JPH0629290B2 - Gas phase polymerization of vinyl chloride - Google Patents

Gas phase polymerization of vinyl chloride

Info

Publication number
JPH0629290B2
JPH0629290B2 JP58157951A JP15795183A JPH0629290B2 JP H0629290 B2 JPH0629290 B2 JP H0629290B2 JP 58157951 A JP58157951 A JP 58157951A JP 15795183 A JP15795183 A JP 15795183A JP H0629290 B2 JPH0629290 B2 JP H0629290B2
Authority
JP
Japan
Prior art keywords
polymerization
slurry
vinyl chloride
gas phase
seed polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58157951A
Other languages
Japanese (ja)
Other versions
JPS6051705A (en
Inventor
峰雄 永野
道生 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP58157951A priority Critical patent/JPH0629290B2/en
Publication of JPS6051705A publication Critical patent/JPS6051705A/en
Publication of JPH0629290B2 publication Critical patent/JPH0629290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は、塩化ビニル単量体(以下、VCMと略記)又
はそれを主体として共重合可能なコモノマーとの気相重
合で高増殖比において品質の良好な製品をうる改良され
た重合法に関するものである。増殖比とは、種ポリマー
を含めた気相重合体量/種ポリマー量比をいう。
DETAILED DESCRIPTION OF THE INVENTION The present invention obtains a product of good quality at a high growth ratio by gas phase polymerization with a vinyl chloride monomer (hereinafter abbreviated as VCM) or a comonomer mainly copolymerizable with the vinyl chloride monomer. It relates to an improved polymerization method. The growth ratio refers to the ratio of the amount of gas phase polymer including the seed polymer / the amount of seed polymer.

VCMの気相重合については、特公昭52−4491
8,特公昭48−14666,米国特許3,578,6
46号で公知であるが、えられる気相重合品は多孔質性
に乏しく、又均質性に欠けるため、加工時におけるゲル
化性が悪く、又フィシュ・アイ特性(以下、FE特性と
略記)も悪く、あたかも砂のようなポリマーにしかなら
ないとしてプロセス上の多くの利点があるにかかわらず
その工業的価値は少ないと考えられている。
Regarding the gas phase polymerization of VCM, Japanese Patent Publication No. 52-4491
8, JP-B-48-14666, U.S. Pat. No. 3,578,6
No. 46, it is known that the obtained gas phase polymerized product has poor porosity and lacks homogeneity, resulting in poor gelation at the time of processing and fish-eye characteristics (hereinafter abbreviated as FE characteristics). Worse, it is believed to have little industrial value, despite the many process advantages as if it were only a sandy polymer.

発明者らは、鋭意研究の結果、気相重合法で従来の2段
マス重合法品や懸濁重合法品と匹敵する多孔質性が高
く、かつFE特性の良く、かさ比重の高い製品を限定さ
れた条件ではあるが、成功した(特許出願中)。
As a result of earnest research, the inventors of the present invention have found that a vapor phase polymerization method has a high porosity comparable to that of a conventional two-stage mass polymerization method or a suspension polymerization method, good FE characteristics, and high bulk density. Successful, though limited, (patent pending).

すなわち、種ポリマーの特性が支配的であるので、多孔
質およびFE特性を向上させるために、 (イ)塊状予備重合の重合率14〜25%の重合を行う。
That is, since the characteristics of the seed polymer are dominant, in order to improve the porosity and the FE characteristics, (a) the bulk prepolymerization is performed at a polymerization rate of 14 to 25%.

(ロ)重合に際して初期添加物として VCM可溶の高分子物質を 好ましくは、 滑剤成分、および 安定剤 等を添加し重合し、粒径分布をシャープ化し、かつ粒子
内構造の改質を計る。
(B) In the polymerization, a VCM-soluble polymer substance is preferably added as an initial additive, preferably, a lubricant component, a stabilizer and the like are added and polymerized to sharpen the particle size distribution and modify the internal structure of the particle.

さらに、 (ハ)重合終了時に粒子表面コート剤としてのVCM可
溶の高分子物質を添加する。
Further, (c) at the end of the polymerization, a VCM-soluble polymer substance as a particle surface coating agent is added.

また、かさ比重をも向上させるために、 (ニ)未反応VCMを回収して粉末化する際、内温を45
〜60℃と高くし、錨翼で100〜300rpmで攪拌
し、熱と剪断を与え重合粒子個々を凝集させることなし
に表面を滑らかにしてかさ比重を高くする。
Further, in order to improve the bulk specific gravity as well, (d) when recovering the unreacted VCM and pulverizing it, the internal temperature is adjusted to 45
The temperature is raised to -60 ° C and the mixture is stirred with an anchor blade at 100 to 300 rpm to give a smooth surface without increasing agglomeration of individual polymer particles by applying heat and shear to increase bulk density.

(ホ)以上の要件で作られた種ポリマーを用いてPr0.65〜
0.85の範囲で気相重合を行う。
(E) Using a seed polymer made with the above requirements, Pr0.65 ~
Gas phase polymerization is performed in the range of 0.85.

しかしながら、本発明者らの知見によれば、以上の要件
を満して気相重合を行っても増殖比を6倍以上あげて行
くと得られる製品は次第に次のように変化して行く。
However, according to the knowledge of the present inventors, even if gas phase polymerization is carried out while satisfying the above requirements, the product obtained will gradually change as follows when the growth ratio is increased by 6 times or more.

粒子径は次第に粗い方向にシフトして行き篩上が増加
して行く。
The particle size gradually shifts toward the coarse direction and increases on the sieve.

かさ比重も次第に大きくなり、反面多孔質性は低下し
て行く。
The bulk specific gravity also gradually increases, while the porosity decreases.

長時間重合を行っていると加工時の色相,熱安定性も
次第に低下して行く。
When polymerization is carried out for a long time, the hue and thermal stability during processing gradually decrease.

FE特性も増殖比の増大につれ悪化する。The FE characteristics also deteriorate as the growth ratio increases.

従って、バッチ反応として増殖比を5〜6倍の範囲にと
どめれば、前述の如く品質の良いものが得られるが、こ
れでは、粉末化種ポリマーを作成する工程があるため、
プロセスの合理性が優れたものとは云い難い。
Therefore, if the growth ratio is kept in the range of 5 to 6 times as a batch reaction, a good quality product can be obtained as described above, but since there is a step of producing a powdered seed polymer,
It is hard to say that the rationality of the process is excellent.

そこで本発明者らは、これらの欠点を解消すべく鋭意研
究を重ねた結果、本発明を完成した。
Therefore, the present inventors have completed the present invention as a result of intensive studies to eliminate these drawbacks.

すなわち、増殖比が3.5倍をこえてから新しい種ポリマ
ーを追加し、増殖比が3.5〜5.5倍を保つようにし、反応
器のホールド容量を越える分は間欠的ないし連続的に抜
き出す方法である。
That is, a new seed polymer is added after the growth ratio exceeds 3.5 times to keep the growth ratio at 3.5 to 5.5 times, and the amount exceeding the holding capacity of the reactor is intermittently or continuously withdrawn.

この新しい種ポリマーを供給する方法としては、 (1)未反応量体を回収することによって予め粉末化して
ある種ポリマーを加える方法。
As a method of supplying this new seed polymer, (1) a method of adding a seed polymer which has been powdered in advance by collecting unreacted monomers.

(2)粉末化種ポリマーにVCMを加えスラリーに戻し、
スラリー輸送加圧ポンプで送りスプレーノズルより噴霧
して反応缶に供給する方法。
(2) Add VCM to powdered seed polymer and return to slurry,
Slurry transport A method of feeding with a pressure pump and spraying from a spray nozzle to supply to a reaction can.

(3)塊状予備重合を行い重合率10%〜25%までで
(スラリーとして取扱える範囲)スラリー輸送加圧ポン
プで送り、スプレーノズルより噴霧して反応缶に供給す
る方法。
(3) A method in which bulk prepolymerization is performed and the polymerization rate is from 10% to 25% (range that can be handled as a slurry) by a slurry-conveying pressure pump, and is sprayed from a spray nozzle and supplied to a reactor.

の三方法が考えられ、いずれも使用可能であるが、以下
のような問題がないでもない。
There are three possible methods, and any of them can be used, but there is no problem as described below.

(1)の方法は、二重ロックホッパー等を使用すれば、加
圧系に脱空気した粉末種ポリマーを供給でき、凝集等の
問題は起きないが、設備的にやや複雑となり、また種ポ
リマーの粉末化の手間がかかる。
In the method (1), if a double lock hopper or the like is used, the deaerated powder seed polymer can be supplied to the pressure system, and problems such as agglomeration do not occur, but the equipment becomes slightly complicated, and the seed polymer is also used. It takes time and effort to powder.

(2)の方法は、配管内の流れ速度がスラリーの沈降速度
の1.5倍以上であれば送液上の問題はない。またスラリ
ー噴霧ノズルについて検討したところ、入口1.0mmφ,
出口1.5mmφに達しない旋回流型スプレーノズルでは時
おり閉塞が起き、パーフォーマンス性が不充分である。
入口1.5mmφ,出口2.0mmφ以上であればパーフォーマン
ス性は問題ない。ノズル孔径が大きいと噴霧状になりに
くい。結局、入口1.5mmφ,出口2.0mmφが最もよい。ま
た、スラリー濃度は15wt%までは充分送液噴霧でき
る。従って、この戻しスラリーによる種ポリマーの供給
は(1)の方法に比べ設備的に簡単であり、また予め粉末
化種ポリマーとして48メッシュ篩を通して粗粒は除い
ておけば送液中の閉塞のトラブルはなく、パーフォーマ
ンス性は良い。また予めモノマー回収時に熱と剪断力で
強固な形状の粒子となっており、スプレー噴霧後も独立
した形状の粒子となるので凝集粗粒の発生等の問題もほ
とんど起きない。しかしながら、一旦粉末化するための
手間がかかり、ややプロセスの合理性の点で問題が残
る。
In the method (2), there is no problem in liquid transfer if the flow velocity in the pipe is 1.5 times or more the sedimentation velocity of the slurry. In addition, when examining the slurry spray nozzle, the inlet 1.0 mmφ,
The swirl flow type spray nozzle that does not reach the outlet of 1.5 mmφ is occasionally clogged, resulting in insufficient performance.
If the inlet is 1.5 mmφ and the outlet is 2.0 mmφ or more, there is no problem in performance. If the nozzle hole diameter is large, it is difficult to form a spray. After all, 1.5mmφ inlet and 2.0mmφ outlet are the best. In addition, a slurry concentration of up to 15 wt% is sufficient for liquid delivery and spraying. Therefore, the supply of the seed polymer by this reconstituted slurry is facility simple compared to the method of (1), and if coarse particles are removed through a 48-mesh sieve as a powdered seed polymer in advance, clogging troubles during liquid transfer will occur. No, performance is good. In addition, since particles having a strong shape due to heat and shearing force are preliminarily collected at the time of recovering the monomer, and particles having an independent shape even after spraying, problems such as generation of agglomerated coarse particles hardly occur. However, it takes a lot of time to pulverize the powder, and there remains a problem in terms of process rationality.

(3)の重合スラリーの直接噴霧は、プロセスの合理性の
点で最も優れているが、実際試みてみるといくつかの問
題が発生した。
The direct spraying of the polymerized slurry of (3) is the best in terms of process rationality, but some problems occurred when it was actually tried.

以下その問題点と解決の方法について説明する。The problem and the solution method will be described below.

重合スラリー噴霧重合上の問題点 (1)送液可能濃度 戻しスラリーに比べ重合スラリーは粒子径が小さく、ス
ラリー粘度が高いので、送液噴霧可能濃度は12wt%で
ある。従って、重合率が12wt%を越える場合は、重合
スラリーの濃度は必然的に12wt%を越えるのでVCM
を加え7〜12wt%に希釈するのがよい。
Polymerization Slurry Spray Polymerization Problems (1) Liquid-Feeding Concentration Since the polymerized slurry has a smaller particle size and higher slurry viscosity than the reconstitution slurry, the liquid-delivery sprayable concentration is 12 wt%. Therefore, when the polymerization rate exceeds 12 wt%, the concentration of the polymerized slurry inevitably exceeds 12 wt%.
It is advisable to add 7% to 12% by weight for dilution.

(ロ)スラリー・スプレーノズルの閉塞 重合スラリーには若干の粗粒、あるいは缶内のスケール
の剥離したもの等が混入するため、量は僅かであっても
スプレーノズルを閉塞させる。これを除去すればよいの
であるが、通常の静置型ストレーナー等ではスラリー特
有な性質として大きな網目であっても、沈着が次々と起
こり層となり完全に閉塞する。通常、スラリーの過は
振動篩を使用する必要があるが、本プロセスの場合は、
耐圧が必要であり、また空間容積の大きいものはドライ
ポリマーの析出が起き好ましくない。このような観点か
ら攪拌機付ストレーナーを考案し、重合スラリーに僅か
に含まれる組粒分およびスケールの剥離物等を除去する
ことにより、送液ポンプ,スプレーノズルの詰りトラブ
ルは解消された。
(B) Closure of slurry / spray nozzle Even if the amount is small, the spray nozzle is clogged because some coarse particles or particles from which the scale in the can has peeled off are mixed in the polymerized slurry. It suffices to remove this, but in an ordinary static strainer or the like, even if the mesh is a large mesh as a property peculiar to the slurry, deposition occurs one after another and the layer is completely blocked. Normally, it is necessary to use a vibrating sieve for the excess of the slurry, but in the case of this process,
If the pressure resistance is required and the space volume is large, dry polymer is precipitated, which is not preferable. From this point of view, a strainer equipped with a stirrer was devised, and by removing a small amount of aggregated particles contained in the polymerized slurry and scale peeling matters, the clogging trouble of the liquid feed pump and the spray nozzle was solved.

構造は第1図に示す如く簡単な構造で、送液量によるが
0.5〜1の攪拌機付オートクレーブで、内筒に適宜
の金網筒(20メッシュ程度)を挿入しスラリーを攪拌
しながら過する。
The structure is simple as shown in Fig. 1.
In an autoclave with a stirrer of 0.5 to 1, insert an appropriate wire mesh cylinder (about 20 mesh) into the inner cylinder and pass the slurry while stirring.

(ハ)凝集粒子発生問題 集合スラリーの噴霧気相重合では、前述の戻しスラリー
の場合と異なり、熱と剪断力が加っていないため、粒子
が軟くまた微粒子がかなり存在するため、気相重合での
重合粒子のバインダー的役割をはたすためか、凝集粗粒
の生成をうながすことが判った。
(C) Agglomerated particle generation problem In spray gas phase polymerization of aggregated slurry, unlike the above-mentioned reconstitution slurry, heat and shearing force are not applied, so particles are soft and a large amount of fine particles are present. It was found that the formation of agglomerated coarse particles was promoted probably because the polymer particles play a role of a binder in the polymerization.

そこでこの凝集粗粒発生防止対策を検討し、次の事柄が
判った。
Then, the countermeasures for preventing the generation of the aggregated coarse particles were examined and the following matters were found.

(1)スプレーノズルはできるだけ広く散布し液滴は小さ
い方が好ましい。すなわち、ノズル径が大きいと詰りの
危険性は少ないが、流量が少ないとボタ落ちして粗粒が
生成するので、ノズルはスラリー送液にトラブルの起き
ない限界の入口1.5mmφ,出2.0mmφの旋廻流型スプレー
ノズルがよく、流量が大きく、圧力損失が大きくなる場
合は、複数にすればよい。
(1) It is preferable that the spray nozzles are spread as widely as possible and the droplets are small. In other words, if the nozzle diameter is large, the risk of clogging is small, but if the flow rate is small, the particles will drop and coarse particles will be generated, so the nozzle has a limit of 1.5 mmφ at the inlet and 2.0 mmφ at the outlet so that trouble does not occur in liquid feeding of the slurry. If a whirling flow type spray nozzle is suitable and the flow rate is large and the pressure loss is large, a plurality of nozzles may be used.

(2)重合圧力/重合温度における単量体の飽和蒸気圧比
Prが高い方が凝集粗粒の生成は少ない。すなわち、P
rが高い場合、反応が激しく、反応熱で未反応VCMは
直ちに蒸発するが、Prが高いため完全には乾いていな
いので、凝集粗粒ができにくい。しかし、Prが0.85を
こえると製品のFE特性が悪くなるのでPrは0.65〜0.
85がよい。
(2) The higher the saturated vapor pressure ratio Pr of the monomer at the polymerization pressure / polymerization temperature, the less the formation of aggregated coarse particles. That is, P
When r is high, the reaction is vigorous and unreacted VCM evaporates immediately due to the heat of reaction, but since Pr is high and it is not completely dried, agglomerated coarse particles are difficult to form. However, if Pr exceeds 0.85, the FE characteristics of the product deteriorate, so Pr is 0.65 to 0.
85 is good.

(3)種ポリマーの製造における混合剪断力をまなんべん
なく均一に与えた方が粗粒ができにくい。
(3) Coarse particles are less likely to be formed when the mixing shearing force is uniformly applied in the production of the seed polymer.

イ攪拌気相重合においては、粒子は不連続相なので攪拌
回転数は高いと翼近傍のみの攪拌となり、中心はおいて
ゆかれ攪拌されない。従って、錨型の攪拌翼で全体を低
速(20〜100rpm)でゆっくりと攪拌する方が粗粒
ができない。まま増殖に伴い粉体層高が上ってくるので
攪拌翼が粉体層に埋没している状態では上部の攪拌が不
充分になる。
In agitation gas phase polymerization, since the particles are a discontinuous phase, if the stirring speed is high, only the vicinities of the blades will be stirred, and the center will not be stirred. Therefore, coarse particles cannot be obtained when the whole is slowly stirred at a low speed (20 to 100 rpm) with an anchor type stirring blade. As the powder layer height increases as it is, the stirring of the upper part becomes insufficient when the stirring blade is buried in the powder layer.

最高粉体層面と同等か、その0.5倍位の攪拌翼長さが好
ましい。また缶径が大きい場合は上部,中心部の攪拌は
不充分になりがちで中心部の攪拌のための補助翼の取り
つけが望ましい。
A stirring blade length equivalent to or 0.5 times the maximum powder layer surface is preferable. When the can diameter is large, stirring at the top and center tends to be inadequate, and it is desirable to install auxiliary blades for stirring at the center.

ロガス流動気相重合においては、流動化速度は10〜1
5cm/secであるが、スラリー噴霧を伴なう場合は、1
2〜18cm/sec程度に流動化速度を上げた方が粗粒が
生成しない。
In the rogas flow gas phase polymerization, the fluidization rate is 10 to 1
5 cm / sec, but 1 with slurry spraying
Coarse particles are not generated when the fluidization speed is increased to about 2 to 18 cm / sec.

更には局部的不均一流動の防止に攪拌機付ガス流動が最
も望ましい。
Furthermore, gas flow with a stirrer is most desirable for preventing local non-uniform flow.

(4)かさ比重の影響 同一配合で塊状予備重合を行い、未反応VCMの回収温
度の高いほどかさ比重の高い種ポリマーがえられる。
(4) Effect of bulk specific gravity The bulk prepolymerization is performed with the same composition, and the higher the recovery temperature of the unreacted VCM, the higher the bulk specific gravity of the seed polymer.

気相重合を行い、同一増殖比で重合スラリーの噴霧重合
を行った場合、かさ比重の高い種ポリマーを使用した方
が凝集粗粒の発生は少ない。また従って増殖比がある程
度上ってかさ比重が高くなってから噴霧する方がよい。
従って、増殖比が3.5をこえてから追加の種ポリマーを
加えるのがよい。
When vapor phase polymerization is carried out and spray polymerization of the polymerized slurry is carried out at the same growth ratio, the use of a seed polymer having a high bulk specific gravity causes less generation of agglomerated coarse particles. Therefore, it is better to spray after the growth ratio has increased to some extent and the bulk specific gravity has increased.
Therefore, it is better to add additional seed polymer after the growth ratio exceeds 3.5.

(5)凝集防止添加剤 粉末種ポリマー作成時と若干異なり、重合終了時にコー
ティング剤としては凝集防止作用のある物質、すなわち
高級脂肪酸,高級アルコール類,高級脂肪酸の金属石け
ん類等のいわゆる滑剤等をポリマー当り10〜10.000pp
mの添加が有効である。
(5) Anticoagulant additive A substance that has an anticoagulant action as a coating agent at the end of the polymerization, which is slightly different from that at the time of preparation of the polymer powder, that is, a so-called lubricant such as higher fatty acid, higher alcohols, higher fatty acid metal soaps, etc. 10 to 10.000pp per polymer
The addition of m is effective.

以上の要件を満たす時重合スラリー噴霧重合において、
凝集粗粒の発生をほぼ3%以下に押えることが可能とな
り、かつ当初の種ポリマーに対する増殖比が6倍をこえ
ても、追加する重合スラリーの種ポリマーに対する増殖
比を3.5〜5.5倍の範囲に押えることによって、かさ比重
が高く、多孔質性およびFE特性の良い気相重合製品を
うることができる。
When satisfying the above requirements, in the polymerization slurry spray polymerization,
It is possible to suppress the generation of aggregated coarse particles to less than 3%, and even if the initial growth ratio of seed polymer exceeds 6 times, the growth ratio of the added polymerization slurry to seed polymer is in the range of 3.5 to 5.5 times. By pressing it, it is possible to obtain a gas phase polymerized product having a high bulk density, good porosity and good FE characteristics.

従って、粉体層レベルを一定にするよう間欠製品の抜き
だしによって初めて良好な品質の製品をうるセミ連続な
いし連続重合が可能となった。
Therefore, it is possible to carry out semi-continuous or continuous polymerization to obtain a product of good quality only by intermittently extracting the product so as to keep the powder layer level constant.

また、塊状重合において、その生成重合体に対して塩化
ビニル単量体に可溶な高分子物質10〜10,000ppmの存
在下で重合を行い、その重合終了後、生成重合スラリー
に塩化ビニル単量体に可溶な高分子物質30〜10,000pp
mを添加してえられた重合体を種ポリマーとすれば、極
めて多孔質およびFE特性のよい気相重合製品がえられ
る。また凝集防止のため、上記の滑剤および安定剤を該
塊状の重合時に生成重合体に対して各10〜5.000ppm存
在させ、滑剤を重合終了時に30〜5.000ppm添加してよ
い。
In bulk polymerization, the polymer produced is polymerized in the presence of 10 to 10,000 ppm of a polymeric substance soluble in a vinyl chloride monomer, and after the completion of the polymerization, a vinyl chloride monomer is added to the produced polymerization slurry. Polymer soluble in body 30-10,000pp
When the polymer obtained by adding m is used as a seed polymer, a gas phase polymerized product having extremely good porosity and FE characteristics can be obtained. In order to prevent aggregation, the above-mentioned lubricant and stabilizer may be present at 10 to 5.000 ppm with respect to the polymer produced during the bulk polymerization, and the lubricant may be added at 30 to 5.000 ppm at the end of the polymerization.

上記としては、ニトロセルローズ,セルローズアセテー
ト(好ましくはセルローズトリアセテート),エチルセ
ルローズ等の油溶性セルローズ誘導対;エチレン−酢酸
ビニル共重合体,エチレン−アクリル酸エステル共重合
体,メタクリル酸メチルの単独重合体または共重合体,
芳香族または脂肪族の石油樹脂,低ケン化度の変性ポリ
ビニルアルコール,ポリ酢酸ビニル,未加硫クロロプレ
ンゴム,未加硫ニトリルゴム,塩素化ポリエチレン等を
例示することができる。これらを混合して使用してもよ
い。
Examples of the above include oil-soluble cellulose derivative pairs such as nitrocellulose, cellulose acetate (preferably cellulose triacetate) and ethyl cellulose; ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer, methyl methacrylate homopolymer. Or copolymer,
Examples thereof include aromatic or aliphatic petroleum resins, modified polyvinyl alcohol having a low saponification degree, polyvinyl acetate, unvulcanized chloroprene rubber, unvulcanized nitrile rubber, chlorinated polyethylene and the like. You may mix and use these.

また、安定剤としては、ステアリン酸のカルシウム,亜
鉛,バリウム,アルミニウムなどの塩のような高級脂肪
酸の金属石けん;オクチル錫誘導体,ブチル錫誘導体,
メチル錫誘導体のような有機錫化合物;アンチモン誘導
体等をあげることができる。
In addition, as a stabilizer, metal soaps of higher fatty acids such as salts of calcium stearate, zinc, barium and aluminum; octyl tin derivatives, butyl tin derivatives,
Organotin compounds such as methyltin derivatives; antimony derivatives and the like can be mentioned.

次に本発明の実施例をあげる。しかし実施例のみで本発
明が限定されるものではない。
Next, examples of the present invention will be described. However, the present invention is not limited to the examples.

実施例1 種ポリマーの作成 錨型攪拌機(立上り翼長250m/m)付100不銹鋼
製重合缶にエバンス・ブルー0.2g/m2/ラウリル硫酸ソ
ーダ0.1g/m2/ポリビニルアルコール(日本合成N−3
00)2g/m2になるようスケール防止剤を塗布,乾燥し
た。
Example 1 Preparation of type polymer Evans Blue 0.2 g / m 2 / sodium lauryl sulfate 0.1 g / m 2 / polyvinyl alcohol (Japan Synthetic N- Three
00) A scale inhibitor was applied so as to have a concentration of 2 g / m 2 and dried.

エチルセルローズ(エトセル)T−50 3.0g,ステ
アリン酸(Hst)3.0g,高級アルコール(花王石鹸カルコ
ール68)3.0g,ジオクチル錫ジラウレート(TVS
8105)3.0gを入れ脱気を行って、VCM56kgを
仕込み、180rpmで攪拌してジャケットに温水を通じ
昇温し、内温56℃でイソブチルパーオキサイド(I
B)25%イソパラフィン液25.0mlと2,4,4トリメチル
−ペンチル−2−パーオキシフェノオキシアセテート
(TMP−PA)30%イソパラフィン液10.0mlをVC
M4kgで重合缶に洗い入れ、重合スタートする。内温を
一定に保つようジャケットに冷却水を通し調節する。1.
5時間で予めVCMにエチルセルローズT−100 10.
0gに溶かしたものをVCM2kgで仕込み、5分間混合
後、内温50℃,内圧7.2kg/cm2で定圧回収する。初め
の60分間はジャケットに54℃の温水を通じ以後52℃と
して回収速度をやや落す。内温52℃と上ったら自圧回
収、次にプロバイダー(フジキン製)で減圧回収し、残
留VCMを除去した後ポリマーを取り出す。重合率17.1
%で48メッシュ篩上1.5%であった。
Ethyl Cellulose (Etocel) T-50 3.0g, Stearic Acid (Hst) 3.0g, Higher Alcohol (Kao Soap Calcol 68) 3.0g, Dioctyltin Dilaurate (TVS)
8105) 3.0 g was deaerated, 56 kg of VCM was charged, the mixture was stirred at 180 rpm and warm water was passed through the jacket to raise the temperature, and isobutyl peroxide (I
B) 25.0 ml of 25% isoparaffin solution and 10.0 ml of 2,4,4 trimethyl-pentyl-2-peroxyphenooxyacetate (TMP-PA) 30% isoparaffin solution were VC
M4kg is washed into a polymerization vessel to start polymerization. Adjust the cooling water through the jacket to keep the internal temperature constant. 1.
Ethylcellulose T-100 in VCM in advance in 5 hours 10.
The product dissolved in 0 g is charged with 2 kg of VCM, mixed for 5 minutes, and then recovered under constant pressure at an internal temperature of 50 ° C. and an internal pressure of 7.2 kg / cm 2 . For the first 60 minutes, warm water of 54 ° C. is passed through the jacket, and then 52 ° C., and the collection rate is slightly reduced. When the internal temperature rises to 52 ° C., self-pressure recovery is carried out, and then a reduced pressure is recovered by a provider (made by Fujikin) to remove residual VCM and then take out the polymer. Polymerization rate 17.1
% Was 1.5% on a 48 mesh screen.

気相重合 立上り翼長400m/mの錨型翼と中段に短冊翼を備えた
攪拌機付100不銹鋼製重合缶で、缶内上部に入口1.
0mmφ,出口1.5mmφのVCMノズルと、入口1.5mmφ,
出口2.0mmφのスラリー噴霧ノズルを取り付ける。予め
前述のスケール防止剤を塗布乾燥し、前記の種ポリマー
3.8kgを入れ80rpmで攪拌し、脱気後、ジャケットに温
水を通し昇温し、VCMをVCMノズルより徐々に加
え、昇圧する。60.5℃,7.0kg/cm2(Pr0.75)に達したら
開始剤ジ−2−エトオキシ−エチルパ−オキシジカーボ
ネート(EEP)50%トルエン液3.0mlを仕込器に入
れ脱気後、VCM加圧ポンプでVCMノズルより散布す
る。重合反応が始まる。ジャケットは61.0℃一定に保
つ。
Gas-phase polymerization A 100-rustless steel polymerization can equipped with a stirrer equipped with an anchor-shaped blade with a rising blade length of 400 m / m and a strip blade in the middle stage, with an inlet 1.
VCM nozzle with 0mmφ and outlet 1.5mmφ, and inlet 1.5mmφ,
Attach a 2.0 mmφ outlet slurry spray nozzle. The above scale inhibitor is applied in advance and dried to obtain the seed polymer.
3.8 kg was put and stirred at 80 rpm, and after deaeration, warm water was passed through the jacket to raise the temperature, and VCM was gradually added from the VCM nozzle to raise the pressure. When the temperature reaches 7.0 kg / cm 2 (Pr0.75) at 60.5 ° C, 3.0 ml of 50% toluene solution of initiator di-2-ethoxy-ethylperoxydicarbonate (EEP) is put in a charging vessel, degassed, and VCM is pressurized. Spray from VCM nozzle with a pump. The polymerization reaction begins. Keep the jacket constant at 61.0 ° C.

重合熱の除去は内温を一定に保つようVCM加圧ポンプ
のストローク調節を行う。一方、内圧は圧力調節して余
分な蒸発VCMガスは回収する。液化冷却器で液化しリ
サイクルする。径時の計量槽のVCM減量より反応量が
判る。反応速度が低下してきたら開始剤を追加する。
To remove the heat of polymerization, the stroke of the VCM pressurizing pump is adjusted to keep the internal temperature constant. On the other hand, the internal pressure is adjusted to collect the excess vaporized VCM gas. Liquefaction cooler liquefies and recycles. The reaction amount can be known from the VCM reduction of the measuring tank when the diameter is changed. When the reaction rate decreases, an initiator is added.

重合スラリー作成 一方、タービン翼2段の攪拌機付30不銹鋼製重合缶
に前述のスケール防止剤を塗布乾燥したものに、エチル
セルローズT−50 0.55g,TVS8105 0.55
g,ステアリン酸(HST)0.55g,カルコール68 0.18
gを加え脱気し、真空(5Torr以下)でVCM9kgを加
え、700rpmで攪拌する。ジャケットに温水を通し昇
温し、56.0℃でIB20%イソパラフィン液3.6mlおよ
びTMP−PA30%イソパラフィン液1.6mlをVCM
2kgで仕込む。重合開始する。内温一定になるようジャ
ケットに冷却水を通じ調節する。重合時間2.0時間で、
ステアリン酸1.6g,ステアリン酸バリウム0.8g,エチ
ルセルローズT−100 0.5gをVCM5kgで仕込み
希釈し、冷却し、スラリーフィードに備える。
Preparation of polymerized slurry On the other hand, 30 scale stainless steel polymerization can equipped with a stirrer with two stages of turbine blades was coated with the above scale inhibitor and dried, and then ethyl cellulose T-50 0.55 g, TVS8105 0.55
g, stearic acid (HST) 0.55g, Calcol 68 0.18
g, degassed, add 9 kg of VCM under vacuum (5 Torr or less), and stir at 700 rpm. Warm water is passed through the jacket to raise the temperature. At 56.0 ° C, 3.6 ml of IB 20% isoparaffin solution and 1.6 ml of TMP-PA 30% isoparaffin solution are VCM.
Charge with 2 kg. Polymerization starts. Cooling water is adjusted through the jacket so that the inner temperature is constant. Polymerization time is 2.0 hours,
1.6 g of stearic acid, 0.8 g of barium stearate, and 0.5 g of ethyl cellulose T-100 were charged and diluted with 5 kg of VCM, cooled, and prepared for slurry feed.

重合スラリー噴霧重合 前述の攪拌気相重合で増殖比3.5倍に達したら30重
合缶で用意した重合スラリーを予めVCMを充満させて
あるスラリー・ラインを通じダブルタイヤフラム定量ポ
ンプで100重合缶に送り、スラリーノズルより噴霧
する。なお、スラリーポンプの吸引側に第1図に示す攪
拌ストレーナが設置してある。3時間目に30重合缶
にVCM2.0kgを上部より噴霧し缶内を洗う。攪拌を5
00rpmに落す。4時間でスラリーの送液を完了する。
送液スラリーの平均濃度9.17%である。スラリー・ライ
ンをVCMで洗っておく。見掛け増殖比(第1表の注参
照)7.5倍で停止し、予めVCMで溶解してある禁止剤
4,4′−ブリチデンビス(3−メチル−6−第3ブチ
ル)フェノール3.5gとジフェニルモノデシルホスファ
イト1.5gをVCMで噴霧仕込み、回収し、減圧回収
し、残留VCMを除き製品を取り出した。結果を第1表
に示す。
Polymerized Slurry Spray Polymerization When the growth ratio reached 3.5 times in the above-mentioned stirred gas phase polymerization, the polymerized slurry prepared in 30 polymerized cans is sent to 100 polymerized cans with a double tire flam metering pump through a slurry line that has been filled with VCM in advance. Spray from the slurry nozzle. The stirring strainer shown in FIG. 1 is installed on the suction side of the slurry pump. At the third hour, 30 polymerization cans were sprayed with 2.0 kg of VCM from the top to wash the inside. Stirring 5
Drop to 00 rpm. The liquid transfer of the slurry is completed in 4 hours.
The average concentration of the liquid transfer slurry is 9.17%. Wash the slurry line with VCM. Inhibitors stopped at an apparent growth ratio of 7.5 times (see Note in Table 1) and dissolved in VCM beforehand
3.5 g of 4,4'-britidenbis (3-methyl-6-tert-butyl) phenol and 1.5 g of diphenylmonodecyl phosphite were spray-charged with VCM, recovered, and recovered under reduced pressure to remove the residual VCM and take out the product. The results are shown in Table 1.

比較例1 実施例1と同じ種ポリマーを用い同一条件で気相重合を
行った。ただし30重合缶による重合スラリー噴霧は
行わずに増殖比約7.5倍で停止した。結果を第1表に示
す。
Comparative Example 1 Using the same seed polymer as in Example 1, vapor phase polymerization was performed under the same conditions. However, the polymerization slurry was not sprayed with 30 polymerization cans and stopped at a growth ratio of about 7.5 times. The results are shown in Table 1.

比較例2 実施例1と全く同様に重合操作を行った。ただしスラリ
ーポンプの吸入側に攪拌ストレーナーを設置しなかっ
た。
Comparative Example 2 A polymerization operation was performed in exactly the same manner as in Example 1. However, no stirring strainer was installed on the suction side of the slurry pump.

スラリーフィード開始後45分後にスラリーノズルが閉
詰した。止むを得ず、30重合缶は未反応VCMの回
収を缶で行い、重合ポリマーを取り出した。残量から送
液ポリマー量は0.15kgと推定される。結果を第1表に示
す。
45 minutes after the slurry feed was started, the slurry nozzle was closed. Inevitably, 30 polymerized cans were collected with unreacted VCM and the polymerized polymer was taken out. Based on the remaining amount, it is estimated that the amount of liquid-fed polymer is 0.15 kg. The results are shown in Table 1.

比較例3 実施例1と全く同様に行った。ただし30重合缶では
種スラリー作成時、重合終了後のコート剤の添加はエチ
ルセルローズT−50 0.5gのみとした。
Comparative Example 3 The same procedure as in Example 1 was performed. However, in the case of 30 polymerization cans, when the seed slurry was prepared, only 0.5 g of ethyl cellulose T-50 was added as the coating agent after the polymerization was completed.

実施例2 実施例1と同じ装置条件で気相重合を行った。Example 2 Gas phase polymerization was carried out under the same conditions as in Example 1.

ただし重合スラリーの代りに粉末種ポリマー1.60kgを3
0缶に入れ脱気後、VCM9.40kgを加え攪拌し戻しス
ラリーを作成した。それ以外は同じ。
However, instead of polymerized slurry, 1.60 kg of powder type polymer
After degassing in 0 can, VCM 9.40 kg was added and stirred back to prepare a slurry. Otherwise the same.

実施例3 実施例1と同上装置同一条件で重合を行う。ただし、3
0缶で作成した重合スラリーを、攪拌機スラリー貯槽
に移す。後30缶に後期添加剤を加えVCM5kgで洗
浄し100缶に脱液する。30缶の残存VCMを回
収、減圧回収し、缶の蓋を開けて残量を確認したが、全
く残量およびスケーリングはなかった。実施例1と同一
配合で重合スラリーを続けて作成した。
Example 3 Polymerization is carried out under the same conditions as in Example 1 except for using the same equipment. However, 3
Transfer the polymerized slurry prepared with 0 can to the stirrer slurry storage tank. Add late additives to 30 cans and wash with 5 kg of VCM and deliquorate 100 cans. The remaining VCM of 30 cans was recovered and decompressed, and the can was opened to check the remaining amount, but there was no remaining amount and scaling. A polymerized slurry was continuously prepared with the same composition as in Example 1.

気相重合を行う100缶には1Bの挿入管を設け、出
口は1B自動弁1−計量管−1B自動弁2を設置し、8
0攪拌槽につなぐ。また計量管には1/4B 12kg/cm
2G窒素自動弁を備えてある。これらの自動弁は気相重
合缶に取りつけた超音波レベル計の設定最高点で1B自
動弁1が開き、設定最低点で閉じ、自動弁2が開き、計
量管中の粉体を2kg/cm2Gの攪拌槽に圧送する。
100 cans for performing gas phase polymerization are provided with a 1B insertion pipe, and an outlet is provided with a 1B automatic valve 1-measuring pipe-1B automatic valve 2;
0 Connect to a stirring tank. In addition, 1 / 4B 12kg / cm for the measuring pipe
It is equipped with a 2 G nitrogen automatic valve. These automatic valves open the 1B automatic valve 1 at the highest setting point of the ultrasonic level meter attached to the gas-phase polymerization can, close it at the lowest setting point, and open the automatic valve 2 to set the powder in the measuring tube to 2 kg / cm. Pump to a 2 G stirring tank.

一定時間後、1B自動弁2が閉じる。この動作十数回に
1回1/4BN2自動弁が開き、1B自動弁2閉で、自動弁
1開で、重合缶側に一定時間パージし、抜出管内部のス
ケール付着を防止する。本装置により粉体層があるレベ
ルに達したら、自動間欠に製品を抜き出し、80攪拌
槽で禁止剤を加え、VCMを回収し、減圧回収して脱V
CMを行う。
After a certain time, the 1B automatic valve 2 is closed. This operation is performed once every tens of times, the 1/4 BN 2 automatic valve is opened, the 1B automatic valve is closed, and the automatic valve 1 is opened to purge the polymerization vessel side for a certain period of time to prevent the scale from adhering to the inside of the extraction pipe. When the powder layer reaches a certain level with this device, the product is extracted intermittently, an inhibitor is added in an 80-stirring tank, VCM is collected, and the product is decompressed under vacuum to remove V.
Perform CM.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例で使用した攪拌ストレーナーの内部を
示す図である。 図中の符号の意味は下記のとおり。 1……胴部、4……攪拌翼 2……金網筒、5……スラリー入口 3……攪拌軸、6……スラリー出口
FIG. 1 is a view showing the inside of the stirring strainer used in the examples. The meanings of the symbols in the figure are as follows. 1 ... Body part, 4 ... stirring blade 2 ... wire mesh cylinder, 5 ... slurry inlet 3 ... stirring shaft, 6 ... slurry outlet

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】塩化ビニル単量体又はそれと共重合可能な
単量体と塩化ビニル単量体の気相重合において、重合開
始後初めて増殖比が3.5倍を越えた後、種ポリマーの
供給量を調節して増殖比を3.5〜5.5倍に維持する
ことを特徴とする、塩化ビニルの単独重合法又は共重合
法。
1. In a gas phase polymerization of a vinyl chloride monomer or a monomer copolymerizable therewith and a vinyl chloride monomer, the growth ratio exceeds 3.5 times for the first time after the initiation of the polymerization, and then the seed polymer is added. A homopolymerization method or a copolymerization method of vinyl chloride, characterized in that the supply ratio is adjusted to maintain the growth ratio at 3.5 to 5.5 times.
【請求項2】塊状重合において粉末化した塩化ビニルの
単独重合体又は共重合体を種ポリマーとして供給する、
(1)項記載の方法。
2. A vinyl chloride homopolymer or copolymer powdered in bulk polymerization is supplied as a seed polymer.
The method according to item (1).
【請求項3】塊状重合において粉末化した塩化ビニルの
単独重合体又は共重合体に塩化ビニル単量体を加えてス
ラリーとしたものを種ポリマーとして供給する、(1)
項記載の方法。
3. A seed polymer prepared by adding vinyl chloride monomer to a homopolymer or copolymer of vinyl chloride powdered in bulk polymerization to form a slurry, (1)
Method described in section.
【請求項4】塊状重合によってえられた塩化ビニルの単
独重合体又は共重合体を含むスラリーを、それから未反
応単量体を回収することなく、種ポリマーとして供給す
る、(1)項記載の方法。
4. A slurry containing a vinyl chloride homopolymer or copolymer obtained by bulk polymerization is fed as a seed polymer without recovering unreacted monomers therefrom. Method.
【請求項5】種ポリマーのスラリーの濃度を7〜12w
t%にして供給する、(4)項記載の方法。
5. The concentration of the seed polymer slurry is 7 to 12 w.
The method according to item (4), which is supplied as t%.
【請求項6】種ポリマーのスラリーを気相重合装置へ供
給する前に、撹拌機付きストレーナーに通して粗粒を除
く、(4)項又は(5)項記載の方法。
6. The method according to claim 4 or 5, wherein coarse particles are removed by passing through a strainer equipped with a stirrer before feeding the slurry of the seed polymer to the gas phase polymerization apparatus.
【請求項7】入口径1.5mmかつ出口径2.0mmの
旋廻流型ノズルを通して種ポリマーのスラリーを供給す
る、(4),(5)又は(6)項記載の方法。
7. The method according to (4), (5) or (6), wherein the slurry of the seed polymer is fed through a whirling flow type nozzle having an inlet diameter of 1.5 mm and an outlet diameter of 2.0 mm.
【請求項8】重合圧力/重合温度における単量体の飽和
蒸気圧比が0.65〜0.85である、(4)〜(7)
項のいづれかの項記載の方法。
8. The ratio (4) to (7) of the saturated vapor pressure ratio of the monomer at the polymerization pressure / polymerization temperature is 0.65 to 0.85.
The method described in any of the sections.
【請求項9】重合装置内部の重合体を、最高粉体層高の
0.5〜1.0倍の翼長の錨型撹拌翼を20〜100r
pmの回転速度で撹拌する、(4)〜(8)項のいずれ
かの項記載の方法。
9. An anchor type stirring blade having a blade length of 0.5 to 1.0 times the height of the highest powder layer is used as the polymer in the polymerization apparatus in an amount of 20 to 100 r.
The method according to any one of items (4) to (8), which comprises stirring at a rotation speed of pm.
【請求項10】気相重合がガス流動気相重合であって、
流動化速度が10〜15cm/secである、(4)〜
(8)項のいずれかの項記載の方法。
10. The gas phase polymerization is gas flow gas phase polymerization,
Fluidization speed is 10 to 15 cm / sec, (4) to
The method according to any one of (8).
【請求項11】気相重合がスラリー噴霧ガス流動気相重
合であって、流動化速度が12〜18cm/secであ
る、(4)〜(8)項のいずれかの項記載の方法。
11. The method according to any one of (4) to (8), wherein the gas phase polymerization is slurry atomizing gas fluidized gas phase polymerization and the fluidization rate is 12 to 18 cm / sec.
JP58157951A 1983-08-31 1983-08-31 Gas phase polymerization of vinyl chloride Expired - Lifetime JPH0629290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157951A JPH0629290B2 (en) 1983-08-31 1983-08-31 Gas phase polymerization of vinyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157951A JPH0629290B2 (en) 1983-08-31 1983-08-31 Gas phase polymerization of vinyl chloride

Publications (2)

Publication Number Publication Date
JPS6051705A JPS6051705A (en) 1985-03-23
JPH0629290B2 true JPH0629290B2 (en) 1994-04-20

Family

ID=15661024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157951A Expired - Lifetime JPH0629290B2 (en) 1983-08-31 1983-08-31 Gas phase polymerization of vinyl chloride

Country Status (1)

Country Link
JP (1) JPH0629290B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812206B (en) * 2021-02-25 2024-03-19 华阳新材料科技集团有限公司 Device and method for producing polyvinyl chloride by multi-kettle continuous polymerization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244918A (en) * 1975-10-07 1977-04-08 Toyota Motor Corp Car ceiling panel and method of making the same
JPS5825310A (en) * 1981-08-07 1983-02-15 Tokuyama Soda Co Ltd Production of vinyl chloride polymer

Also Published As

Publication number Publication date
JPS6051705A (en) 1985-03-23

Similar Documents

Publication Publication Date Title
JPH0629290B2 (en) Gas phase polymerization of vinyl chloride
US4740571A (en) Process for gas phase polymerization of vinyl chloride
US3947526A (en) Polymerization of vinylpyridine
JPH07119253B2 (en) Thermal energy coagulation and cleaning of latex particles
EP0191876B1 (en) Process for gas phase polymerization of vinyl chloride
EP0191877B1 (en) Apparatus for gas phase polymerization of vinyl chloride
JPH0580937B2 (en)
EP1277765A1 (en) Process for making skinless PVC
EP0270436B1 (en) Method for the preparation of vinyl chloride homo- and copolymers in a seeded microsuspension
US3828016A (en) Polymerization of vinylpyridine in the presence of small particles of ziegler catalyzed polyolefins or polystyrene
JP3261724B2 (en) Method for producing vinyl chloride polymer
JP2777298B2 (en) Method for producing vinyl chloride resin
JP2509224B2 (en) Method for producing high solid content emulsion polymer composition
EP0191875B1 (en) Process for preparation of polyvinyl chloride type polymer
JPS6327512A (en) Production of vinyl chloride homopolymer or copolymer as emulsion or microsuspension
JP5674223B2 (en) Method for producing carboxyl group-containing water-soluble polymer
US4145499A (en) Process for polymerizing vinyl chloride
JPH0525882B2 (en)
JP2574078B2 (en) Suspension polymerization of vinyl chloride monomer
JPH0345721B2 (en)
JPS61200102A (en) Production of water-absorbing resin
JPH0867705A (en) Production of vinyl chloride polymer
FR2673184A1 (en) PROCESS FOR THE PREPARATION OF SOLUBLE (CO) POLYMERS IN THEIR (CO) MONOMERIC COMPOSITIONS.
JP3475526B2 (en) Filtration method
JPH0629291B2 (en) Vinyl chloride fluidized gas phase polymerization equipment