のシードを得
た。次いで塩化ビニルモノマーとエチレンの等モ
ル混合気体を7.0Kg/cm2の圧力で連続的にオート
クレーブに圧入し、オートクレーブの重合圧を
7.0〜7.8Kg/cm2の圧力に保ちながら5時間撹拌重
合した。かくして得られた塩化ビニル重合体を40
℃で一昼夜減圧乾燥した。得られた塩化ビニル重
合体の嵩比重は0.62g/c.c.であり、エチレン含量
は1.1重量%であつた。
[Table] Under the polymerization conditions shown in Table 2, the vinyl chloride monomer dissolved in the organic solvent before the start of polymerization is organic solvent: vinyl chloride monomer = 30:70 to 60:40 (volume ratio). Example 3 A glass autoclave equipped with a stirrer was charged with 100 ml of n-pentane, 10 mmol of diisopropyl peroxycarbonate, and 10 mmol of tertiary butyl peroxyvivalate, and then the temperature of the autoclave was raised to 50°C. Next, gaseous vinyl chloride monomer at a pressure of 6.2 Kg/cm 2 was continuously injected, and the autoclave was kept at a pressure of 6.2 to 6.5 Kg/cm 2 for polymerization for 2 hours (until the polymerization started, as measured by a gas flow meter). The amount of vinyl chloride monomer dissolved was 110 ml). Then, while stirring the autoclave,
- Recovered pentane. Then autoclave
The temperature was raised to 60°C, and gaseous vinyl chloride monomer was continuously injected at a pressure of 7.0 kg/cm 2 to polymerize for 3 hours.
After the polymerization, the vinyl chloride polymer was recovered and dried under reduced pressure at 40°C all day and night. The weight of the obtained vinyl chloride polymer was 320 g, and the weight average degree of polymerization was 730. The bulk specific gravity was 0.65 g/cc, and the amount passing through a 40-mesh sieve was 85% by weight. Example 4 50 ml of n-pentane, 0.5 g of triethyl boron, and hydrogen peroxide in a glass autoclave equipped with a stirrer.
After cooling to 0°C, 50ml of vinyl chloride monomer was added, and the mixture was stirred and polymerized at 0°C for 3 hours. Next, the temperature of the autoclave was raised to 55°C, 0.8 g of diisopropyl peroxydicarbonate and 0.5 g of tertiary butyl peroxypivalate were charged, and then gaseous vinyl chloride monomer was continuously injected at a pressure of 6.2 Kg/cm 2 . Autoclave pressure 6.2
Polymerization was carried out for 4 hours while maintaining the temperature at ~6.5 Kg/cm 2 . 55℃
Thirty minutes after the temperature was raised to , the apparently liquid n-pentane disappeared. The vinyl chloride polymer thus obtained was dried under reduced pressure at 40°C all day and night. The weight of the obtained vinyl chloride polymer was 270 g, and the weight average degree of polymerization was 850. Also, the bulk specific gravity is 0.67g/cc,
The amount passing through the 40 mesh sieve was 80% by weight. Example 5 After charging 50 ml of n-pentane, 50 ml of vinyl chloride monomer, 0.5 g of diisopropyl peroxycarbonate, and 0.5 g of tertiary butyl peroxy pivalate into a glass autoclave equipped with a stirrer,
The temperature was raised to 55°C and polymerization was carried out with stirring for 2 hours to obtain vinyl chloride polymer seeds. Then, 0.5 g of diisopropyl peroxycarbonate and 0.5 g of tertiary butyl peroxy pivalate were added while continuously pressurizing the autoclave with gaseous vinyl chloride monomer at 6.2 Kg/cm 2 pressure to maintain the autoclave at 6.2-6.4 Kg/cm 2 . Polymerization was carried out for 4 hours by sequentially adding 20 c.c. of the dissolved n-pentane solution to the autoclave at a rate of 5 c.c. per hour. After the polymerization, the vinyl chloride polymer was recovered and dried under reduced pressure at 40°C all day and night. The weight of the obtained vinyl chloride polymer was 330 g, and the bulk specific gravity was 0.69 g/cc. Example 6 A glass autoclave equipped with a stirrer was charged with 50 ml of n-pentane, 10 g of vinyl acetate monomer, 50 ml of vinyl chloride monomer, and 1.0 g of diisopropyl peroxy carbonate and 1.0 g of tertiary butyl peroxy pivalate, and then heated to 55°C. Raise the temperature 2
Polymerization was carried out by stirring for hours. The apparently liquid n-pentane disappears. Next, a gaseous vinyl chloride monomer was continuously supplied at a pressure of 6.5 Kg/cm 2 to maintain the autoclave pressure at 6.5 to 6.8 Kg/cm 2 and polymerization was carried out with stirring for 3 hours. Thereafter, the vinyl chloride polymer was collected and dried under reduced pressure at 40° C. all day and night. The yield of the vinyl chloride polymer obtained was 210 g, the bulk specific gravity was 0.57 g/cc, and the vinyl acetate content was 4% by weight. Example 7 A glass autoclave equipped with a stirrer was charged with 50 ml of n-pentane, 50 ml of vinyl chloride monomer, 0.7 g of azobisisobutyronitrile, and 1.0 g of tertiary butyl peroxypivalate, and heated to 65°C. Polymerization was carried out with stirring for 1 hour and 30 minutes to obtain seeds of vinyl chloride polymer free of liquid n-pentane. Next, an equimolar mixed gas of vinyl chloride monomer and ethylene was continuously injected into the autoclave at a pressure of 7.0 Kg/cm 2 , and the polymerization pressure of the autoclave was adjusted.
Polymerization was carried out with stirring for 5 hours while maintaining the pressure at 7.0 to 7.8 Kg/cm 2 . The vinyl chloride polymer thus obtained was
It was dried under reduced pressure at ℃ overnight. The bulk specific gravity of the obtained vinyl chloride polymer was 0.62 g/cc, and the ethylene content was 1.1% by weight.

Claims (1)

【特許請求の範囲】 1 塩化ビニル重合体を溶解しない有機溶媒中
に、該有機溶媒に対する塩化ビニルモノマー又は
塩化ビニルモノマーを主体とするビニル系単量体
混合物の容量比が5/95乃至90/10となる範囲で塩化ビ ニルモノマー又は塩化ビニルモノマーを主体とす
るビニル系単量体混合物を添加し、触媒の存在下
に重合し、塩化ビニル重合体のシードを得て、次
いで該塩化ビニル重合体のシードの存在下に飽和
蒸気圧より低い圧力で塩化ビニルモノマー又は塩
化ビニルモノマーを主体とするビニル系単量体混
合物を連続的に供給しながら重合を行なうことを
特徴とする塩化ビニル重合体の製造方法。 2 有機溶媒が塩化ビニル重合体を溶解せず且つ
膨潤する能力が小さいものである特許請求の範囲
1記載の方法。 3 有機溶媒が、式、 X=(Vs/R・T)(δs−δp2 (但し式中Vsは溶媒のモル溶積、Rは気体定数、
Tは絶対温度、δsは溶媒の溶解パラメーター、δp
は塩化ビニル重合体の溶解パラメーターである。)
で示されるXが0.3以上の有機溶媒である特許請
求の範囲2記載の方法。
[Scope of Claims] 1. In an organic solvent that does not dissolve a vinyl chloride polymer, the volume ratio of a vinyl chloride monomer or a vinyl monomer mixture mainly consisting of a vinyl chloride monomer to the organic solvent is 5/95 to 90/ 10, a vinyl chloride monomer or a vinyl monomer mixture mainly composed of vinyl chloride monomers is added and polymerized in the presence of a catalyst to obtain vinyl chloride polymer seeds, and then the vinyl chloride polymer is of a vinyl chloride polymer, characterized in that the polymerization is carried out while continuously supplying a vinyl chloride monomer or a vinyl monomer mixture mainly composed of vinyl chloride monomers at a pressure lower than the saturated vapor pressure in the presence of seeds of Production method. 2. The method according to claim 1, wherein the organic solvent does not dissolve the vinyl chloride polymer and has a small ability to swell the vinyl chloride polymer. 3 The organic solvent has the formula :
T is the absolute temperature, δ s is the solubility parameter of the solvent, δp
is the solubility parameter of vinyl chloride polymer. )
3. The method according to claim 2, wherein X represented by is an organic solvent of 0.3 or more.
JP12309781A 1981-08-07 1981-08-07 Production of vinyl chloride polymer Granted JPS5825310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12309781A JPS5825310A (en) 1981-08-07 1981-08-07 Production of vinyl chloride polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12309781A JPS5825310A (en) 1981-08-07 1981-08-07 Production of vinyl chloride polymer

Publications (2)

Publication Number Publication Date
JPS5825310A JPS5825310A (en) 1983-02-15
JPH0225925B2 true JPH0225925B2 (en) 1990-06-06

Family

ID=14852123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12309781A Granted JPS5825310A (en) 1981-08-07 1981-08-07 Production of vinyl chloride polymer

Country Status (1)

Country Link
JP (1) JPS5825310A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629290B2 (en) * 1983-08-31 1994-04-20 東ソー株式会社 Gas phase polymerization of vinyl chloride

Also Published As

Publication number Publication date
JPS5825310A (en) 1983-02-15

Similar Documents

Publication Publication Date Title
US4499249A (en) Process for preparing tetrafluoroethylene/fluoro(alkyl vinyl ether) copolymer
US20170240666A1 (en) Polymerization of 2,3,3,3-tetrafluoropropene and polymers formed from 2,3,3,3-tetrafluoropropene
JPS63175009A (en) Manufacture of polyethylene by gas phase reaction
US3627744A (en) Method for polymerizing vinyl halide polymers
JPH05320253A (en) Preparation of tetrafluoro ethylene polymer
CA1332490C (en) Highly crystalline poly-1-butene, the process for preparing it and the catalyst used in the process
JP3520876B2 (en) Polyvinylidene fluoride having good mechanical properties and good thermochemical stability and method for producing the same
US3420807A (en) Vinyl chloride polymerization
JP4922486B2 (en) Continuous metering of very fast initiators during the polymerization reaction.
JPH0225925B2 (en)
US20040143080A1 (en) Method for producing copolymer of alkylvinyl ether and maleic anhydride, and copolymer of alkylvinyl ether and maleic anhydride
US3836510A (en) Vinyl halide terpolymer and bulk process for preparation
JP3283338B2 (en) Method for producing tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer
JPH0446962B2 (en)
US3432484A (en) Preparation of thermoplastic polymers by low temperature polymerization of vinyl monomers
JPH0131762B2 (en)
EP0191875B1 (en) Process for preparation of polyvinyl chloride type polymer
JP3377916B2 (en) Vinyl ester polymer and method for producing the same
JPH1135607A (en) Production of vinyl chloride-based resin
JP3565736B2 (en) Polymerization method of vinyl polymer
JPH03243608A (en) Ethylene-tetrafluoroethylene copolymer
JPS61152653A (en) Fluorine-containing diacyl peroxide and use thereof
JP3773362B2 (en) Method for controlling stereoregularity in radical polymerization
JP3550921B2 (en) Method for producing vinyl chloride polymer
JPH0329081B2 (en)